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IoT-Enabled Applications in 6G-aware Fog
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Abstract—Fog computing has emerged as a promising
paradigm that borrows the user-oriented cloud services to
the proximity of the Internet-of-Things (IoT) users in sixth-
generation (6G) networks. Currently, service providers establish
a proprietary fog architecture to prolong a specific group of
IoT users by offering resources and services to the edge level.
However, this sort of activity creates a service barrier and limits
the development of fog services to the IoT-users. Keeping this in
mind, we develop a 6G-aware fog federation model for utilizing
maximum fog resources and providing demand specific services
across the network while maximizing the revenue of fog service
providers and guaranteeing the minimum service delay and price
for IoT-users. To achieve this goal, we formulate our objective
function into a mixed-integer nonlinear problem. By jointly
optimizing the dynamic services cost and user demands, a non-
cooperative Stackelberg game interaction algorithm is formulated
to schedule the fog and cloud resources distributively. Further
maximizing the profit for the service providers and the seam-
less resource provisioning, a resource controller is initiated to
manage the available fog resources. Extensive simulation analysis
over 6G-aware Quality-of-Service parameters demonstrates the
superiority of the proposed fog federation model and it reduces
up to 15%-20% service delay and 20%-25% of service cost over
the standalone fog and cloud frameworks.

Index Terms—Internet-of-Things, Fog federation, cost opti-
mization, service deployment, Stackelberg game, 6G networks.

I. INTRODUCTION

THE emergence of revolutionary Internet-of-Things (IoT)
is expected to offer new service paradigms related to

smart city, smart grid [1], healthcare, intelligent transportation,
rural area coverage, etc. and provides faster and secure data
processing to the IoT-users [2], [3]. All such IoT applications
demand ultra-fast communication (such as beyond 5G or 6G
technology) and collaborative fog computation capabilities to
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breathe appropriately in the network. The main idea of the
distributed fog computing is to bring the cloud services to the
edge of the network using fog storage and 6G communication,
which can exhibit cloud processing power and reduce the
long latency. With successful development, fog computing
and 6G communication technology can potentially bring new
opportunities to network operators, cloud service providers,
and heterogeneous IoT-users, where multiple service providers
and network operators collaboratively handle the users’ re-
quests [4]. On the other hand, IoT-users can experience excel-
lent Quality-of-Services (QoS) parameters such as high data
rates, seamless network coverage, interoperable connectivity,
and new services, hence, increase the user’s satisfaction ratio.
Nevertheless, compared with existing cloud infrastructure, fog
computing still suffers from limited storage and processing
with higher infrastructure and maintenance costs [5].

To keep the above-mentioned challenges in mind, a new
collaborative service deployment strategy is developed, where
the overloaded fog devices in the network can share the
excessive workload with the nearby underloaded fog devices,
is also called as fog federation model. Note that fog federation
is a trusted consortium, which is authorized to control the
resources of various fog service providers. Fog federation
aims to realize the targets of scalability, low-latency, and
cost-efficient platform by seamlessly integrating fog-cloud
resources and ultra-reliable 6G communication technology.
From the IoT-users’ point of view, the key advantage of the
fog federation model is to handle the user’s dynamic service
requests efficiently while optimizing the service cost and delay,
as depicted in Fig. 1. Further, from the service providers point
of view, the main advantage of the fog federation model over
the traditional fog model is that the fog federation model
unions the infrastructures of different fog service providers
to improve the service performance by optimizing the service
deployment strategy.

A. Related Study and Scope

Over the last few years, several efforts are made to ad-
dress scheduling, offloading, and resource provisioning re-
lated issues in the fog-cloud frameworks [6]. In this regard,
an obvious optimization solution is to distribute the user’s
workload to the nearby fog devices or resource-rich cloud
server [7]. In [8], Mohamed et al. have designed a marine
predators-based binary task offloading framework in a fog-
cloud environment for minimizing energy. Similarly, Li et
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Fig. 1. Comparison between traditional fog model and fog federation model.

al. [9] have designed a workload distribution strategy in small
cell networks. However, binary data offloading strategy might
not be suitable for latency-critical applications (e.g., healthcare
and industrial applications). Another solution could be vertical
resource sharing, where computing devices distribute data
partially to the nearby fog devices [10]. The fog devices
also share some amount of data to the centralized cloud
server for further processing and storage, also known as
partial offloading. In [11], Mukherjee et al. have designed
a partial computation offloading strategy for delay-sensitive
fog networks. In [12]–[14], authors mostly considered several
resource management techniques for maximizing the service
revenue of the fog-cloud frameworks.

Existing efforts mostly concentrate on standalone fog/cloud
service provisioning mechanisms for IoT-users and also not
suitable for large-scale data processing. However, future gen-
eration applications will be mostly on multimedia data, and a
large amount of this data can be 4K or 8K video streaming
data. Moreover, those applications demand for deadline and
energy-aware resource provisioning mechanisms, which makes
the situation more complicated [15]. Therefore, a decent
fog federated network with an efficient service deployment
strategy should be adopted in order to satisfy the QoS pa-
rameters of the IoT-users. That helps to share the computing
resources among the multiple service providers collaboratively
for maximizing service revenue [16]. However, designing a
fog federated model is not an easy process due to the users’
and network dynamicity. There are three critical challenges
for 6G enabled fog federation network: Firstly, how to design
an efficient, scalable, and low-latency fog federation model for
future 6G communication? Secondly, how to model an efficient
service provisioning strategy across the fog, cloud, and IoT-
users? Finally, how can an optimization technique reduce
the cost-performance trade-off and simultaneously satisfy both
user and service provider’s requirements?

Among the discussed literature, a handful of research ac-
tivity is to enhance the traditional fog model and utilize the
game-theoretic approach for minimizing service costs of IoT-
users and maximizing the revenue of service providers [17],
[18]. Fog federation model is a distributed umbrella, where
multiple IoT-users request their desired services, and numerous

service providers can collaboratively work under the same
umbrella for maximizing their profits. Considering the above
challenges in mind, we design a 6G-aware fog federation
model using a game strategy to establish a cost-efficient
platform for IoT-users with a transparent resource management
policy by seamlessly integrating the distributed fog devices
and centralized cloud servers. Further, to provide services
to more number of IoT-users and maximize the revenue, a
resource controlled mechanism is incorporated for collecting
the current state information of the active set of devices in the
6G-enabled network.

B. Contribution

In this paper, we develop a fog federation model with the
Stackelberg game strategy for optimizing cost-performance
trade-off by integrating service deployment strategy in the
6G-enabled fog networks. The significant contributions of this
paper are summarized as follows.
• Design a novel fog federation model for utilizing comput-

ing resources efficiently and obtaining maximum service
revenue in a 6G coupled fog networks. In particular, a
service deployment strategy is formulated as a mixed-
integer nonlinear programming problem under oppor-
tunistic service costs and available resources.

• To achieve the cost-performance trade-off, we transform
our objective function into a Stackelberg game problem
and optimize the network resources and service cost of
the IoT-users. Further, a resource controller is integrated
to monitor user’s dynamic requests and simultaneously
schedule the fog resources in such a way that both user
and service providers can obtain maximum benefit.

• Extensive simulation with emerging 6G-aware parameters
demonstrates that the proposed fog federation model
encompasses near-optimal solutions and outperforms than
the traditional fog and cloud frameworks.

The rest of the paper is structured as follows. In section II,
the system model and problem formulation are presented. The
proposed strategy on the fog federation model is presented in
section III. The performance analysis of the proposed strategy
over baseline algorithms is performed in section IV. Finally,
the conclusion and future direction of the work are discussed
in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we discuss the system model of the proposed
fog federation model followed by the problem formulation.

A. System Model

The proposed fog federation model is depicted in Fig. 2,
where a set of service providers P = {1, 2, . . . , P} offer a set
of services S = {1, 2, . . . , S} and a set of IoT-users utilize
those services simultaneously. Let us consider that the IoT-
user, fog device, and cloud server are the three key components
in this network. Further, we consider that a set of IoT-users
U = {1, 2, . . . , U} and fog devices F = {1, 2, . . . , F}
are randomly and uniformly distributed over the small-cell
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network [19]. To handle the excessive workload from the IoT-
users, a set of cloud servers C = {1, 2, . . . , C} are deployed
over the geo-distributed locations. Additionally, we consider
that an IoT-user u can generate X ini amount of data, which
can partially offload to the local fog device f for utilizing the
resources efficiently. Further, we assume that each IoT-user
can request for Yi amount of CPU cycle to execute X ini -bit
task. Each IoT-user u ∈ U can request for multiple services
S from the set of computing devices in the network based
on their availability. Further, each computing device Vj can
receive multiple service requests, however, each Vj can accept
at most one request at a time, i.e.,

∑|S|
s=1

∑|Vj |
j=1 λs,j ≤ |Vj |,

where | · | denotes cardinality of a set.
Here, we assume a distributed service deployment scenario,

where an IoT-user deploys a task to the available computing
device Vj ,∀j ∈ (F ∪ C) in the network. In the fog federation
model, each request generates from uth IoT-user device with
input/output data size, represented as X ini /X outi (in bits). Each
service request s is either execute locally on the generated IoT-
user device u or requests for service from the available fog
device f or the centralized CDC server c.

1) Local Task Processing: In the initial phase, the IoT-
users intended to process its requests locally. Let OCPUu be
the computational capacity [cycle/sec] of the IoT-user. The
execution time for processing the tasks on the requesting IoT-
user device is defined as follows.

TMD
u =

(
X ini − X̃ ini

)
Yi

OCPUu

[s] (1)

2) Remote Task Processing: Owing to limited storage
and processing capability, IoT-users often transfer the exces-
sive workloads to the service providers (e.g., fog or cloud
server) for further processing. Let us assume that Cu,j and
P poweru represent the maximum channel gain and the trans-
mission power of the IoT-user device, respectively, where
j ∈ {F ∪ C}. Thus, the uploading rate from uth IoT-user
device to jth computing device can be expressed as Rtransu,j =

Bu,j log2
(

1 +
Ppower

u Cu,j

E0

)
, where Bu,j be the transmission

bandwidth and E0 be the additive Gaussian noise of IoT-user
device u. Therefore, the transmission time from an IoT-user
to the selected computing device j is expressed as follows.

TULj =
X̃ ini
Rtransu,j

[s] : j ∈ {F ∪ C} (2)

Hence, the service time in a computing device is defined as
follows.

TMEC
j =

X̃ ini Yi
OCPUj

[s] : j ∈ {F ∪ C} (3)

Where OCPUj represents the computational capacity of the
jth computing device. Similarly, Cj,u be the channel gain
and P powerj be the transmission power of a computing device,
where j ∈ {F ∪ C}. Thus, the downloading data transmission
rate from jth fog device to uth IoT-user device can be
expressed as Rtransj,u = Bj,ulog2

(
1 +

Ppower
j Cj,u

E0

)
, where

Bj,u be the transmission bandwidth and E0 be the additive
white Gaussian noise of jth computing device. Therefore,

©

©

©
©

©
©

©

©

©

© ©
©

©
©

©©

©

© ©

©

© ©

©

© ©

©

©

©

IoT user

Fog

Device

Router
Router

Router

Router

Resource

Controller

IoT user

Fog

Device

Fog

Device Fog

Device

Cloud Server

Fog 

Federation

IoT user

IoT user IoT user

IoT user

IoT user

Fig. 2. Illustration of fog federation architecture.

the downloading time from the jth computing device to the
requested IoT-user device is expressed as follows.

TDLj =
X̃ outi

Rtransj,u

[s] : j ∈ {F ∪ C} (4)

As expected, 6G-enable fog devices can be capable of reducing
end-to-end delay up to < .001 − .01 ms. Thus, we simply
neglect the communication delay among fog devices inside
fog federation network.

3) Overall Service Delay: The service delay is a critical
QoS parameter of the proposed model and mostly depends
on several network and device-dependent parameters. As per
this model, we mainly consider delay related to transmitting
(uploading and downloading) and processing of service re-
quests. Thus, the total processing delay (T services,u ) to complete
a user’s service request on the selected computing device can
be expressed as follows.

T services,u =

(
X̃ ini
Rtransu,j

+
X̃ ini Yi
OCPUj

+
X̃ outi

Rtransj,u

)
(5)

In the 6G based fog federation model, IoT-users QoS must
be considered to offer a guaranteed Quality of Experience
(QoE) parameter. Let us considered that Tmaxs,u be the max-
imum latency demand to accomplish service s. Now, service
providers can easily monitor accomplished users demand using
a satisfaction parameter, which is expressed as follows.

ΓMEC
s,u =

{
1, if T services,u ≤ Tmaxs,u

0, Otherwise
(6)

Moreover, the providers also need to keep track of the
IoT-users satisfaction ratio to establish a high-level business
model [20], which can be expresses as follows.

Rsatiss,u =

∑
j∈Vj

∑
s∈S

∑
u∈U X̃ ini ΓMEC

s,u∑
j∈Vj

∑
s∈S

∑
u∈U X̃ ini

(7)

Eq. (7) determines that the satisfaction ratio l1 ≤ Rcoms,u ≤ l2.
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4) Cost for processing in Fog Federation Model: The fog
federation model considers the depreciation of the total cost
(i.e., revenue maximization) of service provider, which is an
essential evaluation criterion to fulfill a group of IoT-users’
requirements. Let αusers,u represents the cost co-efficient for the
IoT-user u to process request s locally, where 0 ≤ αusers,u ≤ 1.
Therefore, the computation cost to process X ini amount of task
locally is defined as follows.

CMD
s,u

(
αusers,u ,X ini

) 4
=

∑
u∈U,s∈S

αusers,u X ini Yi︸ ︷︷ ︸
Processing cost

(8)

However, if an IoT-user device u requests a service s from
the remote computing devices, then the overall cost CMEC

s,u at
the service provider should include storage cost, processing
cost, transmission cost and infrastructure maintenance cost
for processing the requested task. Further, we define four
cost coefficients βMEC

s,j =
〈
βstors,j , βmains,j , βprocs,j , βtranss,j

〉
for

per storage unit, where 0 ≤ βMEC
s,j ≤ 1,∀j ∈ Vj , s ∈ S.

Therefore, the service cost at the remote computing device
can be expressed as follows.

CMEC
s,j

(
βMEC
s,j , X̃ ini

)
4
=
∑
s∈S

βstors,j X̃ ini︸ ︷︷ ︸
Storage cost

+
∑
s∈S

βmains,j X̃ ini︸ ︷︷ ︸
Maintenance cost

+
∑
s∈S

βprocs,j X̃
in
i Yi︸ ︷︷ ︸

Processing cost

+
∑
s∈S

βtrans,j X̃ ini︸ ︷︷ ︸
Transmission cost

(9)

Further, it is important to note that the processing and storage
demand should not be exceed the maximum capacity of the
selected computing device (i.e., βp maxs,j , and βs maxs,j ), which
can be determined as follows.∑

s∈S

∑
j∈Vj

X̃ ini βprocs,j Yi ≤ β
p max
s,j , ∀j ∈ {F ∪ C} (10)

∑
s∈S

∑
j∈Vj

X̃ ini βstors,j ≤ βs maxs,j , ∀j ∈ {F ∪ C} (11)

Ideally, all the service providers and IoT-user devices strictly
follow the Eq. (10) and Eq. (11) to reduce latency, cost and
computation overhead.

B. Problem Formulation

This work aims to design a 6G-enabled fog federation model
for leading network resources and provide demand-specific
assistance across the network. Since, revenue maximization
has been a critical business concern and the crucial bottleneck
of IoT-users, we design the objective function for service
deployment as the optimization of the service cost for both
the IoT-user and service provider while guaranteeing minimum
service delay in the proposed fog federation model. Therefore,
we define two objectives for service deployment of the pro-
posed fog federation model, which are defined as follows.

Objective 1: Minimize service cost for IoT-user.
Objective 2: Maximize revenue for service provider.

Mathematically, the users objective function is expressed as
follows (users problem).

P1 :
∑
t∈T

min
X in

i ,αuser
s,u

(∑
s∈S

∑
u∈U

CMD
s,u

(
αusers,u ,X ini

)
(t)

)

Similarly, the service provider objective function is derived as
follows (service providers problem).

P2 :
∑
t∈T

max
X̃ in

i ,βMEC
s,j

∑
s∈S

∑
j∈Vj

CMEC
s,j

(
βMEC
s,j , X̃ ini

)
(t)


Now, we derive the dependencies and related constraints of
two objective functions. The proposed objectives should be
optimized concerning maximum delay constraints. Moreover,
other storage and processing related constraints are defined in
Eq. (7), Eq. (10), and Eq. (11) respectively, which need to be
granted for reducing workload in the federated fog model.

III. PROPOSED SERVICE DEPLOYMENT STRATEGY IN FOG
FEDERATION MODEL

This section discusses the proposed fog federation model
for efficient service deployment while minimizing the users
service cost and maximizing revenue of service providers.
The proposed service deployment strategy is divided into
two subsections. Firstly, we reformulate P1 and P2 objective
functions, namely P3 and P4 into the form of a two-player
Stackelberg game. Next, we discuss the proposed service
deployment strategy for optimizing P3 and P4 functions.

A. Game Formulation

In the proposed fog federation model, the IoT-user devices
U intend to process their generated data X ini locally. However,
in complex application scenarios (e.g., AR, VR, and 4K or
8K video streaming, etc.), each IoT-user device u requests
additional assistance from the service provider p ∈ P to reduce
the computation overhead TMD

u . In this process, IoT-user u
seeks to minimize the service cost from the provider p while
customarily maximizing the revenue of the service provider
p within the maximum resource constraints (i.e., βp maxs,j and
βs maxs,j ). A resource controller is usually devised to regulate
the trade-off between dynamic request demand s and balances
service deployment strategy between providers and consumers,
which essentially contains the IoT-users’ requests according to
the availability of the resources and prices. Thus, a Stackelberg
game can be designed to capture the interaction between the
service provider P and consumer U [21]. Stackelberg game
is a non-cooperative game theory, where providers initiate
the game by setting the best price/resource, and IoT-users U
negotiate for the best price by observing the provider’s price
rule. This process continues until the IoT-users and service
providers reach an equilibrium state.

Initially, the service providers take initiative advantage and
maximize their prices by offering a service as a form of com-
puting resources to the requested IoT-user. Mathematically,
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the service provider optimization problem (i.e., P2) can be
reformulated as follows.

P3 :
∑
s∈S

(
max

X̃ in
i ,βMEC

s,j

∑
j∈Vj

CMEC
s,j

(
βMEC
s,j , X̃ ini

))

s.t.
∑
s∈S

∑
j∈Vj

X̃ ini βprocs,j Yi ≤ β
p max
s,j , ∀s ∈ S

∑
s∈S

∑
j∈Vj

X̃ ini βstors,j ≤ βs maxs,j , ∀s ∈ S

T services,u ≤ Tmaxs,u , ∀s ∈ S, ∀u ∈ U

(12)

It is noteworthy that service providers P usually devised their
CPU cycle OCPUj to the requested IoT-users CPU cycle, i.e.,
OCPUj /U to achieve maximum benefit CMEC

s,j . Whenever an
IoT-user u requests a new service s, the IoT-user u needs to
bear the service cost plus the delay T users,u incurred in this
process [22]. Similarly, the user’s minimization problem can
be interpreted as follows.

CMD
s,u

(
αusers,u ,X ini

)
=
∑
s∈S

∑
u∈U

αusers,u X ini Yi + T users,u

−
∑
s∈S

∑
u∈U

αusers,u X̃ ini Yi
(13)

Further, the cost in the IoT-user device is equivalent to
CMD
s,u

(
αusers,u ,X ini

)
= X̃ ini

(
βstors,j + βmains,j + βprocs,j Yi +

βtranss,j

)
+

(
X in

i −X̃
in
i

)
Yi

OCPU
u

: if 0 ≤ X̃ ini ≤ muser
s,u and

CMD
s,u

(
αusers,u ,X ini

)
= X̃ ini

(
βstors,j + βmains,j + βprocs,j Yi +

βtranss,j

)
+ X̃ ini BMEC

s,u : if muser
s,u ≤ X̃ ini ≤ X ini , where

BMEC
s,u = 1

Rtrans
u,j

+ Yi

OCPU
j

+ 1
Rtrans

j,u
. Here, muser

s,u is defined

as muser
s,u =

X in
i Yi

BMEC
s,u OCPU

u +Yi
.

Each IoT-user u intends to overcome his/her own cost CMD
s,u

by selecting the optimal data size X̃ ini , which is set by the
service provider for the given price αusers,u . Mathematically,
the optimization problem of the IoT-user (i.e., P1) can be
reformulated as follows.

P4 :
∑
s∈S

(
min

αuser
s,u ,X in

i

∑
u∈U

CMD
s,u

(
αusers,u ,X ini

))
(14)

Where 0 ≤ X̃ ini ≤ X ini . In the Stackelberg game theory,
objective functions P3 and P4 are complicatedly combined,
i.e., pricing policy in the fog federation model affects the
users’ unloaded data sizes, which also impacts the service
revenues [23].

B. Proposed Service Deployment Strategy

In this section, we develop the proposed two-player Stack-
elberg game approach for efficient service deployment on the
fog federation model, where both the players (i.e., IoT-users
and service providers) try to maximize their benefits and reach
in an equilibrium state [24]. The proposed strategy follows
two steps for service deployment on the fog networks. Firstly,
the distributed fog devices control the IoT-users requests and
process the requested tasks as standalone resource supervisors.
For this resolution, a delay-based service deployment strategy

is formulated using a multi-user single-provider Stackelberg
game theory, where IoT-user devices (multi-user) requests
for resources in a distributed manner, and each fog device
(single-provider) provides services and allocates the requested
resources along with the price.

However, due to the limited resource capacity and battery
power, a single fog device might not handle all IoT-user
requests completely. In such situations, the fog device needs
to interact with other fog devices or centralized cloud server
for further processing. Thus, single-user multi-provider game
strategy comes into action, where a resource controller takes
leadership and gathers available resources of the active fog
devices on the network. The resource controller offers the
least-cost resources for processing the tasks on the suitable
fog devices while maximizing the provider’s revenue [25]. In
this scheme, the resource controller (single-user) uses the same
Stackelberg game theory for finding suitable computing de-
vices (multi-provider) for further processing the failed/partially
postponed tasks.

1) Multi-User Single-Provider Stackelberg Game: In this
stage, the proposed fog federated model follows differential
pricing rules (as depicted in [22]) to maximize the satisfaction
ratio of the fog device f ∈ F while considering maximum
tolerable delay as a specifiable IoT-user parameter. The IoT-
users take the initial decisions and request for services for
processing the tasks. After receiving the service requests, the
local fog devices play a second role in the model. Each fog
device calculates the overall cost of each requested resource
and announces the price. Using the declared price, IoT-users
calculate their expenditure and decides the optimal decision of
whether to obtain services with this cost or not. Let, λs,j =
{0, 1} be a service indicator where λs,j = 1 if sth service
request is accepted by Fj or 0 otherwise, and the IoT-user
takes one service only if αusers,u > 1/OCPUu [23]. Therefore,
the revenue maximization problem of the fog service provider
can be expressed as follows.

P5 :
∑
j∈Vj

(
max

λs,j∈{0,1}

∑
s∈S

λs,jYimuser
s,u

OCPUu

+
∑
s∈S

βstors,j muser
s,u +

∑
s∈S

βmains,j muser
s,u +

∑
s∈S

βtrans,j muser
s,u

)

s.t.
∑
s∈S

∑
j∈Vj

λs,jm
user
s,u ≤ βs maxs,u , ∀s ∈ S

∑
s∈S

∑
j∈Vj

λs,jYimuser
s,u ≤ βp maxs,u , ∀s ∈ S

∑
s∈S

T services,u ≤ Tmaxs,u , ∀s ∈ S, ∀u ∈ U

(15)

Where muser
s,u Yi denotes the maximum process requirement

of service request s and αp maxs,u represents the maximum
resource availability on the IoT-user device u.

2) Single-User Multi-Provider Stackelberg Game: Owing
to resource constraint βp maxs,u , some IoT-users in the fog
federated model can not receive services earlier from the fog
devices. For this purpose, single-user multi-provider Stackel-
berg game is formulated to capture the cost-delay trade-off in
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the network [26]. In this stage, the resource controller (single-
user) monitors the current state of the services on the active fog
devices and maximizes the revenue by accumulating available
resources from other sets of computing devices (multi-user) in
the federated model [23]. The resource controller monitors the
computing devices and finds the availability of the computing
resources, which is defined as follows.

ORM =
∑
s∈S

∑
j∈Vj

(1− λs,j)
OCPUj

U
(16)

RRM =
∑
s∈S

(
βp maxs,j −

∑
u∈U

λs,uYimuser
s,u

)
(17)

Let URM = {1, 2, . . . , U ′} be the set of waiting user devices
that left the game due to high service cost or resource
restrictions from the fog devices. Again, the IoT-user devices
start participating with the new pricing system offered by
the resource controller, where the number of fog devices is
calculated as follows.

URM =
∑
s∈S

∑
j∈Vj

(1− λs,j) (18)

Further, the controller calculates the service delay and an-
nounces it over the network. Simultaneously, the active set
of computing devices in the network calculate their revenues.
Once the price is finalized, the computing devices advertise
their revenues to the resource controller. Finally, the resource
controller calculates the revenue and decides whether to accept
it or reject it. Once the resource controller confirms the service,
the selected fog device or cloud server can provide services
for further processing the stopped/postponed tasks. However,
the IoT-users achieve a maximum processing capacity as
OMAX
u = ORM/URM and data size mRM

s,u =
X̃ in

i Yi

BRM
s,u ORM

u +Yi
,

where BRM
s,u = 1

Rtrans
u,j

+ Yi

ORM
j

+ 1
Rtrans

j,u
. Let λRMs,j = {0, 1}

be a service indicator for an IoT-user u while the resource
controller controls the network, i.e., λRMs,j is 1 if sth service
request is accepted to the jth computing device, otherwise 0.
Thus, the revenue maximization problem is further reformu-
lated as follows.

P6 :
∑
j∈Vj

(
max

λRM
s,j ∈{0,1}

∑
u∈U ′

λRMs,j YimRM
s,u

OCPUu

+
∑
s∈S

βstors,j mRM
s,u +

∑
s∈S

βmains,j mRM
s,u +

∑
s∈S

βtrans,j mRM
s,u

)
s.t.

∑
u∈U ′

∑
j∈Vj

mRM
s,u Yiβ

proc
s,j ≤ β

p max
s,j , ∀s ∈ S

∑
u∈U ′

∑
j∈Vj

mRM
s,u β

stor
s,j ≤ βs maxs,j , ∀s ∈ S

(19)

Where, OCPUf << OCPUc and βstors,f << βstors,c . According
to the above methodology, the neighboring fog devices and
centralized cloud service providers make maximum revenue
in the proposed fog federation model. Moreover, with this
strategy, the resource controller can efficiently distribute the
workload while meeting the IoT-users expectations and service
providers’ revenues. The algorithm of the proposed services

Algorithm 1: Service Deployment Strategy
INPUT : U : IoT-users, F : Fog devices, C : Cloud servers.
OUTPUT : Users satisfaction Ratio Rsatis

s,u .
1 begin
2 Initialize OCPU

j , URM , CRM , RRM , Vj ← {F ∪ C}
3 if |Vj | = φ then
4 Wait for computing device Vj
5 end
6 for u= 1 to U do
7 Initialize αuser

s,u and βMEC
s,j

8 Calculate muser
s,u =

X in
i Yi

BMEC
s,u OCPU

u +Yi

9 if X̃ in
i βproc

s,j Yi ≤ β
p max
s,j and X̃ in

i βstor
s,j ≤ βs max

s,j

then
10 Calculate

∑
j∈Vj

CMEC
s,j

(
βMEC
s,j , X̃ in

i

)
11 Update αuser

u,j and βMEC
s,j

12 Broadcast service cost
13 if CMD

s,u (t) ≤ CMD
s,u (t− 1) then

14 Accept the service s
15 end
16 Update URM using rejected devices
17 end
18 for u′= 1 to U ′ do
19 Control goes to resource controller

20 Calculate ORM =
∑

s∈S

∑
j∈Vj

(1− λs,j)
OCPU

j

U
21 Calculate RRM =

∑
u∈U (βp max

s,j −λs,uYimuser
s,u )

22 Follow Step-9 to Step-17 for resource controller
23 end
24 Calculate Satisfaction Ratio Rsatis

s,u
25 end
26 end

deployment strategy on the fog federation model is depicted
in Algorithm 1.

Theorem 1. The equilibrium strategy of the IoT-users is
the best response to the strategic approach that the service
providers follow.

Proof : Let αusers,u be the cost co-efficient for the IoT-user
U and βMEC

s,u be the cost strategy for resource controller. In
the Stackelberg game theory, IoT-users try to minimize their
service costs for the requested resources, and the resource
controller maximizes their revenue by declaring an optimal
price for the requested resources. Thus, the resource controller
makes optimal decision with αuser

∗

s,u ∈ αusers,u if

CMD
s,u

(
αuser

∗

s,u ,X ini
)

(t) ≤ CMD
s,u

(
αuser

∗

s,u ,X ini
)

(t−1) (20)

Theorem 2. There exist a unique Nash equilibrium between
recurring IoT-users and service providers, which holds a
unique Stackelberg equilibrium.

Proof : The proof of Theorem 2 can be found in [13].
Theorem 3. The computational complexity of the proposed

service deployment strategy is O(mn).
Proof : The calculation of the computational complexity of

the proposed service deployment strategy on the fog federation
model is two-folded. Let us consider that m = |U|, n = |F|,
and k = |C|. In the first phase, the m IoT-user devices request
services to n fog service providers. The fog devices calculate
the service cost Cusers,u and accordingly update the service
deployment strategy of m IoT-users with respect to the cost
Cusers,u . Based on the price structure defined by the provider
p, the n IoT-users accept or reject the services. This process
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TABLE I
PARAMETERS USED FOR SIMULATION

Parameters Values
Number of end users (U) 100-500
Total number of fog devices (F) 10-50
Number of cloud servers (C) 1-5
Maximum channel bandwidth (B) 30MHz
User cost coefficient (αuser

s,u ) 0.5-0.7
User cost coefficient (βMEC

s,u ) 0.3-0.7
CPU frequency in end devices (OCPU

u ) 50× 106 [cyc/sec]
CPU frequency in fog devices (OCPU

f ) 50× 109 [cyc/sec]
CPU frequency in cloud servers (OCPU

c ) 100× 109 [cyc/sec]
Maximum delay threshold (Tmax

s,u ) 150-250 time unit

takes at most O(m) × O(n) times, where 1 ≤ m ≤ |U | and
1 ≤ n ≤ |F |, as the users are allowed to request multiple fog
devices simultaneously.

However due to constraint Tmaxs,u , βp maxs,u and βs maxs,u , some
users l = |U ′|, where U ′ = U \ {m} might not receive the
requests. In such situation, resources controller collects ORM ,
RRM and URM from the computing devices. Based on the
price offered by various service provider P , resource controller
offers best price CMEC

s,u to the remaining l IoT-users. This
process takes O(l)×O(n+ k) = O(ln+ lk) time. Thus, the
total time complexity of the proposed fog federation model is
O(mn) + O(ln) + O(lk). As mn >> ln >> lk, thus, the
overall time complexity is O(mn).

IV. EXPERIMENTAL ANALYSIS

In this section, we numerically quantify the proposed service
deployment strategy of the fog federation model in terms
of service delay, revenue generation, and user satisfaction
ratio over two existing models such as standalone fog (SF)
framework [27] and standalone cloud (SC) framework [13].

A. Simulation Setup

In the simulation setup, we consider U = [100, 500] number
of IoT-user devices, and P number of service providers,
where F = [10, 50] and C = [1, 5] in the 6G-enable fog
federation model. According to 6G cellular characteristics, we
take OCPUj = [1.5, 3] GHz, transmission power is [34,45]
dBm, noise -174 dBm, and channel bandwidth is 30 MHz [28].
Further, we consider Tmaxs,u = [150, 250] time units, X ini =
[60, 800] KB, required CPU cycle of each data [200,1400]
cycles/bit and connection density 40/KM2 in a 5 × 5 KM
square area [29]. Besides that we consider TDLj and TULj
uniformly distributed such as [20,30] Mbps and [15,25] Mbps,
respectively [23]. We set the maximum resource capacity of
user devices, fog devices, and cloud servers as 512 MB,
4GB, and 64GB, respectively. Other simulation parameters are
depicted in Table I.

B. Service Delay

This criterion addresses the issues related to the overall
service delay of the proposed service deployment strategy
on the federated fog model. The service delay in a network
mostly depends on upstream data transmission, data process-
ing, and downstream data transmission [30]. Further, from

TULj = X̃ ini /Rtransu,j and TDLj = X̃ outi Rtransj,u , it can be
easily observed that the transmission delay mostly depends
on transmission rate. The transmission delay decreases while
increasing the value of Rtrans. Moreover, from TMEC

j =

X̃ ini Yi/OCPUj , we can analyze that processing delay of the
computing devices inversely proportional to the computa-
tion frequency TMEC

j ∝ 1/OCPUj , i.e., TMEC
j increases

with lower OCPUj . For this experiment, we strictly consider
OCPUf > OCPUc , where ∀f ∈ F and ∀c ∈ C. Fig. 3 describes
the comparison of overall service delay of the proposed fog
federation model with the existing SF framework and SC
framework. Fig. 3(a) and Fig. 3(b) reveals that the proposed
fog federation model is stable and can handle more workload
in 6G-enabled networks. However, as the number of IoT-
users increases, T serviceu,j also increases drastically. This also
indicates the necessity to increase the number of fog devices
near the IoT-users. Experimental observations reveal that the
proposed fog federation model succeeded in reducing up to
15%-25% of service delay as compared with the existing SF
framework and SC framework.
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Fig. 3. Service delay. (a) Among the various computing devices. (b)
Comparison with baseline frameworks.

C. Total Revenue

This metric represents the cost performance of the proposed
service deployment strategy on the fog federation model in
terms of user service cost CMD

s,u , and providers service de-
ployment cost CMEC

s,j including processing cost, maintaining
cost, and storage cost. For this experiment, we define βstors,j =
[0.3, 0.7], βmains,j = [0.3, 0.7], βprocs,j = [0.3, 0.7] and βtranss,j =
[0.3, 0.7]. From P1 and P2, it is worth noting that the service
cost for an IoT-user mainly depends on the input data size X ini
and the price per unit of resource usage αusers,u . Similarly, on
the provider side, resource cost mostly depends on requested
data X̃ ini and price structure of the provider i.e., βMEC

s,j .
Besides that, these two objectives are directly connected with
the computational frequency of the computing devices. With
lower computation capacity OCPUf in fog devices, most of
the IoT-users unable to obtain service directly from the fog
device, hence, the IoT-users have to pay more amount of
service cost. Simultaneously, the IoT-user satisfaction ratio
also decreases. Fig. 4 presents the performance analysis of
the proposed service deployment strategy in federated fog
networks. From Fig. 4(a), it can be easily observed that the
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computation cost of the proposed strategy comparatively less
with limited IoT-users, and increases with more number of
IoT-users. Further, Fig. 4(a) shows that the overall service
cost can be controlled by increasing the numbers of fog
devices in the fog federated model. Finally, Fig. 4(b) illustrates
the performance improvement of the proposed fog federation
model up to 20%-25% as compared with the existing SF
framework and SC framework.
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Fig. 4. Total revenue. (a) Among the various computing devices. (b)
Comparison with baseline frameworks.

D. User Satisfaction Ratio

The user satisfaction ratio Rsatiss,u represents the overall
performance of the network in terms of user QoS parameter.
Moreover, according to industrial standard, IoT-users satisfac-
tion ratio should be lies in between l1 ≤ Rsatiss,u ≤ l2, u ∈
U, s ∈ S [20]. Fig. 5 represents the performance of the
proposed service deployment strategy concerning IoT-users
Tmaxs,u , service providers βp maxs,J and βs maxs,J constraints. From
Fig. 5(a) and Fig. 5(b), it is obvious to say that the proposed
fog federation model offers more satisfaction ratio compared to
the SC framework and SF framework. The reason behind that
the proposed model utilizes the advantages of resource con-
troller over the fog federated network, in which the resource
controller monitors the available resources RRM and unsat-
isfied users ORM . In this way, resource provider maximizes
their revenue CMEC

s,j and increase IoT-users satisfaction ratio
Rsatiss,u . Analysis shows that proposed fog federation model
succeed to increase IoT-user satisfaction ratio up to 20%-30%
as compared to the existing SF framework and SC framework.
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Fig. 5. Users satisfaction ratio: (a) On various computing devices, (b)
Comparison with existing baseline frameworks.

The above experiment results show that the proposed service
deployment strategy on the fog federation model indeed solves
the difficulties and challenges of the existing standalone fog
and cloud frameworks with 6G communication technology. It
performs efficiently under the heavy load and reduces the user
service cost while maximizing the revenue of the providers.

V. CONCLUSION

In this work, we have designed a service deployment strat-
egy to facilitate massive IoT applications in the 6G-enabled
fog federated network. The main objective of this model is to
maximize the cost-benefit for both the IoT-user and the service
provider while convening various constraints. For this purpose,
a Stackelberg game approach is adopted to minimize the
users’ service costs using a multi-user single-provider strategy
and maximize the revenue of the service providers using a
single-user multi-provider strategy. Further, to control users’
dynamic service demands and maximize users satisfaction
ratio, a resource controlled mechanism is incorporated with
the proposed fog federation model. This mechanism helps to
redeploy the requested services on nearby fog devices. Exten-
sive simulation results with 6G-enable parameters demonstrate
that our proposed fog federation model reduces up to 15%-
20% service delay and 20%-25% of service cost over the SF or
SC frameworks. In the future, we will extend our proposed fog
federation model by incorporating software-defined network to
achieve maximum benefits of the 6G network.
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