
2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

1

DPTO: A Deadline and Priority-aware Task
Offloading in Fog Computing Framework

Leveraging Multi-level Feedback Queueing
Mainak Adhikari, Mithun Mukherjee, Member, IEEE, and Satish Narayana Srirama, Senior Member, IEEE

Abstract—By providing flexible and shared computing and
communication resources along with cloud services, fog com-
puting became an attractive paradigm to support delay-sensitive
tasks in Internet of Things (IoT). Existing researches for offloa-
ding delay-sensitive tasks in a hierarchical fog-cloud environment
mostly focused on minimizing the overall communication delay.
However, a fair offloading strategy selects a suitable computing
device in terms of fog node or cloud server based on the
resource requirements of the task while meeting the deadline.
In this paper, we design a new delay-dependent priority-aware
offloading (DPTO) strategy for scheduling and processing the
tasks, generated from IoT devices to suitable computing devices.
The proposed strategy assigns a priority on each task based
on its deadline and assigns it to a suitable multilevel-feedback
queue. This schema reduces the waiting time of the delay-sensitive
tasks on the queue and minimizes the starvation problem of
the low priority tasks. Moreover, DPTO strategy selects an
optimal computing device for each task based on its resource
availability and transmission time from the IoT device. This
strategy minimizes the overall offloading time of the tasks while
meeting the deadlines. Finally, the extensive simulation results
with various performance parameters show the effectiveness of
the proposed strategy over the existing baseline algorithms.

Index Terms—Fog Computing; Multilevel-feedback priority
Queue; Task Offloading; Deadline; IoT

I. INTRODUCTION

The rapid growth of Internet of Things (IoT) applications
including smart city and home, smart transportation, smart
grid, smart health-care, smart water and waste management
have led to the emergence of a variety of delay-sensitive
tasks [1]. These tasks demand a substantial computational
resources for the processing in real-time environment. Past few
decades, the resource constrained IoT devices offloaded the
tasks to the cloud servers for processing and analyzing [2], [3].
However, the physical distance between the IoT devices and
the cloud servers introduces several challenges such as latency
and network congestion. To address such drawbacks, Cisco [4]
introduced fog computing paradigm for processing delay-
sensitive task offloading in local fog devices [5]–[7]. Basically,
the fog devices are geographically distributed and virtually
bring the cloud functionality to the edge of the network [8]–
[11]. Thus, the IoT devices prefer to offload the delay-

Corresponding author: Satish Narayana Srirama.
M. Adhikari and S. N. Srirama are with the Mobile & Cloud Lab,

Institute of Computer Science, University of Tartu, Estonia (e-mail: mai-
nak.ism@gmail.com, satish.srirama@ut.ee).

M. Mukherjee is with the Guangdong Provincial Key Laboratory of Petro-
chemical Equipment Fault Diagnosis, Guangdong University of Petrochemical
Technology, Maoming 525000, China (e-mail: m.mukherjee@ieee.org).

sensitive tasks to the local fog devices for minimizing the
overall latency and processing time, while meeting Quality-
of-Service (QoS) constraints such as deadline. However, due
to limited resource capacity of the fog devices, the resource-
intensive tasks are offloaded to the resource-rich cloud servers
for further analysis and processing [12]. Thus, a hierarchical
fog-cloud environment is more suitable for processing both
the delay-sensitive and resource-intensive applications while
meeting various QoS objectives [13].

A. Motivation

In a standard hierarchical fog-cloud environment, the IoT
devices offload the tasks to the suitable computing devices
(i.e., fog devices or cloud servers) through a gateway node.
However, the IoT devices generate different types of tasks
which are generally classified based on various QoS con-
straints such as delay deadline (i.e., hard deadline or soft
deadline). For a hard deadline-based task, the task should
complete its processing within the assigned deadline, other-
wise the output of the task is no longer valid for the IoT
device. However, for soft deadline-based tasks, the output
of the tasks is valid up to some extent with some penalties
even though the tasks failed to meet their corresponding
deadlines. Most of the existing offloading strategies in fog
environment [14], [15] deploy the tasks to the nearby fog
nodes or the centralized cloud servers without considering
these different types of deadlines. Moreover, due to the limited
computational and storage capacity of the local fog devices,
the resource-insensitive tasks with no deadlines are not suitable
for processing in the local fog devices. Thus, with current
approaches, most of the tasks fail to meet their deadlines due
to the additional burden on the latency as well as resource
consumption issues of the computing devices. Therefore, the
critical and yet unsolved challenge is to offload the tasks to
the suitable computing devices, based on their priorities and
ability to meet the deadlines and resource constraints of the
tasks with minimum latency.

B. Related Work

Recently, a series of strategies and algorithms have been
designed in various literature for task offloading in the field
of fog-cloud environment [8], [14], [15] and mobile-edge-
cloud scenarios [16]–[19]. In the fog offloading scenario,
an ideal solution is to process each task on a single fog
device with sufficent resource capacity [20], [21]. Yousefpour

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

2

et al. have introduced a fog integrated cloud environment
for processing delay-sensitive IoT application with minimum
processing time [22]. An analytical model based on queueing
theory has been designed by Souza et al. for minimizing the
service delay and offloading time of the tasks [23]. Rodrigues
et al. have designed a delay-sensitive task offloading strategy
with virtual machine migration and transmission power control
parameters for minimizing the offloading time and processing
delay [24]. Fricker et al. have introduced an optimal offloading
strategy for minimizing the offloading time while balancing
the loads among the multiple fog devices [25]. He et al.
have designed a heuristic offloading strategy for deploying
the tasks on the optimal fog node in a multi-tier fog-cloud
environment for minimizing the offloading time [26]. Shih et
al. have developed a fog-radio access network for offloading
ultra low-latency tasks with minimum processing time and
offloading delay [27].

Yang et al. have designed a maximum energy efficient offlo-
ading strategy for processing intelligent IoT applications with
minimum latency and processing time on a homogeneous fog
environment [28]. Mansouri et al. have devolved an offloading
game model for processing the real-time tasks on the powerful
fog devices with minimum latency and computation time in
a hierarchical fog-cloud environment [29]. The proposed stra-
tegy further optimized using pure Nash Equilibrium technique.
Liu et al. have designed a hybrid computational offloading
strategy in a multi-tier fog-cloud environment for minimizing
the latency with efficient resource utilization [30]. Du et al.
have devolved a computational offloading and resource alloca-
tion strategy in a mixed fog-cloud environment for minimizing
the latency and energy usage of the the real-time tasks with
efficient resource utilization [31]. Jiang et al. have designed
a latency-aware offloading strategy in a multi-tier fog-cloud
environment for utilizing the communication and computation
resources with minimum transmission delay [32]. The existing
task offloading strategies deployed the tasks to the suitable fog
devices or cloud servers for minimizing the processing time
and offloading delay without concerning the QoS constraint
such as deadline of the tasks.

Queueing theory is being widely applied in the field of
hierarchical fog-cloud environment to reduce the offloading
time of the tasks to the selected computing devices [33], [34].
For example, Fan et al. have developed a M/M/1 queueing
model considering computational delay and offloading time
of the tasks in mobile-cloud environment with minimum
resource cost and response time [35]. Moreover, Kumar et
al. have designed an on-demand computational offloading
framework using a queueing model to minimize the cost
of the tasks while balancing the workload [36]. Liu et al.
have designed an optimal offloading strategy using a linear
programming method under a queueing model for minimizing
the transmission delay and energy consumption of the resour-
ces [37]. Nan et al. have developed a queueing model with
Lyapunov optimization technique in fog-cloud environment
for minimizing the processing dealy and cost of the tasks
while offloading to a suitable computing device [38]. Alnoman
et al. have proposed a priority-aware scheduling strategy for
delay-sensitive applications using a queueing model which

minimizes the overall delay for the tasks in a fog-cloud
environment [39]. Moreover, a multi-cast queueing network
is suggested in fog environment for minimizing the delay and
utilizing the computing resources efficiently [40].

The existing offloading strategies have used queueing model
for storing the data to find an optimal computing device
without considering the priority of the tasks. Basically, all the
computing devices and their idle resource capacities can be
selflessly process the tasks without considering their priority
and constraints. However, nowadays, the IoT devices generate
various types of delay-sensitive tasks which should complete
to process with minimum offloading time. Thus, most of the
existing strategies fail to meet the QoS constraints of the tasks
with minimum offloading time.

C. Objective and Contributions

To overcome such issue, in this paper, we introduce a
heuristic task offloading schema in a hierarchical fog-cloud
environment for IoT applications using a multilevel-feedback
queueing model. The main objectives of the work is to
minimize the overall queueing waiting time and offloading
time of the real-time tasks while meeting the deadline and
resource constraints. Extensive simulation results with various
performance matrices are presented to show the effectiveness
of the proposed schema. The main contributions of this paper
are summarized as follows.
• We consider a hierarchical fog-Cloud model for pro-

cessing the tasks generated from the IoT devices. The
proposed framework provisions both the ad-hoc fog nodes
with distributed opportunistic computing resources and
the centralized Cloud servers with sufficient computatio-
nal resource capacity.

• We further developed a priority assignment strategy to
classify the tasks into three categories based on their
deadlines. Moreover, we designed a rule-based task sche-
duling strategy for finding an optimal order of the tasks
and minimizing the waiting time in the queue.

• A heuristic task offloading strategy is suggested to find
a suitable computing device that minimizes the overall
offloading time.

The rest of the paper is organized as follows. Section II pre-
sents the system model and problem formulation of the work.
The delay-dependent priority-aware task offloading strategy is
discussed in Section III. The simulation results are presented
in Section IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As illustrated in Fig. 1, we consider a hierarchical fog-
Cloud scenario with a set of K IoT devices denoted as K =
{1, 2, . . . ,K} and a set of locally distributed N fog devices
denoted as N = {1, 2, ..., N}. Furthermore, we consider a set
G = {1, 2, . . . , G} of IoT gateways that receive the tasks from
the multiple IoT devices and offload these tasks to the suitable
computing devices such as fog devices or remote cloud servers.
Denote FMM

n as the memory usage of the nth fog node.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

3

TABLE I
MAIN NOTATION DEFINITION

Symbols Definition

K The number of total IoT devices in the network
N The number of total fog nodes in the network
M The number of total cloud servers in the data center
G The number of total IoT gateways in the network
L The number of total tasks

B
up
ji

The uploading bandwidth [bits/second] from ith Fog device
to jth cloud server

Bout
ij

The downloading bandwidth [bits/second] from jth cloud
server to ith Fog device

Xj Input data size [bits] of jth task
PRi Processing density of ith computing device
Dj The total number of CPU cycles to process the jth task
Tj The deadline of the jth task

fi
The CPU frequency [cycles/second] of the ith computing
device i ∈ (K ∪N ∪M)

fk The CPU frequency [cycles/second] of the kth IoT device
fn The CPU frequency [cycles/second] of the ith fog device
fm The CPU frequency [cycles/second] of the jth cloud server

SMM
m The memory usage of the mth cloud server

FMM
n The memory usage of the nth Fog device
AHD

j The jth task with hard deadline
ASD

j The jth task with soft deadline
Awout

j The jth task without any deadline

Moreover, a set of M cloud servers deployed on the centralized
cloud data center is denoted as M = {1, 2, . . . ,M}. Note
that the CPU frequency and memory usage of the cloud
servers are higher than the fog devices, i.e., fm >> fn
and SMM

m >> FMM
n . Suppose that the IoT devices have L

independent and identical tasks to be executed, denoted by
the set A = {1, 2, 3, . . . , A}. In the hierarchical fog-cloud
environment, each task is either processed locally, or offloaded
to one of the N fog devices for local execution or M cloud
servers for remote execution. Denote π ∈ RL×|K∪N∪M| as the
task assignment matrix, where the (j, i)th entry is represented
as π(j, i) ∈ {0, 1}, j ∈ L, i ∈ (K ∪N ∪M), is given by

π(j, i)=

1
if the jth task is assigned to the ith
computing device,

0 otherwise.

Ler AL = {j ∈ L : π(j, i) = 1} denotes the set of tasks
which are assigned to computing device i, i ∈ (K∪N ∪M).
We also assume that |π(j, i)| ≥ 1, i.e., each task should be
assigned to at least one computing device. The total number
of CPU cycles required to process jth task is expressed as
Dj = Xj×PR, where Xj is the input data size of the task and
PR is the processing density of the task. The main notations
in this paper are summarized in Table I.

1) Local Computing: The tasks that require less computing
resources for processing and storage are computed locally at
the IoT device. The processing time of the jth task in the ith
computing device is expressed as

Tji =

∑L
j=1 π(j, i)Dj

fi
, ∀i ∈ (N ∪M), j ∈ K . (1)

Centralized cloud

data-centres

Fog node Fog node Fog node

Things/End-devices Things/End-devices Things/End-devices

LTE Communication links

Fog-IoT

gateway

devices

Fog nodes

IoT devices

Bluetooth

or WiFi

Fig. 1. Illustration of hierarchical fog-cloud model for IoT applications.

Note that if the task is locally computed at the IoT device,
then the total computation mainly depends on the CPU fre-
quency of the IoT device instead of the communication delay.

2) Remote Computing: Due to the limited processing and
storage capacity of the IoT devices, most of the tasks are uplo-
aded to the either locally distributed fog devices or centralized
cloud servers. The deadline of the task and communication
delay between the IoT device and computing device (fog or
cloud server) will play a major role for the offloading decision.
We discuss the phases as follows.

Phase 1 - Task Uploading: At first, the tasks are uploaded to
the suitable computing devices via the local IoT gateway. For
simplicity, we assume that the tasks are uploaded to the local
fog node or the centralized cloud servers based on their priority
and the deadline. Let us consider, hpj denotes the channel
power gain from the local IoT devices for offloading the jth
to the ith computing device, i ∈ (N ∪M). The achievable
uploading rate (in bps) at the ith computing device is defined
as follows.

Rup
ji = Bin

ji log2

(
1 +

P up
i hpj
ξ2i

)
,∀i ∈ (N ∪M), j ∈ K (2)

where Bin
ji represents the available transmission bandwidth

between jth IoT device to ith computing device; P up
i denotes

the transmission power for uploading to the ith computing
device; and ξ2i represents the additive white Gaussian noise of
the ith computing device.

The task uploading time to the ith computing device is
defined as follow.

T up
ji =

∑L
j=1 π(j, i)Xj

Rup
ji

,∀i ∈ (N ∪M), j ∈ K (3)

Phase 2 - Task Processing: After receiving the assigned
task to the ith computing device, the task process with the

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

4

computational frequency of that device, i.e., fi : i ∈ (N ∪M).
The total processing time of the jth task is expressed as

Tji =

∑L
j=1 π(j, i)Dj

fi
, ∀i ∈ (N ∪M), j ∈ K . (4)

Phase 3 - Task Downloading: After processing the assigned
task, the ith computing device begins to transmit the task to the
requested IoT device. Similar to the Task uploading phase, the
computing devices transmit their results to the respective IoT
devices based on their completion. Let gpi denotes the channel
power gain from the ith computing device for downloading
the result to the respective jth IoT devices. The achievable
downloading rate from the ith computing device is defined as
follow.

Rdown
ij = Bout

ij log2

(
1 +

P down
i gpi
ξ2j

)
∀i ∈ (N ∪M), ∀j ∈ K

(5)
where Bdown

ij represents the available transmission bandwidth
between ith computing device and jth IoT device and Bout

ij =
Bin
ji; P

down
i denotes the transmission power for downloading

the ith computing device; and ξ2j represents the additive white
Gaussian noise of the jth IoT device. The task downloading
time to the ith computing device is expressed as

T down
ij =

∑L
j=1 π(j, i)Xj
Rdown
ij

,∀i ∈ (N ∪M), j ∈ K . (6)

3) Total Offloading Time: The IoT-based tasks are either
processed locally or should be offloaded to the local distributed
fog devices or the centralized cloud servers based on their
deadline and resource availability of the computing devices.
For local processing, the total offloading time of the tasks
only depends on their processing time on the IoT devices, i.e.,
T offload
j,i = Tji (see, (1)). However, the total offloading time

of the IoT-based tasks for remote computing depends on the
transmission time of the data uploading and downloading and
the processing time on the selected computing devices. Thus,
the total offloading time of the jth task on the ith computing
device is defined as follows.

T offload
j,i =

{
Tji ∀i ∈ AL, j ∈ K
T up
ji + Tji + T down

ij ∀i ∈ (N ∪M), j ∈ K .
(7)

B. Queueing Model

As illustrated in Fig. 2, the IoT gateways receive multiple
number of tasks from different IoT devices. Here, we consider
a time-slotted system, t = {1, 2, 3, ..., t}, where the length
of each time-slot is ∆t. Each IoT gateway is idle and all
the queues are empty when t < 0. The global queue of
each IoT gateway follows the M/M/I – First-Come-First-
Serve (FCFS)/Q-bounded queueing model with a birth-death
process where I ∀I ∈ (N ∪M) denotes the number of active
computing devices as a form of fog devices or cloud servers
and Q represents the size of the queue. Here, we consider the
occurrence of a sequence of discrete tasks can be realistically
modeled as a Poisson process, i.e., the time interval between

the arrival of the successive tasks are exponentially distributed.
For a Poisson process, the time interval between two such
arrivals of tasks are treated as independent random variables
which are drawn from an exponential distributed population
with the density function f(x) = λe−λx for some fixed
constant λ, which is also called as the arrival rate of the
tasks. Denote µ as the service rate of the computing devices.
We assume same service rate for all the computing devices.
Therefore, the utilization of each computing device is defined
as ρ = λZs/µ, where Zs denotes the number of active
computing devices, where, s ∈ (N ∪ M). The probability
that all computing devices are idle at certain time-stamp is
defined as follows.

P0 =
1

Zs∑
i=1

((
λL/µL

)
L!

+

(
λZs/µZs

)
Zs!

1

1−
(
λ/Zs µ

)) (8)

The probability that the ith computing device is in an idle-
state at a certain time-stamp is defined as follows.

Pi =


λi/µi

i!
P0 where i = 1, 2, . . . , Zs

λi/µi

Zs!Z
(i−Zs)
s

P0 where i = Zs + 1, Zs + 2, . . .
(9)

Moreover, the mean number of tasks waiting at the queue of
the IoT gateway is expressed as

Q̄ =
P0

(
λZs/µZs

)
ρ

Zs! (1− ρ)2
. (10)

Afterward, the IoT gateway classifies the tasks into three
categories based on their deadline: hard deadline (AHD

j), soft
deadline (ASD

j), and no deadline (Awout
j) tasks. These tasks

are placed in three multilevel-feedback priority queues denoted
as Qx, where x = 1, 2, 3, as shown in Fig. 2. The tasks
with hard deadlines have highest priority and place them on
the high priority multilevel-feedback queue Q1, however, the
tasks with no deadline have lowest priority and place them
on low priority multilevel-feedback queue (Q3). To avoid
the starvation problem of the soft deadline or no deadline
tasks, here we consider the multilevel-feedback queue. After a
certain time-stamp, if the lower priority tasks are not assigned
to any computing device for processing, then the priority of
the tasks are increased by 1 and the tasks are promoted to
higher priority queue. Thus, the total waiting time of a task j
on the priority queue (Qx) is defined as follows.

Twait
j =

λjZ
2
s

2(1− ρj)
=

Z2
s

µj(1− ρj)
. (11)

C. Problem Formulation

The main objective is to minimize the offloading delay
(uploading time, remote task processing, and downloading
time) and waiting time in the queue for local or remote
computing for all the tasks coming from the IoT devices.
The main intention of this work is to schedule the tasks
optimally and assign most of the hard-deadline (AHD

j) and
soft-deadline (ASD

j) based tasks to the local fog device i,∀i ∈

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

5

Global queue

at the gateway

Multifeedback

priority queue

Task

offloading to

suitable fog

node or

cloud server

Schedule the

tasks based

on their

priority

Task classifier

High priority tasks

Low priority tasks

Intermediate

priority tasks

T
a
s
k
s
 a

rr
iv

e
d
 f
ro

m
 I
o
T

 d
e
v
ic

e
s

Fig. 2. Multilevel-feedback priority queueing model for IoT gateway.

N , which minimizes the latency and overall offloading time.
However, the tasks without deadline (Awout

j) can be deployed
on the centralized cloud server i,∀i ∈ M for optimizing
the performance of the system model. Thus, the aim of this
work is to optimize the task assignment strategy for the
jth task on the ith computing device, i.e., π(j, i), the task
uploading time T up

ji , processing time Tji, and downloading
time T down

ij with the deadline constraint ADj . As a result, the
proposed strategy minimizes the overall queueing waiting time
Twait
j and total offloading time T offload

ji of the set of tasks
Aj ,∀Aj ∈ (AHD

j ∪ASD
j ∪Await

j).
We formulate the above objective and constraints as follows:

minimize T offload
ji + Twait

j ∀j ∈ K, i ∈ (K ∪N ∪M)

(12a)

subject to T offload
ji + Twait

j ≤ ADj ,∀ADj ∈ (AHD
j ∪ASD

j),
(12b)

ACPUj ≤ RCPUi , RCPUi ∈ (FCPUi ∪ SCPUi),
(12c)

AMM
j ≤ RMM

i , RMM
i ∈ (FMM

i ∪ SMM
i),

(12d)
π(j, i) ∈ {0, 1}, (12e)
Zs∑
i=1

π(j, i) = 1, (12f)

T up
ji ≥ 0, and T down

ij ≥ 0 (12g)

In the above problem, the objective function is to minimize
the total offloading time and queueing waiting time of the
tasks which is addressed in 12. The constraint 12b states
that the total completion time of the tasks should meet their
corresponding deadline. The constraint 12c and 12d state that
the CPU frequency and memory usage of the tasks should
be less than or equal to the selected computing devices
i,∀i ∈ (N ∪ M) respectively. Constraint 12e imposes the
binary offloading constraint. As a result, a task Aj should
complete its processing on the assigned computing device
i,∀i ∈ (N ∪ M). Constraint 12f represents that each task
must be assigned to a computing device i,∀i ∈ (N ∪M).
Finally, the constraint 12g represents that the task offloading
time, i.e., T up

ji and task downloading time, i.e., T down
ij should

be non-negative.

III. PROPOSED DELAY-DEPENDENT PRIORITY-AWARE
TASK OFFLOADING (DPTO)

In this section, we detail the description of the delay-
dependent priority-aware task offloading (DPTO) strategy for
the tasks in a fog-cloud environment. The primary goal of the
strategy is to schedule the tasks based on their priority and
offload them to the suitable computing devices for minimizing
the delay while meeting the deadlines. Our proposed DPTO
strategy has three phases as follows. a) In first phase, the IoT
gateway verifies each task based on its deadlines and assigns
a priority. b) In the next phase, the task scheduler finds an
optimal scheduling strategy for minimizing the waiting time
of the tasks in queue and optimizes the starvation problem
of the low priority tasks. c) Finally, the scheduled tasks are
offloaded to a suitable computing device that minimizes the
total latency while meeting the deadlines of the tasks. The
details of the above-mentioned three phases of DPTO strategy
are discussed as follows:

A. Priority Assignment

In this phase, based on the predefined deadline, the task
classifier (shown in Fig. 2) assigns the priority of each task
waiting in the global queue of each IoT gateway. Specifically,
we obtain three categories as follows:
• Task Priority 1 (A1). It is the highest priority class

that aims to support the delay-sensitive tasks with hard
deadlines. Such type of tasks should meet their deadline
without any negotiation, i.e., the tasks will be killed if
they did not meet their respective deadline. This type
of tasks are either processed locally in the IoT devices
or assigned to the local fog devices in order to avoid
significant offloading and downloading time in case of
remote cloud. Specifically, a more reliable computing
devices are assigned for such tasks.

• Task Priority 2 (A2). This type of tasks have inter-
mediate priority with soft-deadline. Basically, such type
of tasks meet their deadline with a negotiation of total
latency, i.e., additional time may be provided for com-
pletion of the task processing. This type of tasks can be
either locally processed at the fog devices or offloaded to
the centralized cloud servers.

• Task Priority 3 (A3). It is the lowest priority class
that aims to support the resource-intensive tasks without
any deadline. Such type of tasks require more resource
capacity (i.e., CPU frequency and memory) for proces-
sing without a primary constraint on minimizing the
latency. This type of tasks are mostly offloaded to the
centralized cloud servers which have sufficient processing
and storage resources.

We should emphasise that all tasks with priority A1 must
be sent to the highest priority queue (denoted as Q1) in
the multilevel-feedback queue, thus, A1 is assigned to Q1.
Moreover, the tasks with priority A2 are assigned to the
intermediate priority multilevel-feedback queue denoted as
Q2. Besides, the low priority multilevel-feedback queue Q3

receives the tasks with low priority tasks A3.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

6

B. Task Scheduling

This phase finds an optimal scheduling order of the tasks for
offloading on the computing devices. A task Aj ,∀(j ∈ AHD

j ∪
ASD
j ∪ Awout

j) is scheduled to the IoT Gateway for offloading
based on the following rules.

Rule 1: If Q1 6= ∅, then the tasks with priority A1 are
scheduled in FCFS order by the IoT gateway for offloading.

Rule 2: If Q1 = ∅ and Q2 6= ∅, then the tasks with
priority A2 are scheduled in FCFS order by the IoT gateway
for offloading.

Rule 3: If Q1 6= ∅ and Q2 6= ∅ and Twait
j ≥ η1,∀j ∈ ASD

j ,
then the tasks with priority A2 are promoted and placed at the
end of the higher priority queue Q1 for further scheduling.

Rule 4: If Q1 = ∅ and Q2 = ∅ and Q3 6= ∅, then the
tasks with priority A3 are scheduled in FCFS order by the
IoT gateway for offloading.

Rule 5: If Q1 6= ∅ and Q2 6= ∅ and Q3 6= ∅ and Twait
j ≥

η2,∀j ∈ Awout
j , then the tasks with priority A3 are promoted

and placed at the end of the intermediate priority queue Q2

for further scheduling.
Rule 6: If Q1 6= ∅ and Q2 = ∅ and Q3 6= ∅ and Twait

j ≥
η2,∀j ∈ Awout

j , then the tasks with priority A3 are promoted
and placed at the end of the higher priority queue Q1 for
further scheduling.

Rule 7: If Q1 = ∅ and Q2 = ∅ and Q3 = ∅, then the
overall process should be suspended.

Here, we consider two types of waiting time constraints for
intermediate priority tasks and low priority tasks in the queue,
such as η1 and η2 for avoiding starvation problem. According
to Rule 3, if the higher priority queue Q1 is not empty, i.e.,
Q1 6= ∅ and few tasks waiting time greater than threshold
value η1, i.e., Twait

j ≥ η1,∀j ∈ ASD
j of the intermediate priority

queue, then the priority of such tasks are promoted to priority
A1. Similarly, according to Rule 5, if the higher priority queue
Q1 and intermediate priority queue Q2 are not empty (Q1 6=
∅) and few tasks waiting time greater than threshold value η2,
i.e., (Twait

j ≥ η2),∀j ∈ Awout
j of the no priority queue, then

the priority of such tasks are promoted to priority A2, which
is also applicable for Rule 6 as well. The formulation of the
waiting time of a task Twait

j is defined as follows.
At first, the waiting time of a task Aj with hard deadline

(AHD
j) in higher priority queue Q1 depends on the previous

tasks present in the queue Q1 which is calculated as follows.

Twait,HD
j =

{
0 where pred(Q1 = ∅)∑N1

a=1 T
wait
a ∀a 6= j, Aa ∈ pred(AHD

j)
(13)

Here, N1 is the length of Q1, and pred(�) denotes the previous
set of tasks arrived in a queue. Secondly, the waiting time of
a task Aj with soft deadline (ASD

j) in intermediate priority
queue Q2 depends on the tasks available in the higher priority
queue Q1, which is defined as follows.

Twait,SD
j =


Twait,HD
j where Aj ∈ AHD

j

Twait,HD
j +

N2∑
b=1

Twait
b ∀b 6= j, Ab ∈ pred(ASD

j)

(14)

where N2 is the length of Q2. Finally, the waiting time of
a task Aj without deadline (Awout

j) in low priority queue Q3

depends on the tasks available in the higher priority queue Q1

and intermediate priority queue, which is calculated as follows.

Twait, wout
j =

T
wait,SD
j where Aj ∈ ASD

j

Twait,SD
j +

N3∑
c=1

Twait
c ∀c 6= j, Ac ∈ pred(Awout

j)

(15)
where N3 denotes the length of Q3.

C. Task Offloading

The task offloading strategy uses a heuristic policy for
finding a suitable computing device for each scheduled task
that minimizes overall offloading time while meeting the
deadline. Here, we assume that each IoT gateway G connects
with multiple fog devices and cloud servers, i.e., G → i,∀i ∈
(N,M). However, it may also be possible that a fog device
i,∀i ∈ N is connected with multiple IoT gateways, i.e.,
i→ (Gx,Gy),∀i ∈ N , where x 6= y. So, each gateway should
communicate with the connected fog devices for collecting
their current status (i.e., busy or free) and resource availability
in the form of CPU frequency and memory usage. Moreover,
we also assume that the fog devices and cloud servers are
placed in a static environment, i.e., the distance between the
computing devices and IoT gateways with communication
bandwidth are known as prior. So, the uploading time (T up

ki)
and downloading time (T down

ik), ∀i ∈ (N ∪M), k ∈ G between
ith computing device and kth gateway are calculated using (3)
and (6) respectively.

Now, the proposed heuristic finds a suitable computing
device i for each scheduled task Aj which requires minimum
uploading and downloading time and meets the resource
requirements of the tasks. The IoT gateway should deploy
the deadline based tasks ADj , where ADj ∈ (AHD

j ∪ ASD
j)

to the local fog nodes that have sufficient CPU frequency
for processing the tasks within their deadline Tj . However,
the tasks without deadlines Aj ∈ Awout

j should be offloaded
to a suitable computing device that meets their resource
requirements. The required CPU frequency for processing task
ADj in a computing device i is defined as

RfCj =
Xj

Tj −
(
Twait
j +AU up

ki +Addown
ik +RRTki

) , (16)

where RRTki represents the round-trip time between the
computing device i,∀i ∈ (N∪M) and IoT gateway k, ∀k ∈ G
for finding whether the computing device i is free to process
the upcoming task Aj or busy for processing another task
Aj , coming from other gateway device k. Let us consider
that the required memory usage of each task Aj for storing
output data is RMM

j and the available memory usage of a
computing device i is represented as CDMM

i . The selection
of a computing device i for each scheduled deadline based
tasks ADj is based on the following rules.
• Rule 1: If RfCj ≤ fCi and RMM

j ≤ CDMM
i ∀j ∈

ADj , k ∈ (N ∪ M), then deploy the task ADj on the
computing device i. Here, the deadline based tasks are

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

7

Algorithm 1: Proposed DPTO Strategy
input : Tasks with deadlines, Zj , Dj , T

wait
j , T

up
ji , T

down
ij

output: Suitable ith computing device for the task

1 begin
2 for j = 1 to l do
3 Assign the priority of tasks using Rule 1 to Rule 7 of Task

Scheduling phase:;
4 Waiting Time of tasks are calculated using (13)–(15);

end
5 for i = 1 to Zs : ∀i ∈ (N ∪M) do
6 for j = 1 to l: ∀j ∈ AD

j do
7 Calculate RfC

j using (16);
8 if RfC

j ≤ fC
i and RMM

j ≤ CDMM
i then

Deploy task AD
j on computing device i

end
9 if RfC

j ≥ fC
i and RMM

j ≤ CDMM
i then

Not Possible to deploy
end

10 if RfC
j ≤ fC

i and RMM
j ≥ CDMM

i then
Not Possible to deploy

end
11 if RfC

j ≥ fC
i and RMM

j ≥ CDMM
i then

Not Possible to deploy
end

end
end

end

offloaded to the computing device i that meets the requi-
red CPU frequency and memory usage of the task ADj .

• Rule 2: If RfCj ≥ fCi and RMM
j ≤ CDMM

i ∀j ∈
ADj , k ∈ (N ∪ M), then the task Aj should not be
deployed on the computing device i due to lack of CPU
frequency.

• Rule 3: If RfCj ≤ fCi and RMM
j ≥ CDMM

i ∀j ∈
ADj , k ∈ (N ∪ M), then deploy the task ADj on the
computing device i due to lack of memory usage.

• Rule 4: If RfCj ≥ fCi and RMM
j ≥ CDMM

i ∀j ∈
ADj , k ∈ (N ∪ M), then deploy the task ADj on the
computing device i due to lack of CPU frequency and
memory usage.

The tasks without deadlines Aj ,∀j ∈ Awout
j requested a CPU

frequency (RfCj ,∀j ∈ Awout
j) and memory usage (RMM

j ,∀j ∈
Awout
j) for processing. Those tasks deploy on the suitable

computing device that should meet the resource requirements
using Rule 1 to Rule 4 of the deadline-based tasks. The main
goal of this phase is to minimizes the overall offloading time
of the tasks while meeting their resource requirements. The
pseudo code of the proposed DPTO strategy is shown in
Algorithm 1.

IV. EMPIRICAL EVALUATION

In this section, we evaluate and compare the performance
of the proposed DPTO strategy with the following baseline
algorithms in terms of a) average queueing waiting time, b)
average offloading delay, and c) the number of tasks satisfying
the delay deadline as:
• Random offloading: In this offloading, every IoT device

randomly selects a computing device to offload its task.
• Highest Data-Rate (HDR) offloading: Every IoT device

offloads its task to the computing device with minimum
uploading time.

TABLE II
SIMULATION PARAMETERS

Parameters Values
Number of fog devices (N) 10
Number of IoT devices (K) 20

Number of cloud servers (M) 2
Number of IoT gateways (G) 3

Number of tasks (L) 100
Maximum Bandwidth (BW) 20MHz

CPU frequency of the IoT devices (fk) 600× 106 [cycles/s]
CPU frequency of the fog devices (fn) 5× 109 [cycles/s]

CPU frequency of the cloud servers (fm) 10× 109 [cycles/s]
Memory capacity of the IoT devices (AMM

k) 128MB
Memory capacity of the fog node (FMM

n) 512MB
Memory capacity of the cloud servers (SMM

m) 64GB

• Highest Computing Device (HCD) offloading: The IoT
device offloads the tasks to the computing device that
has sufficient CPU frequency for processing the tasks.

Basically, these baseline algorithms act as reference to show
the performance improvement of the proposed offloading
strategy in the fog-cloud environment.

A. Simulation Setup

For the simulations, we take 20 IoT devices that generate
multiple tasks in a time interval ∆t. The input and output
data sizes of each task are assumed to be uniformly dis-
tributed from 10 MB to 30 MB and from 1 MB to 30 MB,
respectively. The maximum transmission bandwidth between
the IoT devices and the remote fog and cloud servers are
20 Mbps with no additional limit on the data uploading or
downloading. For the real-time tasks, to take the deadline
of the tasks into consideration, three different types of tasks
are considered, hard-deadline based tasks, soft-deadline based
tasks and without deadline based tasks. An empirical test
of each parameter is evaluated with 1000 independent runs
for finding optimal solution of each parameter. Other default
simulation parameters are summarized in Table II.

B. Average Queueing Waiting Time

This metric answers the question that how much time the
tasks should wait in the queue before offloading to the suitable
computing devices for processing. Therefore, it can not only
reflect the performance of individual task, but also minimizes
the waiting time of the tasks in the queue. Fig. 3(a) illustrates
the queueing waiting time of the tasks with various deadlines,
generated from the IoT devices. As illustrated in Fig. 3(a), the
queueing waiting time of the hard deadline-based tasks are
minimum rather than the soft deadline-based and no deadline-
based tasks. This is because, the hard deadline-based tasks
have higher priority and need to process faster than the other
tasks. Similarly, the queueing waiting time of the no deadline-
based tasks are lower than the no deadline-based tasks due to
their second highest priority for processing.

Fig. 3(b) shows the performance comparison of the average
queueing waiting time of the tasks with the baseline al-
gorithms. The proposed DPTO strategy schedules the hard-
deadline and soft-deadline based tasks immediately for offlo-
ading instead of the without deadline based tasks. In general,

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

8

5 10 15 20 25 30 35 40

Number of tasks

0

20

40

60

80

100

120

Q
u
e
u
e
in

g
 w

a
it
in

g
 t
im

e
 (

in
 m

s
)

Hard deadline

Soft deadline

No deadline

(a)

10 20 30 40

Number of tasks

0

2

4

6

8

10

Q
u
e
u
e
in

g
 w

a
it
in

g
 t
im

e
 (

in
 s

)

Random offloading

HDR offloading

HCD offloading

Proposed DPTO

(b)

Fig. 3. Performance of (a) Queueing waiting time and (b) average queueing
waiting time.

the IoT devices generate the deadline-based (either hard or
soft) tasks. As a result, the proposed strategy minimizes the
waiting time of each task in the queue which also reflects the
overall queueing waiting time. Thus, overall queueing waiting
time is minimized with increasing the number of tasks in the
queue. This phenomena can also reflect the performance of the
offloading time of the tasks. While the baseline algorithms
deploy the tasks in FCFS order without considering their
priorities and deadlines. This increases the waiting time of the
deadline-based tasks, thereafter has an adverse impact on the
performance of the offloading time. Thus, from the simulation
results, it is observed that the DPTO strategy performs better
than the baseline algorithms.

C. Average Offloading Time

The minimum queueing waiting time of the higher priority
tasks also reduces the total offloading time. This metric shows
the total completion time of the tasks including the uploading
time, processing time and downloading time. Therefore, it not
only reflects the individual-level offloading time performance,
but also depicts the satisfactory level of the higher priority
tasks rater than lower priority tasks. Fig. 4(a) illustrates the
offloading time of the tasks with different deadlines. As
illustrated in Fig. 4(a), the task offloading times increased as
the number of tasks increases. This is because that the limited
computing capabilities and communication bandwidth of the
fog devices are insufficient when the IoT devices generate
more number of tasks with deadlines for processing. Moreover,
Fig. 4(a) shows that the offloading delay of the higher-priority
tasks are lower than the lower-priority tasks, which improves
the performance of the overall system.

Fig. 4(b) depicts the tradeoff between the proposed DPTO
strategy with the baseline algorithms in term of offloading
time. The DPTO strategy deploys the tasks to the suitable
computing devices based on the minimum communication
overhead and the availability of the computing resources for
processing the tasks. While the HDR offloading algorithm de-
ploys the tasks to the set of computing devices with minimum
transmission time without considering the resource availability,
however, the HCD offloading algorithm considers the resource
availability without considering the transmission delay. Be-
sides, it can be observed that the RT offloading strategy
selects the computing devices randomly without considering

5 10 15 20 25 30 35 40

Number of tasks

1

1.5

2

2.5

3

3.5

4

4.5

5

O
ff
lo

a
d
in

g
 t
im

e
 (

in
 s

)

Hard deadline

Soft deadline

No deadline

(a)

10 20 30 40

Number of tasks

0

2

4

6

8

10

12

A
v
e
ra

g
e
 o

ff
lo

a
d
in

g

ti
m

e
 (

in
 s

)

Random offloading

HDR offloading

HCD offloading

Proposed DPTO

(b)

Fig. 4. Performance of (a) offloading time and (b) average offloading time

any objective parameters. Thus, it is observed that the average
offloading time of the tasks using existing baseline algorithms
increases gradually rather than proposed DPTO algorithm as
the number of tasks increases. Thus, the proposed DPTO
strategy generates better results and minimizes the average
offloading time as compared with the baseline algorithms.

D. Number of Tasks Satisfying the Delay Deadline

This metric represents the number of tasks (with hard-
and soft-deadline) satisfying their deadline while processing
on various computing devices. Particularly, the occurrence
of T offload

ji + Twait
j ≤ Tj ∀ADj ∈ (AHDj ∪ ASDj) mainly

depends on the queueing waiting time and offloading time.
Fig. 5(a) illustrates the number of tasks with different ca-
tegories meeting their different deadlines. From Fig. 5(a), it
is clear that the tasks with hard-deadlines mostly meet their
deadline, however, in some scenario, the soft-deadline tasks
fail to meet their deadline due to the limited resource constraint
and communication overhead of the local fog nodes. Thus, for
most of the cases, the proposed DPTO strategy satisfies the
requirements of the tasks generated from the IoT devices.

Moreover, Fig. 5(b) presents the comparative performance
of the proposed DPTO strategy with the baseline algorithms
in terms of number of tasks meeting the deadline. Here,
we consider four different scenarios while varying different
number of tasks. From Fig. 5(b), it can be clearly observed
that the baseline algorithms fail to meet the deadlines as
the number of tasks increase in the queue. On contrary, the
proposed DPTO strategy first allocates the hard-deadline tasks
followed by the soft- and no-deadline tasks. This improves the
performance of the network and further increases the number
of tasks that meet their deadline.

E. Performance of Throughput

The throughput of the tasks depends on the number of tasks
that complete their processing within a certain time-stamp.
Here, Fig. 6(a) represents the total number of tasks completing
their processing within a given time-stamp. From Fig. 6(a), it
is clear that most of the cases the hard deadline-based tasks
complete their operation rather than the soft deadline and no
deadline tasks. The DPTO strategy deploys the deadline-based
tasks to the local fog nodes which complete the processing
of the tasks with minimum communication overhead and

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

9

5 10 15 20 25 30 35 40

Number of tasks

0

1

2

3

4

5

6

7

8

D
e
a
d
li
n
e
 o

f
th

e
 t
a
s
k

Hard task

Soft task

Hard deadline

Soft deadline

(a)

10 15 20 25 30 35 40

Number of tasks

65

70

75

80

85

90

95

100

%
 o

f
ta

s
k
s
 s

a
ti
s
fy

in
g
 t
h
e
 d

e
la

y
 d

e
a
d
lin

e

Random offloading

HDR offloading

HCD offloading

Proposed DPTO

(b)

Fig. 5. (a) Number of different types of tasks meeting the deadlines and (b)
average number of tasks meeting deadlines.

1 2 3 4 5 6

Time interval (in s)

0

1

2

3

4

5

6

T
h
ro

u
g
h
p
u
t
o
f
th

e
 t
a
s
k

Task priority 1 Task priority 2 Task priority 3

(a)

1 2 3 4 5 6

Time interval (in s)

0

5

10

15

20

25

30

T
h
ro

u
g
h
p
u
t
o
f
th

e
 t
a
s
k
s

Random offloading

HDR offloading

HCD offloading

Proposed DPTO

(b)

Fig. 6. (a) Throughput of different deadline-based tasks and (b) average
throughput.

increases the throughput of the tasks. This parameter proves
the efficiency of the proposed DPTO strategy.

However, Fig. 6(b) represents the comparative analysis
of the proposed DPTO strategy with the existing baseline
algorithms in term of throughput. Here, we calculate the
number of tasks completing their processing based on the
arrival rate within certain time-stamp. From Fig. 6(b) it is clear
that the existing strategies fail to process more number of tasks
within a time-stamp. However, the proposed strategy deploys
the tasks to the local fog devices which meet the resource
requirements of the tasks with minimum offloading time. This
minimizes the total processing of the tasks and also increases
throughput. Despite that, our scheme can roughly increase
the throughput as 32% - 36%, 28% - 32% and 29% - 35%
than random offloading, HDR offloading and HCD offloading
algorithm, respectively.

V. CONCLUSION

In this paper, we investigate the task offloading strategy
in a hierarchical fog-cloud environment with a multilevel-
feedback queueing model. The key idea of this work is to
minimize the total offloading time of the tasks while meeting
their deadlines. Moreover, our proposed strategy considers the
priority of the tasks based on their deadlines and assigns them
on different priority queues for minimizing the waiting time of
the higher priority tasks. In addition, this strategy reduces the
starvation problem of the low priority tasks using multilevel-
feedback queueing model. The simulation results suggested
that the effectiveness of the proposed DPTO strategy over
the standard baseline algorithms with numerous parameter

settings. In addition, the simulation results indicate that both
the minimum queueing waiting time and offloading time have
positive influence to meet the deadline of the tasks based on
priority-aware scheduling strategy. Our future work includes
the task preemption strategy in the fog devices for improving
the performance of the offloading strategy, afterward reducing
the waiting time of higher priority tasks. In addition, it is
worthwhile to investigate the performance of proposed of-
floading strategy under different resource configuration while
scaling up the number of IoT devices. Moreover, as a part of
future work, we plan to study the applicability of deploying
the containers and serverless frameworks on the fog devices
for better utilization of the computing devices while meeting
the high-reliability constraint.

ACKNOWLEDGEMENT

This work has been partially supported by the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No. 825040 (RADON).

REFERENCES

[1] P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari,
S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel et al., “Latency critical
IoT applications in 5G: perspective on the design of radio interface and
network architecture,” IEEE Communications Magazine, vol. 55, no. 2,
pp. 70–78, Feb. 2017.

[2] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, and R. Buyya, “An
energy-aware service composition algorithm for multiple cloud-based iot
applications,” Elsevier Journal of Network and Computer Applications,
vol. 89, pp. 96–108, July 2017.

[3] M. Dı́az, C. Martı́n, and B. Rubio, “State-of-the-art, challenges, and open
issues in the integration of internet of things and cloud computing,”
Elsevier Journal of Network and Computer applications, vol. 67, pp.
99–117, May 2016.

[4] “Cisco delivers vision of fog computing to accelerate value from billions
of connected devices. press release. cisco.” Jan. 2014, accessed on
04th Apr., 2017. [Online]. Available: https://newsroom.cisco.com/press-
release-content?type=webcontent& articleId=1334100

[5] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Communications Surveys &
Tutorials, vol. 19, no. 3, pp. 1628–1656, Mar. 2017.

[6] K. Dolui and S. K. Datta, “Comparison of edge computing implemen-
tations: Fog computing, cloudlet and mobile edge computing,” in proc.
IEEE Global Internet of Things Summit (GIoTS), Aug. 2017, pp. 1–6.

[7] C. Chang, S. N. Srirama, and R. Buyya, “Internet of things (IoT) and
new computing paradigms,” Fog and Edge Computing: Principles and
Paradigms, pp. 1–23, Feb. 2019.

[8] M. Mukherjee, L. Shu, and D. Wang, “Survey of fog computing:
Fundamental, network applications, and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 3, pp. 1826–1857,
Mar. Mar. 2018.

[9] P. G. V. Naranjo, Z. Pooranian, M. Shojafar, M. Conti, and R. Buyya,
“FOCAN: A fog-supported smart city network architecture for manage-
ment of applications in the internet of everything environments,” Elsevier
Journal of Parallel and Distributed Computing, vol. 132, pp. 274–283,
Oct. 2019.

[10] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality
of experience (QoE)-aware placement of applications in fog computing
environments,” Elsevier Journal of Parallel and Distributed Computing,
vol. 132, pp. 190–203, Oct. 2019.

[11] K. Kaur, N. Kumar, S. Garg, and J. J. Rodrigues, “EnLoc: Data locality-
aware energy-efficient scheduling scheme for cloud data centers,” in
Proc. IEEE International Conference on Communications (ICC), 2018,
pp. 1–6.

[12] R. Buyya, S. N. Srirama, G. Casale et al., “A manifesto for future
generation cloud computing: research directions for the next decade,”
ACM computing surveys (CSUR), vol. 51, no. 5, pp. 105–143, Jan. 2019.

[13] D. A. Chekired and L. Khoukhi, “Multi-tier fog architecture: A new
delay-tolerant network for IoT data processing,” in Proc. IEEE Interna-
tional Conference on Communications (ICC), July 2018, pp. 1–6.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2019.2946426, IEEE Internet of
Things Journal

10

[14] S.-W. Ko, K. Huang, S.-L. Kim, and H. Chae, “Live prefetching
for mobile computation offloading,” IEEE Transactions on Wireless
Communications, vol. 16, no. 5, pp. 3057–3071, Mar. 2017.

[15] Y. Yang, Z. Liu, X. Yang, K. Wang, X. Hong, and X. Ge, “POMT:
Paired offloading of multiple tasks in heterogeneous fog networks,” IEEE
Internet of Things Journal, June 2019.

[16] Y. Wang, X. Tao, X. Zhang, P. Zhang, and Y. T. Hou, “Cooperative
task offloading in three-tier mobile computing networks: An ADMM
framework,” IEEE Transactions on Vehicular Technology, vol. 68, no. 3,
pp. 2763–2776, Jan. 2019.

[17] M.-H. Chen, M. Dong, and B. Liang, “Resource sharing of a com-
puting access point for multi-user mobile cloud offloading with delay
constraints,” IEEE Transactions on Mobile Computing, vol. 17, no. 12,
pp. 2868–2881, Mar. 2018.

[18] S. Garg, A. Singh, K. Kaur, G. S. Aujla, S. Batra, N. Kumar, and
M. S. Obaidat, “Edge computing-based security framework for big data
analytics in VANETs,” IEEE Network, vol. 33, no. 2, pp. 72–81, 2019.

[19] S. Garg, A. Singh, K. Kaur, S. Batra, N. Kumar, and M. S. Obaidat,
“Edge-based content delivery for providing QoE in wireless networks
using quotient filter,” in Proc. IEEE International Conference on Com-
munications (ICC), 2018, pp. 1–6.

[20] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M.-T. Zhou,
“FEMTO: Fair and energy-minimized task offloading for fog-enabled
IoT networks,” IEEE Internet of Things Journal, Dec. 2018.

[21] M. Mukherjee, S. Kumar, M. Shojafar, Q. Zhang, and C. X. Mavromou-
stakis, “Joint task offloading and resource allocation for delay-sensitive
fog networks,” in Proc. IEEE ICC, May 2019, pp. 1–7.

[22] A. Yousefpour, G. Ishigaki, and J. P. Jue, “Fog computing: Towards
minimizing delay in the internet of things,” in Proc. in international
conference on edge computing (EDGE), Sept. 2017, pp. 17–24.

[23] V. B. C. Souza, W. Ramı́rez, X. Masip-Bruin, E. Marı́n-Tordera, G. Ren,
and G. Tashakor, “Handling service allocation in combined fog-cloud
scenarios,” in Proc. IEEE International Conference on Communications
(ICC), May. 2016, pp. 1–5.

[24] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid met-
hod for minimizing service delay in edge cloud computing through
VM migration and transmission power control,” IEEE Transactions on
Computers, vol. 66, no. 5, pp. 810–819, Oct. 2016.

[25] C. Fricker, F. Guillemin, P. Robert, and G. Thompson, “Analysis of an
offloading scheme for data centers in the framework of fog computing,”
ACM Transactions on Modeling and Performance Evaluation of Com-
puting Systems (TOMPECS), vol. 1, no. 4, p. 16, Sept. 2016.

[26] J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang, “Multitier
fog computing with large-scale iot data analytics for smart cities,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 677–686, July 2017.

[27] Y.-Y. Shih, W.-H. Chung, A.-C. Pang, T.-C. Chiu, and H.-Y. Wei,
“Enabling low-latency applications in fog-radio access networks,” IEEE
network, vol. 31, no. 1, pp. 52–58, Dec. 2016.

[28] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,
“Meets: Maximal energy efficient task scheduling in homogeneous fog
networks,” IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4076–
4087, Oct. 2018.

[29] H. Shah-Mansouri and V. W. Wong, “Hierarchical fog-cloud computing
for IoT systems: A computation offloading game,” IEEE Internet of
Things Journal, vol. 5, no. 4, pp. 3246–3257, Aug. 2018.

[30] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Hybrid computation
offloading in fog and cloud networks with non-orthogonal multiple
access,” in Proc. IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Oct. 2018, pp. 154–159.

[31] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and
resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee,” IEEE Transactions on Communications, vol. 66,
no. 4, pp. 1594–1608, Apr. 2018.

[32] Y.-L. Jiang, Y.-S. Chen, S.-W. Yang, and C.-H. Wu, “Energy-efficient
task offloading for time-sensitive applications in fog computing,” IEEE
Systems Journal, Sept. 2019.

[33] T. Mori, Y. Utsunomiya, X. Tian, and T. Okuda, “Queueing theoretic
approach to job assignment strategy considering various inter-arrival of
job in fog computing,” in Proc. 19th Asia-Pacific Network Operations
and Management Symposium (APNOMS), Nov. 2017, pp. 151–156.

[34] L. Li, Q. Guan, L. Jin, and M. Guo, “Resource allocation and task
offloading for heterogeneous real-time tasks with uncertain duration time
in a fog queueing system,” IEEE Access, vol. 7, pp. 9912–9925, Jan.
2019.

[35] Q. Fan and N. Ansari, “Workload allocation in hierarchical cloudlet
networks,” IEEE Communications Letters, vol. 22, no. 4, pp. 820–823,
Feb. 2018.

[36] J. Kumar, A. Malik, S. K. Dhurandher, and P. Nicopolitidis, “Demand-
based computation offloading framework for mobile devices,” IEEE
Systems Journal, vol. 12, no. 4, pp. 3693–3702, June 2017.

[37] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjective
optimization for computation offloading in fog computing,” IEEE Inter-
net of Things Journal, vol. 5, no. 1, pp. 283–294, Dec. 2017.

[38] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou, and A. Y.
Zomaya, “Adaptive energy-aware computation offloading for cloud of
things systems,” IEEE Access, vol. 5, pp. 23 947–23 957, Oct. 2017.

[39] A. Alnoman and A. Anpalagan, “A dynamic priority service provision
scheme for delay-sensitive applications in fog computing,” in Proc. 29th
Biennial Symposium on Communications (BSC), Feb. 2018, pp. 1–5.

[40] U. Tadakamalla and D. Menascé, “FogQN: An analytic model for
fog/cloud computing,” in Proc. IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion), May 2018,
pp. 307–313.

Mainak Adhikari is currently working as a Post
Doctorate Research Fellow at University of Tartu,
Estonia. He has completed his Ph.D in Cloud Com-
puting from IIT(ISM) Dhanbad, India in 2019. He
has obtained his M.Tech. from Kalyani University in
the year 2013. He earned his B.E.Degree from West
Bengal University of Technology in the year of 2011.
His area of research includes Internet of Things, fog
Computing, Cloud Computing, Serverless Compu-
ting and Evolutionary algorithm. He has contributed
numerous research Articles in various national and

inter-national journal and conference.

Mithun Mukherjee received the Ph.D. degree in
electrical engineering from the Indian Institute of
Technology Patna, Patna, India, in 2015. Currently,
an assistant professor with the Guangdong Provincial
Key Laboratory of Petrochemical Equipment Fault
Diagnosis, Guangdong University of Petrochemical
Technology, Maoming, China. Dr. Mukherjee was a
recipient of the 2016 EAI WICON, the 2017 IEEE
SigTelCom, the 2018 IEEE Systems Journal, and
the 2018 IEEE ANTS Best Paper Award. He has
been a guest editor for IEEE Internet of Things

Journal and IEEE Transactions on Industrial Informatics. His research interests
include wireless communications, fog computing, and ultra-reliable low-
latency communications.

Satish Narayana Srirama is a Research Profes-
sor and the head of the Mobile & Cloud Lab at
the Institute of Computer Science, University of
Tartu, Estonia and a Visiting Professor at Univer-
sity of Hyderabad, India. He received his PhD in
computer science from RWTH Aachen University,
Germany. His current research focuses on cloud
computing, mobile web services, mobile cloud, In-
ternet of Things, fog computing, migrating scientific
computing and enterprise applications to the cloud
and large-scale data analytics on the cloud. He is

IEEE Senior Member, an Editor of Wiley Software: Practice and Experience,
a 49 year old Journal, was an Associate Editor of IEEE Transactions in
Cloud Computing and a program committee member of several international
conferences and workshops. Dr. Srirama has co-authored over 130 refereed
scientific publications in international conferences and journals.

