
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 1

Joint Computation Offloading and Scheduling
Optimization of IoT Applications in Fog Networks

Abhishek Hazra, Mainak Adhikari, Tarachand Amgoth, and Satish Narayana Srirama, Senior
Member, IEEE

Abstract—In recent times, fog computing becomes an emerging technology that can exhilarate the cloud services towards the network
edge for increasing the speeds up of various Internet-of-Things (IoT) applications. In this context, integrating priority-aware scheduling
and data offloading allow the service providers to efficiently handle a large number of real-time IoT applications and enhance the
capability of the fog networks. But the energy consumption has become skyrocketing, and it gravely affects the performance of the fog
networks. To address this issue, in this paper, we introduce an Energy-Efficient Task Offloading (EETO) policy combined with a
hierarchical fog network for handling energy-performance trade-off by jointly scheduling and offloading the real-time IoT applications.To
achieve this objective, we formulate a heuristic technique for assigning a priority on each incoming task and formulate a
stochastic-aware data offloading issue with an efficient virtual queue stability approach, namely the Lyapunov optimization technique.
The proposed technique utilizes the current state information for minimizing the queue waiting time and overall energy consumption
while meeting drift-plus-penalty. Furthermore, a constraint restricted progressive online task offloading policy is incurred to mitigate the
backlog tasks of the queues. Extensive simulation with various Quality-of-Service (QoS) parameters signifies that the proposed EETO
mechanism performs better and saves about 23.79% of the energy usage as compared to the existing ones.

Index Terms—IoT, fog networks, priority-aware scheduling, energy-efficiency offloading, Lyapunov optimization, Quality-of-Service.

F

1 INTRODUCTION

THE rapid development of the Internet-of-Things (IoT)
and embedded devices generate an enormous number

of real-time applications for processing and establishing
a smooth relationship between countless cool applications
including smart home, smart traffic management, smart
health-care etc. [1]. In this context, more and more real-time
applications, including video streaming, gaming, movie,
and human-machine interaction, etc. are emerged and at-
tract great attention. As a result, the necessity of assigning
priority of each real-time task as per its importance and
schedule the tasks on the suitable computing devices by
meeting different Quality-of-Service (QoS) objectives has
become a serious challenge. In general, the end devices are
typically resource-constrained, which have limited energy
and processing capacity [2]. As a result, it is significant
to achieve an energy-efficient and priority-aware task of-
floading strategy for further processing the real-time IoT
applications on the remote computing devices.

Within the last few decades, many researchers focus on
resource-rich centralized cloud servers for processing an
enormous amount of real-time applications [3]. However,
due to the unreliable connectivity, high propagation de-
lay, and geo-distributed deployment, the centralized cloud
servers fail to meet the low latency and energy demand
criteria of the priority-aware tasks. As an extension, for

Corresponding author: Tarachand Amgoth.
A. Hazra and T. Amgoth are with the Indian Institute of Technology
(Indian School of Mines) Dhanbad, Jharkhand, India. (e-mail: abhishek-
hazra.18dr0018@cse.iitism.ac.in, tarachand@iitism.ac.in).
M. Adhikari is with the Mobile & Cloud Lab, Institute of Computer Science,
University of Tartu, Estonia (e-mail: mainak.ism@gmail.com).
S. N. Srirama is with the School of Computer and Information Sciences,
University of Hyderabad, India (e-mail: satish.srirama@uohyd.ac.in).

improving the performance of the overall network, it is
more efficient to move the priority-aware tasks to the edge
of the networks. To address those challenges, CISCO has
introduced a new computing paradigm namely fog comput-
ing [4] that leverage a multitude of collaborative end devices
and local fog devices in terms of a base station, smart phone,
laptop, etc. [5]. As a result, it is crushing to benefit from the
fog computing specialties to minimize energy consumption
and latency while distributing the intense workloads of the
end devices through offloading.

According to the energy consumption formulation, the
required energy consumption for processing the real-time
applications on the remote computing devices should be
the accumulation of data transmission time, transmission
power, and processing capacity of the computing devices.
Further, transmission power combines state of the channel
such as available bandwidth, and data transmission rate.
Thus, a higher transmission rate can be accomplished by
extending the transmission power, which also decreases
the transmission time. Thereby, the energy emission rate
can be controlled by balancing the trade-off between the
transmission power and transmission time. An optimal task
scheduling strategy should always control this trade-off and
increases the transmission rate when the channel is ideal
and reduces when the workload is high.

1.1 Motivation

The challenges mentioned above can be handled effi-
ciently with an elegant and standard Lyapunov optimiza-
tion method and Lyapunov drift theory. This method is
introduced to enable the constrained optimization of time
averages in a general stochastic system without estimating

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 2

the condition of the stochastic system in future slots. The
technique first observes the constraints of the system and
constructs virtual queues with the objective of optimiz-
ing the time average constraints, ensuring the stability of
the queues. Further, to optimize the objective function in
each time slot, a drift plus weighted penalty function is
introduced. Intuitively, the weighted penalty controls the
trade-off between the penalty optimization and backlog
queue reduction. Motivated from the stability function of
Lyapunov optimization method, we first construct multiple
virtual queues for the incoming tasks with a heuristic pri-
ority assignment policy. Then, the updated Lyapunov opti-
mization method has been introduced to seek the stability
of the queues and a utility function is designed for jointly
minimizing the energy constraint and queue stability with
the drift-plus-penalty framework.

1.2 Contributions

The standard Lyapunov optimization function is guaranteed
to stability of the virtual queues. However, this strategy can-
not ensure the energy constraint trade-off for transmitting
and processing the real-time tasks on the remote comput-
ing devices in fog networks. Therefore, the approach must
be modified to conform the adaptability of this situation.
Further, we add a constrained restriction mechanism for
offloading the scheduled tasks by ensuring to meet the
energy constraint of the fog networks. The key contributions
of the proposed Energy-Efficient Task Offloading (EETO)
policy are described as follows.

• We develop a priority-aware queueing assignment
policy that accounts for specifying a fixed priority on
each incoming task based on the arrival frequency
and execution deadline, and assign them on the
suitable priority queues (virtual queues).

• By casting the formulated objective function into a
Lyapunov optimization framework, we design an
efficient virtual queue stability approach to obtain an
effective scheduling and offloading decision policy
for the priority-aware tasks and utilizes the current
system information in each time frame.

• We design a constrained restricted online task of-
floading policy to efficiently offload the scheduled
tasks to the suitable remote computing devices with
lower computational complexity.

• Finally, we evaluate the proposed strategy through
extensive simulation runs over different baseline al-
gorithms. Superior results demonstrate that the pro-
posed strategy achieves better performance over var-
ious QoS parameters, including queue waiting time,
task offloading delay, energy usage, and throughput.

The rest of the paper is structured as follows. Section 2
discusses various state-of-the-art algorithms for real-time
IoT applications along with their merits. Section 3 presents
the system model followed by the problem formulation
of the work. The proposed EETO strategy is examined in
Section 4. The empirical evaluation of the proposed EETO
strategy is discussed in Section 5. Finally, the conclusion and
future research direction are presented in Section 6.

2 RELATED WORK

In recent times, several approaches have been developed
for making an efficient task offloading strategy in fog
network. Lingjun et al. have proposed a Device-to-Device
(D2D) task offloading policy for making an energy-efficient
and incentive-assisted fog environment [6]. Jie et al. [7]
have introduced a combined Lyapunov optimization and
Gibbs sampling-based task offloading technique in mobile
edge environment. Jiao et al. [8] have proposed a mixed-
integer nonlinear energy-acquainted task offloading policy
for reducing the energy consumption of the network. Lixing
et al. [9] have examined an energy-effective mobile edge
offloading strategy for maximizing the system performance
and efficiency. Lin et al. [10] have investigated an energy-
efficient task scheduling and offloading strategy for mini-
mizing cost of the network. An energy-aware task offload-
ing strategy has been introduced by Yang et al. [11] in a
homogeneous fog environment to find an optimal schedul-
ing sequence of the tasks. Yiming et al. [12] have addressed
a hierarchical computation offloading scheme for reducing
the total energy consumption cost in a non-orthogonal fog
network.

Queueing theory is a well-known and widely adopted
technique for controlling the data-flow of the network.
Nowadays, for minimizing the energy utilization and la-
tency, the researchers prefer to combine queueing theory
and Lyapunov optimization technique in a complex envi-
ronment such as fog network [13]. For example, Tomoya
et al. [14] have proposed a queuing network for assigning
inter-arrival tasks in a fog network to minimize the average
waiting time of the network. Su et al. [15] have designed
a cloud-based energy optimal application offloading policy
by modifying the Lyapunov technique. In [16], Wang et al.
have developed a VariedLen algorithm to reduce power-
performance trade-offs in the cloud radio access network.
Mukherjee et al. [17], have designed a deadline aware fair
scheduling strategy for distributing workload in the inter
fog network. Lei et al. [18] have proposed a resource al-
location and real-time offloading strategy in a heteroge-
neous fog queuing environment. A hierarchical workload
allocation scheme has been designed by Qiang et al. [19]
in the edge network for reducing the total processing time.
Jitender et al. [20] have analysed a QoS-aware computation
offloading policy for reducing resource utilization cost in a
heterogeneous mobile-cloud environment. Liqing et al. [21]
have investigated an energy-aware strategy for reducing
the processing time and latency in a fog network. Yucen
et al. [22] have developed a energy-aware data offloading
strategy for minimizing the energy and cost of the network.

There are two significant difficulties for designing an
energy-efficient task offloading strategy in fog networks.
Firstly, how to develop an energy-efficient task scheduling
policy for priority-aware tasks. This helps the system
to determine task importance and guaranteed to process
them with minimal delay. Secondly, how to predict the
availability of computing resources prior, in-order to ob-
tain a low complexity offloading strategy. This helps the
system to obtain an efficient offloading decision using the
current resources in each time stamp. This also allows the
devices to utilize the total energy usage of the tasks while

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 3

meeting several QoS constraints. The majority of the task
offloading strategies have not classified the tasks into mul-
tiple priorities (i.e., delay-sensitive and computation-intensive)
based on their importance, even though it is one of the
significant challenges in the IoT domain. Different from the
above-mentioned works, in this paper, we jointly consider
the priority-aware task classification and energy-aware task
offloading strategy with an optimal scheduling policy in
fog networks. A comparative analysis with five key design
attributes between the existing frameworks and proposed
work is bestowed in Table 1.

TABLE 1
Comparative Study Of The Existing Task Offloading Strategies

Existing
Works

Task
priority

Utilization of
current resources

Low complexity
framework

Priority-aware
scheduling

Dynamic
offloading

[23] × X X × ×
[16] × X × × ×
[6] × X × × X
[24] × × X × ×
[17] X X X × ×
[25] X × × × ×
[22] × X X × ×
[26] × X X × ×
[27] × × X × X
[28] X × × × ×

Our work X X X X X

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first discuss the system model of the
hierarchical fog network followed by the problem formu-
lation of the proposed strategy. The important notations of
the paper are referred to Table 2.

3.1 System Model
A typical hierarchical fog network is shown in Fig. 1. As
exemplified in Fig. 1, let us consider that F be the set
of fog devices, denoted as F = {F1, F2, . . . , , Fo} and S
be a set of heterogeneous cloud servers, represented as
S = {S1, S2, . . . , Sp}. In this model, I denotes the set of
end devices, denoted as I = {I1, I2, . . . , Im}. Here, we
assume that the CPU capacity and energy consumption of
an end device, i.e. fCPUend and ECPUend respectively, should be
less than any fog device (fCPUfog , ECPUfog) and cloud servers
(fCPUcloud , ECPUcloud). Similarly, the CPU capacity and energy
consumption of a fog device is less than any cloud servers.
Thus, we can assume that fCPUend < fCPUfog < fCPUcloud and
ECPUend < ECPUfog < ECPUcloud. Each end device can generate T
number of delay-sensitive or computation-intensive tasks. The
set of tasks are represented as T = {T1, T2, . . . , Tq}. The
tasks can process either on local end devices or offload to
the remote computing devices such as fog nodes or cloud
servers through a set of local gateways G, represented as
G = {G1, G2, . . . , Gn}. The gateways are responsible to
assign a priority on each incoming task according to its
importance and and take an energy-efficient offloading de-
cision with the updated Lyapunov optimization framework.

Here, we assume a binary offloading scenario, where
a real-time task is processed on the local end device or
offloaded to a remote computing device for processing
fully. More importantly, a highly integrated or relatively
simple task can not be partitioned and has to process as
a whole on a single computing devices. Let FS be the set of

TABLE 2
Important Notations

Symbols Definition

T Total number of tasks
S Total number of cloud servers
F Total number of fog devices
G Total number of gateways
I Total number of end devices
λDjk Task arrival rate at the delay-sensitive queue
λCjk Task arrival rate at the computation-intensive queue
FS Total number of computing devices in the network
R

up
ik Task uploading rate from ith IoT to kth gateway

Bin
ij Uploading Bandwidth between ith and jth device

Bout
ji Downloading Bandwidth between jth and ith device

γDkj Delay-sensitive task offloading probability
γCkj Computation intensive task offloading probability
T

up
ij Uploading time between ith and jth device
T down
ji Downloading time between ith and jth device
fCPU
j CPU frequency of the jth device
Epro

ij Energy consumption at the jth computing device

Etotal
ij

Total energy consumption to process ith task on jth
computing device

remote computing devices including local fog devices and
remote cloud servers, i.e, FS = (F ∪ S). The delay-sensitive
tasks, referred to TDi , are offloaded to the fog devices and
computation-intensive tasks, referred to TCi , are offloaded to
the centralized cloud servers. In this model, each request
generates from an end device with input or output data size
(in bits), denoted as T ini or T outi , respectively. Let X (i, j)
referred to the assignment of ith task to the jth computing
device, ∀j ∈ (I ∪ FS). Then, X (i, j) is derived as follows.

X (i, j)=

1
if the ith task is assigned to the jth
computing device: ∀j ∈ (I ∪ FS)

0 otherwise.

We also assume that each gateway deviceGi offloads the
tasks to the remote computing devices (FS) in the network
based on their availability and workloads.

3.1.1 Queueing Model
Here, we consider a time-slotted system, indexed by T =
{t1, t2, . . . , }, where the length of each time slot is ∆t (in
sec). Further, we consider that the arrival rate of the tasks
can be realistically modeled as a Poisson process with the
density function f(x) = λie

−λix, where λi represents the
task arrival rate from an end device. Let, αjk, be the task
offloading probability from jth end device to the local
gateway. Thus, the task arrival rate at the local queue of kth
gateway for taking further offloading decision is defined as
λremjk = αjk × λi, ∀j ∈ I . Subsequently, the remaining tasks
are processed on the local end devices. The arrival rate of
the ith task that can process locally at the jth end devices is
defined as λlocalj = (1− αjk)× λi.

Let us consider that βjk denotes the set of task comes un-
der delay-sensitive queue of kth gateway for further offload-
ing. Thus, the task arrival rate at the delay-sensitive queue is
represented as λDjk = βjk × λremjk . Similarly, the remaining
tasks arrival rate at the computation-intensive queue of kth
gateway is defined as λCjk = (1 − βjk) × λremjk . Further, we

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 4

End	Devices End	Devices End	Devices

Fog	Devices Fog	Devices Fog	Devices

Centralized
Cloud-Server

Gateway Wired/Wireless

Data sensing through End devices

Offload to Fog

Offload to Cloud

Fig. 1. Hierarchical fog networks model

denote that γDkj and γCkj represent the probabilities of delay-
sensitive and computation-intensive task, respectively that are
offloaded to the jth remote computing device (∀j ∈ F ∪ S)
for further processing. Therefore, the task arrival rate from
the kth gateway device to the jth fog device, ∀j ∈ F is
defined as follows.

λfogi = γDkj × λDjk + γCkj × λCjk
= γDkj × βjk × λremjk + γCkj × (1− βjk)× λremjk

(1)

Likewise, the task arrival rate from the kth gateway device
to the jth cloud server,∀j ∈ S is expressed as follows.

λcloudi = (1− γDkj)× λDjk + (1− γCkj)× λCjk
= (1− γDkj)βjkλremjk + (1− γCkj)(1− βjk)λremjk

(2)

3.1.2 Energy Consumption Model
To capture the key features of the energy consumption dur-
ing computation and communication in fog networks, the
energy consumption models of different modes are studied
in this section. Specifically, we focus on energy consumption
during task offloading and processing in local end devices
and remote computing devices.

1. Local processing Mode: The incoming tasks from the
set T , which require minimum CPU frequency (fCPUi) for
processing, i.e., if the required CPU frequency of the ith task
is less than the available CPU frequency of the local end
device j, (i.e., fCPUi ≤ fCPUj), then the ith task is processed
locally, where ∀i ∈ T and ∀j ∈ I . As a result, the time
to process the ith task on jth end device with probability
(1− αik) is defined as Pij = (1− αjk)×X (i, j)T ini /fCPUj .

The local processing of a real-time task depends on
the CPU frequency of the local end device instead of the
communication delay. To simplify the analysis, we consider
the energy consumption for running one bit of a task i at
local end device, i.e.ECPUj (in Joules). Thus, the total energy
consumption by running a task i at local end device j is
defined as follows.

Eproij = Pij × ECPUj : ∀i ∈ T ,∀j ∈ I

= (1− αjk)× X (i, j)× T ini
fCPUj

× ECPUj

(3)

2. Computation offloading Mode: Due to the resource-
constrained processing capability, the end devices offload
the large amount of tasks T to the resource-rich remote
computing devices. Thus, the total offloading time of a task
i depends on its uploading time, downloading time and
processing time. Denote, hpi be the channel power gain for
offloading the ith task, ∀Ti ∈ (TDi , T

C
i) in jth computing

device, where, ∀i ∈ T , j ∈ (F ,S). Thus, the uploading rate
(Rup

ij) of a task i on the jth computing device is defined as

R
up
ij = Binij log2

(
1+

Pup
j hpi

ξ2i

)
, where Binij signifies the obtain-

able bandwidth utilization between ith end device and jth
computing device. Pupj denotes the required transmission
power to offload a task on jth computing device and ξ2

i is
a constant additive white Gaussian noise of end device. The
transmission time to offload a task to a nearby computing
device can be expressed as follows.

T
up
ij =

X (i, j)× T ini
R

up
ij

: ∀i ∈ T , j ∈ (F ,S) (4)

Consequently, the corresponding uploading energy con-
sumption of task i while transmitting to the remote com-
puting device j is defined as follows.

E
up
ij = T

up
ij × Pup

j : ∀i ∈ T , j ∈ (F ,S)

=
X (i, j)× T ini × Pupj

Binij × log2

(
1 +

Pup
j ×hpi
ξ2i

) (5)

Where, ∀i ∈ T , j ∈ (F ,S). Now, the total processing
time to execute the ith task

[
∀i ∈ (TDi , T

C
i)
]

on the jth
computing device ∀j ∈ (F ,S) is given as follows.

Pij =

γDkj ×
X (i,j)T in

i

fCPU
j

, if Ti ∈ TDi & j ∈ F

γCkj ×
X (i,j)T in

i

fCPU
j

, if Ti ∈ TCi & j ∈ F

(1− γDkj)×
X (i,j)T in

i

fCPU
j

, if Ti ∈ TDi & j ∈ S

(1− γCkj)×
X (i,j)T in

i

fCPU
j

, if Ti ∈ TCi & j ∈ S

(6)

Where, fCPUj denotes the CPU frequency of the jth com-
puting device. The task arrival rate on remote fog devices
and cloud servers are represented as λfogi and λcloudi , re-
spectively. Further, the service rate of the remote computing
devices is defined as fCPUj /X (i, j)T ini ,∀i ∈ T , j ∈ (F ,S).
According to M/M/1 queueing model [29], the queue wait-
ing time in jth computing device is defined as follows.

Qij =

λfog
i (X (i,j)T in

i)
2

fCPU
j (fCPU

j −λfog
i (X (i,j)T in

i))
, if j ∈ F

λcloud
i (X (i,j)T in

i)
2

fCPU
j (fCPU

j −λcloud
i (X (i,j)T in

i))
, if j ∈ S

(7)

The total queueing delay for remote execution is Q(t) =∑q
i=1 Qij(t). Let us consider that the energy consumption

for running one bit of a task i at remote computing device is
expressed as ECPUj (in Joules). Thus, the processing energy
consumption of a task i while executing on the remote
computing device j is defined as follows.

Eproij = Pij × ECPUj : ∀i ∈ T , j ∈ (F ,S) (8)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 5

Similarly, the result of the task i is downloaded to the
requested end device via local gateway. Consider hpj as
the channel power gain from remote computing device j
while downloading the ith task to the end device. The
achievable downloading rate (Rdown

ji) at the end device can

be expressed as Rdown
ji = Boutji log2

(
1 +

Pdown
i hpj
ξ2j

)
, where

Boutji signifies the obtainable bandwidth utilization between
jth remote computing device to ith end device. Pdown

i de-
notes the required transmission power to download the ith
task; and ξ2

j is an additive white Gaussian noise on the jth
computing device. The downloading time T down

ji to the end
device can be expressed as follows.

T down
ji =

X (j, i)× T outi

Rdown
ji

: ∀i ∈ T , j ∈ (F ,S) (9)

Consequently, the corresponding downloading energy con-
sumption of task i is defined as follows.

Edown
ji = T down

ji × Pdown
i : ∀i ∈ T , j ∈ (F ,S)

=
X (j, i)× T outi × Pdowni

Boutji × log2

(
1 +

Pdown
i ×hpj

ξ2j

) (10)

Thus, the total energy consumed by the task iwhile process-
ing in a remote computing device j is defined as follows.

Etotal
ij = E

up
ij + Eproij + Edown

ji (11)

As a result, the total energy consumption by a task i, ∀i ∈
T in a computing device j,∀j ∈ (F ∪ S ∪ I) at time t is
formulated as follows.

Etotal
ij (t) =

{
Eproij (t), if j ∈ I
E

up
ij (t) + Eproij (t) + Edown

ji (t), if j ∈ FS
(12)

3.2 Problem Formulation
In this section, we formulate the problem of jointly opti-
mizing the scheduling strategy and offloading decision in
a hierarchical fog networks. Specifically, we aim for opti-
mizing the expected time-average energy consumption for
the task i, i.e., energy consumption during uploading (E

up
ij),

processing (Eproij) and downloading (Edown
ij) time on the jth

computing device, j ∈ (F ∪ S ∪ I). The above-mentioned
objective function along with the instigate constraints can
be formulated as follows.

minimize lim
t→∞

T∑
t=1

Etotal
ij (t) (13a)

subject to Etotal
ij (t) ≤ Emaxj , j ∈ (F ∪ S), (13b)

Qij(t) ≤ Qmax
j , j ∈ (F ∪ S), (13c)

fCPUi (t) ≤ fmaxj , j ∈ (F ∪ S), (13d)
|T |∑
i=1

|FS|∑
j=1

X (i, j) ≤ |FS|, (13e)

|T |∑
i=1

X (i, j) = 1, (13f)

X (i, j) ∈ {0, 1}, (13g)

T
up
ij ≥ 0 and T down

ji ≥ 0 (13h)

The optimization objective of the above problem is to miti-
gate the total energy consumption in a time frame t, which is
addressed in (13a). The constraint (13b) states that the total
energy consumption for processing ith task is less than or
equal to its maximum value Emaxj on jth computing device,
∀i ∈ T . The constraint (13c) is the limitation of total waiting
time, where Qmax

j is the maximum waiting time of task i
on jth computing device. The constraint (13d) clarify that
the required CPU frequency for processing ith task is less
than or equal to the maximum CPU frequency fmaxj of
jth computing device ∀j ∈ (I ∪ F ∪ S). Constraints (13e)
prevents the overloading of available computing resources,
where |FS| represents the active computing devices [27].
Constraint (13f) defines that each task must be assigned
at-most one computing device at time t. Constraint (13g)
imposes the binary offloading constraint, i.e., F ∩ S = φ.
Finally, the constraint (13h) signifies that the task uploading
time and task downloading time should be greater than or
equal to zero.

4 ENERGY EFFICIENT TASK OFFLOADING (EETO)
In this section, we discuss the scheduling and offloading
mechanisms of the proposed Energy-Efficient Task Offload-
ing (EETO) policy with Lyapunov optimization technique.
Initially, a heuristic-based queue assignment (QA) policy is
introduced for assigning a priority on each incoming task
according to its importance and deadline. Further, a modi-
fied Lyapunov optimization model with a utility function
(drift-plus-penalty framework) has been designed, namely
Optimal Task Scheduling (OTS) policy, for jointly minimiz-
ing energy consumption of the real-time tasks and stabiliz-
ing the queues. Finally, a Constrained Restriction Offloading
(CRO) mechanism has been developed for offloading the
scheduled tasks on the suitable remote computing devices
in the fog network. The mechanisms of the proposed EETO
strategy with a suitable workflow model are discussed as
follows.

4.1 Queueing Assignment (QA) Policy

The inherent intuition of designing QA policy is to prioritize
the arrival tasks based on their importance and allocate
them to one of the priority queues of a local gateway.
Consider a task Ti = 〈Ci, Di〉 , Ti ∈ T , is characterized by
execution requirement Ci and inter-arrival time difference
Di, also called period of a task. For a task i, the utilization
factor is defined as follows.

U (Ti)
def
=

Ci
Di

(14)

Thus, the cumulative utilization factor Usum(T) of a task set
T is defined as Usum(T) =

∑q
i=1 U (Ti). Further the largest

utilization of any task Ti is derived as follows.

Umax(T)
def
= max

1≤i≤q
U (Ti) (15)

We also consider that tasks are sorted according to non-
decreasing utilization: U (Ti) ≥ U (Ti+1),∀i, 1 ≤ i ≤ q. For
rest of the paper, we consider 1) Umax(T) ≤ 1 and 2) we
do not permit job level parallelism. Based on the utilization

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 6

Algorithm 1: EETO:QA Policy
INPUT : q : Number of tasks, Ci : Execution requirement,

Di : Task period.
OUTPUT : Priority queue assignment

(
QD

i ,QC
j

)
.

begin
1 for i: 1 to q do
2 Calculate utilization factor U (Ti) = Ci

Di

3 Assign priority to each task Ti
4 if utilization factor U (Ti) >

1
2

then
5 Classify task Ti as delay-sensitive task TD

i
end

6 if utilization factor U (Ti) ≤ 1
2

then
7 Classify task Ti as computation-intensive task TC

i
end

8 Initialize QD
i ← 0 and QC

j ← 0

9 Assign tasks to a priority queue QD
i and QC

j

10 if task priority TD
i ← T i then

11 Enqueue task Ti into delay-sensitive queue QD
i

end
12 if task priority TC

i ← T i then
13 Enqueue Ti into computation-intensive queue QC

j
end

14 Set i = i+ 1
end

end

factor U (Ti), a task i can be classified as delay-sensitive or
computation-intensive.

Definition 1. A task Ti is called a delay-sensitive task if
U (Ti) >

1
2 , or a computation-intensive task if U (Ti) ≤ 1

2 .
By doing so, we can highlight higher priority tasks,

which essentially endeavor a faster reply in the fog
networks. Note that, the priority of delay-sensitive and
computation-intensive tasks are represented as TDi and TCi ,
respectively. In addition to that, the QA policy consid-
ers two priority queues as delay-sensitive queue (QDi) and
computation-intensive queue (QCj) for keeping all the incom-
ing tasks in a local gateway.

Definition 2. A task Ti can be assigned to the delay-sensitive
queue QDi , if Ti ∈ TDi or to the computation-insensitive queue
QCi , if Ti ∈ TDi .

An illustration Example: Considering a task set T with
five real-time tasks, T =

(
T1, T2, T3, T4, T5

)
, where T1 =

〈2, 6〉, T2 = 〈5, 10〉, T3 = 〈3, 12〉, T4 = 〈4, 20〉 and T5 =
〈15, 20〉. Now the utilization for T1 is U (T1) = 2

6 = 0.33.
Similarly for U (T2) = 0.50, U (T3) = 0.25, U (T4) = 0.20
and U (T5) = 0.60, respectively. For the set of tasks T , if we
consider the utilization threshold

(
> 1

2

)
, then according to

Definition 1, only task T5 can be classifies as delay-sensitive
task (as 0.60 > 0.50) and assigned to delay-sensitive queue.
Rest of the tasks are classified as computation-intensive tasks.
This pseudo-code of priority evaluation and QA policy is
shown inAlgorithm 1. We analyse the run-time of Algorithm
1 using big−O notation and other system model parameters,
where q represents the number of tasks in the system.

4.2 Optimal Task Scheduling (OTS) Policy
In this work, we steer to obtain an optimal task scheduling
policy for all priority-aware tasks T in a stipulated time
period, while making the system strongly stable [30]. To
achieve our desired output, we designed the Lyapunov opti-
mization framework for online task scheduling and efficient
offloading decision.

4.2.1 Lyapunov Optimization
The key principal of Lyapunov optimization technique is to
create a set of virtual queues, which leverage the precision-
based queue stability problem and ensures to minimize the
average queue waiting time and energy consumption. To
follow this intuition, we transform all inequality constraints
into Lyapunov queue stability form. Let us consider that,
QDi (t) and QCj (t) be the number of waiting tasks in delay-
sensitive and computation-intensive queues at an instance t.
At first, we divide all the tasks T with arrival rate λDi (t)
and λCj (t) into two virtual queue QDi (t) and QCj (t), re-
spectively based on Algorithm 1, ∀i, i ∈ {1, 2, . . . , I} and
∀j, j ∈ {1, 2, . . . , J}, where each i, j follow the dynamics,
which are represented as follows.

QDi (t+ 1) = max
[
QDi (t)− µi(t), 0

]
+ λDi (t) (16)

QCj (t+ 1) = max
[
QCj (t)− µj(t), 0

]
+ λCj (t) (17)

Here, queue backlog
(
e.g., QDi (t) and QCj (t)

)
depend on

the difference between service rate and the total amount of
requests satisfied for each time interval t.

4.2.2 Queue Stability
Let us consider that L (Θ (t)) be a Lyapunov function. To
establish the virtual queue stability condition, we adopt
Lyapunov quadratic-drift approach [31], which is defined
as follows.

L (Θ (t))
∆
=

1

2

∑
i,j∈T

[
QDi (t)2 +QCj (t)2

]
(18)

where, L (Θ (0)) = 0 and Θ (t)
∆
=

{
QDi (t), QCj (t)

}
,

∀i,∀j, (i, j) ∈ T , i = {1, 2, . . . , I} and j = {1, 2, . . . , J},
represent the scalar number of queue congestion on a certain
time instance t . Now, we can define both the state and
stability of the queues at time instance t, which is derived
as follows.

lim
t→∞

sup
1

T

T∑
t=1

E
[
QDi (t) +QCj (t)

]
<∞ (19)

In a time slot t, a system is strongly stable if queues are indi-
vidually stable with (µk (t)−λk(t)) ≥ 0, where µk (t) ,∀k ∈
(i, j) represents the service rate, i.e., min

[
QDi (t), µi(t)

]
and

min
[
QCj (t), µj(t)

]
of the system. Further, we consider that

initial queue backlog QDi (t) = 0 and QCj (t) = 0, when
t = 0. From the Lyapunov function L (Θ (t)), we for-
mulate the Lyapunov drift ∆Θ (t) as the rate of change
from L (Θ (t+ 1)) to L (Θ (t)) for next time frame, which
is formulated as follows.

∆(Θ (t))
∆
= E

[
L (Θ (t+ 1))− L (Θ (t)) | Θ (t)

]
(20)

Theorem 1 : Assuming that constraints D > 0 and
E {L(Θ (0))} <∞. A quadratic Lyapunov-drift function satisfy
a condition ∆ (Θ (t)) ≤ D − α

∑N
n=1 |Θn (t)| for all possible

values of Θ (t), and for a positive constraint α, where α > 0.
Then, if a queuing system is stable, all the virtual queues are
strongly stable and strictly follow α > 0, ∀t, t = {1, 2, . . . , T}.

lim
t→∞

Sup
1

t

T−1∑
t=0

N∑
n=1

E
{
|Θn(t))|

}
≤ D
α

(21)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 7

Algorithm 2: EETO:OTS Policy
INPUT : ϑ : Control parameter, QD

i : Delay-sensitive queue,
QC

i : Computation-intensive queue, TD
i :

Delay-sensitive task, TC
i : Computation-intensive

task, q : Number of tasks.
OUTPUT : Optimal scheduling order Γ (t).
begin

1 for i: 1 to q do
2 Assign tasks to virtual queues (QD

i , Q
D
i)

3 if Task QD
i ← Ti then

4 Assign task Ti to delay-sensitive virtual queue QD
i

end
5 if Task QD

i ← Ti then
6 Assign task Ti to delay-sensitive virtual queue QD

i
end

end
7 Initialize QD

i (0) = 0 and QC
j (0) = 0

8 Observe current queue backlog QD
i (t) and QC

j (t) at the
beginning of time t

9 for i: 1 to q do
10 Find an optimal policy Γ (t), ∀Ti ∈ (QD

i (t) ∪QC
j (t))

11 Get current system information12 Determine Y opt
Ti

(t)

by minimizing ϑ
∑

j∈F,S((T in
i Pup

j)/Bin
ij +

(ECPU
j T in

i)/fCPU
j + (T out

i Pdown
i)/Bout

ji)−∑
i∈I Q

D
i (t)µi(t)−

∑
j∈J Q

C
j (t)µj(t)

13 Subject to (13b)-(13h), (19)
14 Update virtual queue QD

i (t) and QC
j (t) according

to (16) and (17);
15 Set i = i+ 1;

end
16 Γ(t)← Values of Y opt

Ti
(t) at time t

end

Proof : Complete proof of this Theorem can be found in
Appendix A.

Drift-Plus-Penalty: Here, we jointly satisfy the queue
stability constrains and minimize the average energy con-
sumption for all incoming tasks. As in [31], we define the
drift-plus-penalty as ∆ (Θ (t)) +ϑ

∑
i∈T E

[
Etotalij (t) | Θ (t)

]
,

where ϑ is a positive scalar limiting parameter used to
control the trade-off between the backlog queues and en-
ergy consumption which minimizes the upper bound of
the penalty [32]. Hence, the objective function of our work
under the condition of queue stability constraints is trans-
formed as follows.

minimize ∆ (Θ (t)) + ϑ
∑
i∈T

E
[
Etotalij (t) | Θ (t)

]
(22a)

subject to (13b)− (13h), (19) (22b)

Conforming the Lyapunov optimization technique, the con-
straints diminishes the drift penalty ∆Θ(t), and optimize
the objective function with the corresponding constraints,
which is identical to enhance the “drift-plus-penalty”. From
the Eq. (18) and Eq. (20), it is observed that, the objective
function (22a) contains some variables for next time instance
t+1, which are eradicated to find an optimal solution of the
objective function. To follow this, we need to consider upper
bound of

(
QDi (t+ 1)2 −QDi (t)2

)
of the virtual queue.

Theorem 2 : Assuming that λi(t) follow independent and
identically distributed (i.i.d) over time instant t. The upper bound
of the Lyapunov-drift function over a random scheduling policy
Γ (t) and all possible values of Θ (t), ∀t, t ∈ {1, 2, . . . , T}, is

represented as follows.

E
[
L(Θ(t+ 1))− L(Θ(t))

]
≤ D +

∑
i∈I

QDi (t)
[
λDi (t)

−µi(t)|Θ(t)
]

+
∑
j∈J

QCj (t)
[
λCj (t)− µj(t)|Θ(t)

] (23)

Where, D is a positive constant value and can be defined as
follows.

D =
λDi (t)2 − µi(t)2

2
+
λCj (t)2 − µj(t)2

2

−
{
λDi (t)µi(t) + λCj (t)µj(t)

} (24)

Proof : Complete proof of this Theorem can be found in
Appendix B.

Now adding penalty function ϑ
∑
i∈T E

[
Etotalij (t)|Θ(t)

]
on both the side of (23) yields the upper bound of drift-plus-
penalty, which is formulated as follows.

E
[
L
(
Θ(t+ 1)

)
− L(Θ(t))

]
+ ϑ

∑
i∈T

E
[
Etotalij (t)|Θ(t)

]
≤ D + ϑ

∑
i∈T

E
[
Etotalij (t)|Θ(t)

]
+
∑
i∈I

QDi (t)
[
λDi (t)

−µi(t)|Θ(t)
]

+
∑
j∈J

QCj (t)
[
λCj (t)− µj(t)|Θ(t)

] (25)

Form the above formulations, we observe that the right
hand side of Eq. (25) depends only on the variables at time
t, i.e. the upper-bound is restricted on t. Hence, the opti-
mization problem becomes the drift-plus-optimization with
associated upper bound. The motivated constraints are de-
signed in drift-plus-penalty with respect to the queue stability
function.

The development concept of our OTS policy is now
transformed into minimizing the upper bound of drift-plus-
penalty contrary to meet the constraints (13d) to (13h) as dis-
cussed in subsection 3.2. Given Θ (t) and set of constraints
in each time instance t, we can find an upper bound of the
drift-plus-penalty by minimizing the right hand side of Eq.
(25), which is derived as follows.

minimize
{
D+E(φ) +ϑ

∑
j∈(F,S)

E
[
Etotalij (t) | Θ (t)

] }
(26)

where, Etotalij = T ini Pupj /
(
Bin
ij log2(1 +

Pup
j ×hpi
ξ2i

)
)

+

PijE
CPU
j + T outi Pdowni /

(
Boutji log2(1 +

Pdown
i ×hpj

ξ2j
)
)

+

PijE
CPU
j and φ =

∑
i∈I Q

D
i (t)

[
λDi (t) − µi(t)|Θ(t)

]
+∑

j∈J Q
C
j (t)

[
λCj (t)− µj(t)|Θ(t)

]
.

From (26), we observe that the upper bound of drift-plus-
penalty depends on both variables and constants. We acquire
minimum values by considering the variables and skipping
the constants from the penalty function. Hence, the updated
minimized objective function is represented as follows.

minimize
{
E
(∑
i∈I

QDi (t)
[
λDi (t)− µi(t)|Θ(t)

]
+

∑
j∈J

QCj (t)
[
λCj (t)− µj(t)|Θ(t)

]
+ ϑ

∑
j∈F,S

(
(T ini Pupj)/

Binij + (ECPUj T ini)/fCPUj + (T outi Pdowni)/Boutji

))} (27)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 8

Algorithm 3: EETO:CRO Policy
INPUT : q : Set of tasks, k : Set of computing devices, Γ(t) :

Scheduling order.
OUTPUT : Suitable matching order K (t).
begin

1 T ←
{
TD
i ∪ TC

i

}
, FS ← {F ∪ S}

2 if |FS| = φ then
3 Wait for FS

end
4 for i= 1 to q do
5 for j= 1 to k do
6 if i ≤ |T |, j ≤ |FS| and Ti ∈ TD

i then
7 Assign task Ti to Fj by satisfying constraints

(13b), (13c) and (13d)
end

8 if i ≤ |T |, j ≤ |FS| and Ti ∈ TC
i then

9 Assign task Ti to Sj by satisfying constraints
(13b), (13c) and (13d)

end
10 T ← T \{i} and FS ← FS\{j}
11 K (t)← Task assignment value at time t

end
end

end

In order to find a near optimal solution, a large positive
ϑ, and Eproij > 0,∀j ∈ (F ∪ S) values are preferable. OTS
policy includes both updating virtual queues and optimal
scheduling order in each time stamp t to produce a stable
and efficient output.

Task Offloading Decision : If we look closely, then
we can analyze that the term

∑
j∈J Q

D
i (t)λDi (t) and∑

j∈J Q
C
j (t)λCj (t) do not have any impact on offloading

and downloading decisions at time t. Thus, we drive the
energy-efficient task offloading decisions by determining
the following function.

Y opt
Ti

(t) = minimize
{
ϑ
∑
j∈F,S

(
(T ini Pupj)/Binij

+(ECPUj T ini)/fCPUj + (T outi Pdowni)/Boutji

)
−
∑
i∈I

QDi (t)µi(t)−
∑
j∈J

QCj (t)µj(t)
} (28)

Subject to (13b)− (13h), (19)

According to constraint (13h), optimized Eq. (28) returns a
positive value, which can be obtained by tuning the best set
of hyper-parameters. Moreover, Eq. (28) contains two results
for remote offloading, i.e. either offload the tasks to the local
fog nodes or centralized cloud servers. The pseudo-code of
the proposed OTS policy is derived in Algorithm 2.

4.3 Constraint Restricted Offloading (CRO) Policy:

The main purpose of the CRO policy is to offload the q
number of scheduled tasks (where q = |T |) to the k number
of remote computing devices (where k = (|F| + |S|)) as
per the offloading decision obtained by Algorithm 2 using
Eq. (28). The CRO policy primarily contains two stages for
satisfying QoS constraints of the proposed fog networks
such as constraints (13b), (13c) and (13d). Stage.1 helps to
offload the delay-sensitive tasks to the local fog devices and
Stage.2 uses for offloading the computation-intensive tasks to
the centralized cloud servers. This can minimize the overall

waiting time and offloading delay for the incoming tasks
while meeting the energy and delay constraints of the fog
networks. The pseudo-code of the proposed CRO policy is
depicted in Algorithm 3.

In step− 1, the proposed CRO policy initializes both the
scheduled tasks and active computing devices. The algo-
rithm starts with the condition |T | ≤ |FS|, i.e. q ≤ k. Then,
the CRO policy inducts the process and starts offloading the
tasks based on their priority and the offloading decision
obtained using Eq. (28). step − 6 to step − 7 of Algorithm
3 are used to offload the delay-sensitive tasks on the local
fog devices, whereas the step − 8 to step − 9 are used for
offloading the computation-intensive tasks on the centralized
cloud servers while meeting the QoS constraints. In step−9,
unsuccessful offloading tasks are supervised by forwarding
to the next timestamp t+ 1. This process continues until all
the tasks are offloaded to the suitable computing devices.
In the next Section 4.4, we demonstrate that if Eq. (28) is
optimized in the subsequent time frame, then a quantified
near-optimal solution can be achieved.

Theorem 3: The worst case run-time complexity of EETO
strategy is O(qk), where q = |T | and k = (|F|+ |S|).

Proof: The proposed EETO strategy provides an online
workload distribution strategy for the set of scheduled
tasks in fog networks. At first, the EETO strategy initiates
QA policy (i.e. Algorithm 1) to prioritize the arrival tasks.
The process of task priority assignment policy depends on
the “for” loop in Algorithm 1 and starts with by calculating
the utilization factor of q number of tasks (in step− 2). Once
the utilization factor is known for each task, the priority
assignment can be determined (from step − 3 to step − 7)
in linear time, i.e., O(1). Next, each task is enqueue to a
suitable queue according to its priority (refer to step − 8 to
step − 12), which takes O(1) time. Thus, the total run-time
complexity of each task is O(1) +O(1) = 2×O(1) = O(1).
The total run-time complexity of QA policy with q number
of tasks is q × O(1) = O(q). Similar to Algorithm 1, the
EETO strategy renders an OTS algorithm (i.e. Algorithm 2)
for updating the virtual queues and schedules the tasks
in each time frame with an offloading decision. step − 1
to step − 6 of Algorithm 2 updates the virtual queues
of the gateway with q number of priority-aware tasks,
which takes O(q) run-time complexity. Next, step − 9 to
step − 15 determines the scheduling order and takes task
offloading decision, which takes O(q) run-time complexity.
Thus the total run-time complexity of OTS policy is
O(q) + O(q) = 2O(q) = O(q). Finally, the CRO policy (i.e.
Algorithm 3) helps to offload q number of scheduled tasks
on the k number of suitable remote computing devices,
where k = (|F| + |S|). Thus, the run-time complexity of
the CRO policy is O(qk). The total run-time complexity of
EETO strategy is O(q) + O(q) + O(qk) = 2O(q) + O(qk).
As qk >> q, thus the total run-time complexity of EETO
strategy is O(qk). The workflow of the proposed EETO
strategy is depicted in Fig. 2.

4.4 Theoretical Analysis

The proposed EETO strategy is used for finding a feasible
scheduling order with an efficient offloading decision in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 9

Downloading energy
consumption

Delay sensitive
tasks

Task buffer

Downloading energy
consumption

U
pl

oa
di

ng
 e

ne
rg

y
co

ns
um

pt
io

n

Arrived Tasks

Local queue (Gateway)

Lyapunov
Optimization
framework

Local Computing

Delay-sensitive
tasks queue

Ta
sk

s
ar

riv
ed

 fr
om

en
d

de
vi

ce
s

CPU frequency

Offload to fog

Offload

Decision making
at Gateway,

Cloud

Computation-intensive
tasks queue

Gateway device

Fog device

Centralized	Data	
Server

1 2 3

1 2 3Priority assignment Energy efficient scheduling Constrained restricted offloading

Fig. 2. Workflow of EETO strategy

fog networks, which requires current system information
in each time frame without prior system dynamics. This
nature of the proposed algorithm makes it much easier to
implement for a fog network with low complexity. Using the
Lyapunov optimization technique, we determine the upper
bound of the proposed EETO strategy.

Theorem 4 : Assuming λi be the task arrival rate, if a system
is stable under λi and µi with optimal offloading decision, then the
upper bound of the EETO strategy in terms of energy consumption
and average queue waiting time are derived as follows.

lim
t→∞

Sup
1

T

T−1∑
t=0

E
[
Etotal
ij (t)

]
≤ Eopt +

D

ϑ
(29)

lim
t→∞

Sup
1

T

T−1∑
t=0

E
[
QDi (t) +QCi (t)

]
≤ 1

ε
(D + ϑP) (30)

where ϑ and P denote the penalty function and long term
energy consumption rate achieved by the system.

Proof : Complete proof of this Theorem can be found in
Appendix C.

Theorem 4 demonstrates the conflicting trade-off[
O (ϑ) , O (1/ϑ)

]
between the upper bound of energy con-

sumption O (1/ϑ) and average queue waiting time O (ϑ).
Theorem 4 indicates the response discrepancy between Eq.
(13a) and Algorithm 2, which can diminish by adjusting
the control parameter ϑ. If ϑ is increasing, it will generate
more substantial backlog of queues with more energy usage.
Thus, the approximate value of ϑ is needed to satisfy the
requirements of the test in the practical implementation. It
can be noted that the Theorem 2 and Theorem 4 represent
the feasibility of the proposed model with a stable energy
consumption and queue waiting time.

5 PERFORMANCE EVALUATION

In this section, we briefly quantify the performance of the
proposed EETO strategy in regard to a) average queue waiting
time, b) average task offloading delay, c) Average energy con-
sumption and d) Throughput. Here, we adopt a new SIMUL8
PROFESSIONAL simulator and consider a hierarchical fog
network. Further, we compare our proposed EETO strategy
with the two baseline algorithms [28] concerning various
performance matrices, which are discussed briefly as fol-
lows.

TABLE 3
Parameters Used For Simulation

Parameters Values
Total number of end devices (I) 100
Total number of fog devices (F) 40
Total number of cloud servers (S) 10
Total number of gateway devices (G) 5
Average number of incoming tasks (λi) 100 [tasks/sec]
Maximum channel bandwidth (Bin

ij) 30 MHz

Task offloading probability (αjk, βjk, γkj) 0.5
CPU frequency in end devices (fCPU

j) 500× 106 [cyc/sec]
CPU frequency in fog devices (fCPU

j) 50× 109 [cyc/sec]
CPU frequency in cloud servers (fCPU

j) 100× 109 [cyc/sec]
Arrival rate for all tasks (λi) [.1, .2, . . . , .9]
Control parameter (ϑ) [500,. . . , 3000]
Processing energy usage (ECPU

j) 0.5 Joules
Transmission power of end devices (Pup

j) 1 mW

• Random Task Offloading (RTO): In the RTO strategy,
the real-time tasks are handled locally or offloaded
to a randomly selected computing devices without
concerning the priority of the tasks.

• Higher Transmission-Rate Offloading (HTRO): In the
HTRO strategy, the real-time tasks are offloaded to the
computing devices having higher data transmission
capability instead concerning about the latency and
energy usage.

To demonstrate the superiority of the proposed EETO strat-
egy, we have compared the proposed strategy with there
state-of-the-art algorithms including DPTO [28], evolution-
ary MOO [25], and Lyapunov-based CEAO [15] algorithms
along with two baseline algorithms.

5.1 Experimental Simulation Setup
The entire simulation conducted on Intel Core i7-2600 CPU
@ 3.40GHz × 8 with 10GB RAM using Ubuntu 18.04.3 LTS
operating system. Table 3 contains a brief description of
the simulation parameters [28]. Here, we consider 100 end
devices that generate tasks randomly with the arrival rate
of 100 tasks/sec [25]. For this experiment, we consider
maximum data transmission rate 2.5 Mb/s, T ini =[50kb-
10Mb], λfogi =.125 and λcloudi =.25. To make this simulation
more realistic and achieve a near ground solution, we create
additional assumptions into this model. In this network, out
of 100 end devices, 20 end devices process the real-time
tasks locally, and the remaining 80 devices offload their tasks
to the distributed fog devices or centralize cloud servers for
further processing through gateways. Further, we presume
that the equal arrival frequency for task offloading from the
end devices to the local fog devices or centralized cloud
servers, i.e. γDkj = γCkj = 0.5. An experimental simulation is
conducted for 1000 individual runs to make a feasible and
stable solution with all varying parameters.

5.2 Average Queue Waiting Time
This parameter describes how long the tasks are waited
before offloading and being allocated to a suitable com-
puting device. Fig. 3(a) reflects the variation of the average
queue waiting time of the proposed EETO strategy for delay-
sensitive and computation-intensive tasks. Moreover, we con-
sider that the average task arrival rate (λi) is 100 tasks/sec,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 10

20 40 60 80 100

0

5

10

15

20

25

Number of Task

Q
u

eu
e

W
ai

ti
ng

Ti
m

e
(i

n
m

s)
Delay-sensitive

Computation-intensive

(a)

20 40 60 80 100

20

40

60

80

100

Number of Tasks

A
ve

ra
ge

W
ai

tin
g

Ti
m

e
(in

m
s) RTO HTRO DPTO

MOO CEAP EETO

(b)

Fig. 3. Average queue waiting time (a)delay-sensitive and computation-
intensive tasks; (b)EETO strategy and existing algorithms.

and all queues follow the FCFS order while keeping the in-
finite queue length. It is clear from Fig. 3(a) that normalized
average queue waiting time for the delay-sensitive tasks is
less as compared to the computation-intensive tasks due to
their higher importance. Fig. 3(b) represents the comparison
of the average queue waiting time of the proposed EETO
strategy with the baseline and state-of-the art algorithms.
The existing algorithms schedule the incoming tasks with-
out considering their importance and assign the tasks on the
suitable computing devices in a fog network without con-
sidering a suitable scheduling scheme, which causes higher
queue waiting time and transmission delay. However, the
proposed EETO strategy used the Lyapunov optimization
technique for an efficient offloading and scheduling decision
of the incoming real-time tasks, which minimizes the overall
queue waiting time. The improvement of the proposed
EETO strategy in term of average queue waiting time is
61.53%, 52.38%, 24.36%, 18.25%, and 16.66% over RTO, HTRO,
DPTO, MOO and CEAP algorithm, respectively.

20 40 60 80 100
0

20

40

60

Number of Tasks

O
ffl

oa
d

in
g

Ti
m

e
(i

n
m

s)

Delay-sensitive
Computation-intensive

(a)

20 40 60 80 100

20

40

60

80

100

Number of Tasks

A
ve

ra
ge

O
ffl

oa
d

in
g

Ti
m

e
(i

n
m

s) RTO HTRO DPTO
MOO CEAP EETO

(b)

Fig. 4. Average task offloading time (a)delay-sensitive and computation-
intensive tasks; (b)EETO strategy and existing algorithms.

5.3 Average Task Offloading Delay
This parameter represents the total task processing, up-
loading, and downlink time to/from the selected comput-
ing devices in fog network. The uploading and down-
loading time of each task depends on the available trans-
mission bandwidth of the network. The offloading time
of each task increases with decreasing the bandwidth
availability in the network. Fig. 4(a) depicts the variation
of normalized task offloading time between delay-sensitive
and computation-intensive tasks in distributed fog networks.
From the Fig. 4(a), it is observed that the task offloading

time of the delay-sensitive tasks is lower than the computation-
intensive tasks. The main reason behind that the proposed
EETO strategy prefers to offload the delay-sensitive tasks
through a gateway in the fog devices than the computation-
intensive tasks due to their importance. Fig. 4(b) represents
the performance comparison of the proposed EETO strategy
over the baseline and state-of-the-art algorithms in terms of
average offloading time. Fig. 4(b) depicts that the proposed
EETO strategy minimizes the overall offloading time as com-
pared to the existing algorithms. In general, the proposed
EETO strategy saves more than 53.94%, 45.31%, 22.65%,
18.7% and 2.77% offloading time as compared with the RTO,
HTRO, DPTO, MOO and CEAP algorithms, respectively.

20 40 60 80 100
0

20

40

60

Number of Tasks
En

er
gy

C
on

su
m

pt
io

n
(in

m
W

)

Delay-sensitive
Computation-intensive

(a)

20 40 60 80 100

20

40

60

80

100

Number of TasksA
ve

ra
ge

En
er

gy
C

on
su

m
pt

io
n

(i
n

m
W

)

RTO HTRO DPTO
MOO CEAP EETO

(b)

Fig. 5. Average energy consumption (a)delay-sensitive and
computation-intensive tasks; (b)EETO strategy and existing algorithms.

5.4 Average Energy Consumption

This parameter represents the energy consumption rate
for uploading, processing, and downloading of the tasks.
Energy consumption largely relies on the CPU frequency
of a computing device, and bandwidth of the network.
Furthermore, this parameter also depends on the offload-
ing rate of computing devices, which is shown in Fig. 5.
Fig. 5(a) shows the comparison between the total energy
consumption of various priorities of tasks (i.e., delay-sensitive
and computation-intensive) with various numbers of input
data and also depicts that the energy consumption rate in-
creases while varying the workload in the network. Fig. 5(b)
represents the comparison of energy consumption between
the proposed EETO strategy and the baseline algorithms
by varying the numbers of incoming tasks. Most of the
baseline and state-of-the-art algorithms use various network
parameters for finding a suitable computing device for the
scheduled tasks, which do not help to minimize the energy
consumption of the fog network. However, the proposed
EETO strategy has achieved a new baseline mark for reduc-
ing the energy consumption by minimizing the total queue
waiting time, as depicted in Fig. 3(b), and lower offloading
delay, as shown in Fig. 4(b). This help to reduce the overall
energy consumption, which is shown Fig. 5(b). The pro-
posed EETO strategy saves more than 39.44%, 31.87%, 15.5%,
10.6% and 8.40% energy consumption as compared with the
RTO, HTRO, DPTO, MOO and CEAP algorithm, respectively.

Fig. 6(a) represents the comparison of backlog queue
processing among random scheduling random scheduling,
Lyapunov drift, and without Lyapunov drift. From Fig. 6(a)
it is noteworthy to say that by using Lyapunov drift function

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 11

20 40 60 80 100

30

60

90

120

150

Time

N
u

m
b

er
o

f
B

ac
k

lo
g

Ta
sk

s
Lyapunov drift

Without Lyapunov drift
Random scheduling

(a)

20 40 60 80 100

8

16

24

32

40

Number of Tasks

P
o

w
er

C
o

n
su

m
p

ti
o

n
(i

n
m

W
) ϑ = 500 ϑ = 1000

ϑ = 1500 ϑ = 2000
ϑ = 2500 ϑ = 3000

(b)

Fig. 6. Impact of Lyapunov drift (a)comparison with existing scheduling
schemes; (b)comparison with different ϑ value.

into the scheduling strategy maintains the stability of the
virtual queues, whereas random and without Lyapunov
drift scheduling strategies imposes higher penalty, which
mainly leads to increase in waiting time. Moreover, the
total backlog queue increases by increasing the number
of tasks and distance between end devices and remote
computing devices. Fig. 6(b) represents the impact of energy
consumption using the control parameter ϑ of drift-plus-
penalty of the Lyapunov optimization technique. Fig. 6(b)
also measures the relationship between the control param-
eter ϑ of the proposed EETO strategy with different time
instance t. Furthermore, it shows that the energy consump-
tion (×103) fluctuates in a short-range for small values of ϑ,
but increases while increasing the value of ϑ. This illustrates
that the control parameter ϑ directly impacts on the time
instance of the tasks while satisfying the constraints.

20 40 60 80 100

20

40

60

80

100

Time

T
h

ro
u

g
h

p
u

t

Fog device
Cloud server
End device

(a)

20 40 60 80 100

20

40

60

80

100

Number of Tasks

T
h

ro
u

g
h

p
u

t

RTO HTRO DPTO
MOO CEAP EETO

(b)

Fig. 7. Performance analysis in (a)various computing devices; (b)EETO
strategy and existing algorithms.

5.5 Throughput
This parameter signifies the total number of tasks that
completed their processing in a stipulated time period.
Fig. 7(a) reflects the variation of the number of completed
tasks in different computing devices. From Fig. 7(a), it is
clear that the maximum number of tasks have completed
their processing in local fog devices in each time instance
t than the centralized cloud servers. Similarly, we have
presented the comparison of performance analysis between
EETO strategy and state-of-the-art algorithms in Fig. 7(b).
Further, we have tested this simulation 1000 times with
various set of of real-time tasks for producing a stable result.
Out of 100 tasks, fog devices complete 78 tasks while cloud

servers complete 22 number of tasks, i.e. 78% of tasks are
processed in local fog devices and 28% of tasks are assigned
on resource-rich cloud servers. Furthermore, among the
total available resources, the fog devices utilize 85-95% of
computing resources. However, centralized cloud servers
utilize 20-30% of the resources while processing the real-
time tasks.

6 CONCLUSION

This paper studies an energy-aware optimization frame-
work, called EETO strategy for minimizing queue waiting
time and energy consumption rate of the real-time tasks
in fog networks. The proposed EETO strategy jointly clas-
sifies the tasks according to multiple QoS constraints and
takes an efficient offloading decision using the Lyapunov
optimization framework. The contributions of the work are
three folded. Firstly, a queueing-based policy is designed
for classifying the incoming tasks and assign them to the
multiple priority queues in the local gateway of the fog
network. Secondly, the Lyapunov optimization technique is
used to obtain an efficient scheduling policy for the priority-
aware tasks with the drift-plus-penalty function. Finally, we
have designed a constrained restricted offloading policy
for efficient offloading of the scheduled tasks on the suit-
able computing devices with low computational complexity.
Thus, the proposed EETO strategy minimizes the average
queue waiting time and total energy consumption of the
real-time tasks on fog networks with higher throughput.
The experimental analysis demonstrates that the proposed
EETO strategy outperforms the baseline and existing algo-
rithms in terms of average queue waiting time and energy
consumption rate by 44.48% and 23.79%, respectively.

In future work, we will extend our work in the follow-
ing directions: (1) optimizing multiple QoS parameters for
taking an efficient offloading decision in the fog networks
without considering any global information; and (2) design
an optimal scheduling policy under different resource con-
figurations with a combination of reward-penalty.

REFERENCES

[1] K. Wang, Y. Shao, L. Xie, J. Wu, and S. Guo, “Adaptive and
fault-tolerant data processing in healthcare IoT based on fog
computing,” IEEE Transactions on Network Science and Engineering,
vol. 7, no. 1, pp. 263–273, 2020.

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A
Survey on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications,” IEEE Internet of Things
Journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[3] H. Hao, C. Xu, M. Wang, L. Zhong, and D. O. Wu, “Stochastic
Cooperative Multicast Scheduling for Cache-Enabled and Green
5G Networks,” in ICC 2019-2019 IEEE International Conference on
Communications (ICC). IEEE, 2019, pp. 1–6.

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing
and Its Role in the Internet of Things,” in Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, 2012, pp.
13–16.

[5] S. Ghosh, A. Mukherjee, S. K. Ghosh, and R. Buyya, “Mobi-
IoST: Mobility-aware Cloud-Fog-Edge-IoT Collaborative Frame-
work for Time-Critical Applications,” IEEE Transactions on Network
Science and Engineering, 2019.

[6] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D Fogging: An Energy-
Efficient and Incentive-aware Task Offloading Framework via
Network-assisted D2D Collaboration,” IEEE Journal on Selected
Areas in Communications, vol. 34, no. 12, pp. 3887–3901, 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 12

[7] J. Xu, L. Chen, and P. Zhou, “Joint Service Caching and Task
Offloading for Mobile Edge Computing in Dense Networks,” in
IEEE INFOCOM Conf. on Computer Comm. IEEE, 2018, pp. 207–
215.

[8] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng,
and B. Hu, “Energy-Latency Tradeoff for Energy-aware Offloading
in Mobile Edge Computing Networks,” IEEE Internet of Things
Journal, vol. 5, no. 4, pp. 2633–2645, 2017.

[9] L. Chen, S. Zhou, and J. Xu, “Computation Peer Offloading for
Energy-Constrained Mobile Edge Computing in Small-Cell Net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[10] L. Gu, J. Cai, D. Zeng, Y. Zhang, H. Jin, and W. Dai, “Energy
Efficient Task Allocation and Energy Scheduling in Green Energy
Powered Edge Computing,” Future Gen. Com. Sys., vol. 95, pp.
89–99, 2019.

[11] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.-T. Zhou,
“MEETS: Maximal Energy Efficient Task Scheduling in Homoge-
neous Fog Networks,” IEEE Internet of Things Journal, vol. 5, no. 5,
pp. 4076–4087, 2018.

[12] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Hybrid Computation
Offloading in Fog and Cloud Networks with Non-orthogonal
Multiple Access,” in IEEE INFOCOM 2018-IEEE Conf. on Computer
Comm. Workshops. IEEE, 2018, pp. 154–159.

[13] G. Wang, W. Cai, Y. Zhang, K. Zhao, and X. Xu, “Lyapunov
Optimization Based Online Energy Flow Control for Multi-energy
Community Microgrids,” in 2019 IEEE PES GTD Grand Interna-
tional Conference and Exposition Asia (GTD Asia). IEEE, 2019, pp.
706–711.

[14] T. Mori, Y. Utsunomiya, X. Tian, and T. Okuda, “Queueing the-
oretic approach to job assignment strategy considering various
inter-arrival of job in fog computing,” in 2017 19th Asia-Pacific
Network Operations and Management Symposium (APNOMS). IEEE,
2017, pp. 151–156.

[15] S. Pan and Y. Chen, “Energy-Optimal Scheduling of Mobile
Cloud Computing Based on a Modified Lyapunov Optimization
Method,” IEEE Transactions on Green Communications and Network-
ing, vol. 3, no. 1, pp. 227–235, 2019.

[16] X. Wang, K. Wang, S. Wu, S. Di, H. Jin, K. Yang, and S. Ou,
“Dynamic Resource Scheduling in Mobile Edge Cloud with Cloud
Radio Access Network,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 29, no. 11, pp. 2429–2445, 2018.

[17] M. Mukherjee, M. Guo, J. Lloret, R. Iqbal, and Q. Zhang,
“Deadline-Aware Fair Scheduling for Offloaded Tasks in Fog
Computing With Inter-Fog Dependency,” IEEE Communications
Letters, vol. 24, no. 2, pp. 307–311, 2019.

[18] L. Li, Q. Guan, L. Jin, and M. Guo, “Resource Allocation and Task
Offloading for Heterogeneous Real-time Tasks with Uncertain
duration time in a Fog Queueing System,” IEEE Access, vol. 7,
pp. 9912–9925, 2019.

[19] Q. Fan and N. Ansari, “Workload Allocation in Hierarchical
cloudlet Networks,” IEEE Comm. Letters, vol. 22, no. 4, pp. 820–
823, 2018.

[20] J. Kumar, A. Malik, S. K. Dhurandher, and P. Nicopolitidis,
“Demand-based Computation Offloading Framework for Mobile
Devices,” IEEE Systems Journal, vol. 12, no. 4, pp. 3693–3702, 2017.

[21] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiob-
jective Optimization for Computation Offloading in Fog Comput-
ing,” IEEE Internet of Things Journal, vol. 5, no. 1, pp. 283–294, 2017.

[22] Y. Nan, W. Li, W. Bao, F. C. Delicato, P. F. Pires, Y. Dou, and A. Y.
Zomaya, “Adaptive Energy-aware Computation Offloading for
Cloud of Things Systems,” IEEE Access, vol. 5, pp. 23 947–23 957,
2017.

[23] S. Pan and Y. Chen, “Energy-Optimal Scheduling of Mobile
Cloud Computing Based on a Modified Lyapunov Optimization
Method,” IEEE Transactions on Green Communications and Network-
ing, vol. 3, no. 1, pp. 227–235, 2018.

[24] M. Adhikari and H. Gianey, “Energy efficient offloading strategy
in fog-cloud environment for IoT applications,” Internet of Things,
vol. 6, p. 100053, 2019.

[25] M. Adhikari, S. N. Srirama, and T. Amgoth, “Application Offload-
ing strategy for Hierarchical Fog Environment Through Swarm
Optimization,” IEEE Internet of Things Journal, vol. 7, no. 5, pp.
4317–4328, 2019.

[26] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Lyapunov Optimization
for Energy Harvesting Wireless Sensor Communications,” IEEE
Internet of Things Journal, vol. 5, no. 3, pp. 1947–1956, 2018.

[27] M. Liwang, Z. Gao, S. Hosseinalipour, and H. Dai, “Multi-task
offloading over vehicular clouds under graph-based representa-
tion,” arXiv preprint arXiv:1912.06243, 2019.

[28] M. Adhikari, M. Mukherjee, and S. N. Srirama, “DPTO: A Dead-
line and Priority-aware Task Offloading in Fog Computing Frame-
work Leveraging Multi-level Feedback Queueing,” IEEE Internet
of Things Journal, vol. 7, no. 7, pp. 5773–5782, 2019.

[29] X. Wei, C. Tang, J. Fan, and S. Subramaniam, “Joint Optimization
of Energy Consumption and Delay in Cloud-to-Thing Contin-
uum,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2325–2337,
2019.

[30] G. Zhang, W. Zhang, Y. Cao, D. Li, and L. Wang, “Energy-Delay
Tradeoff for Dynamic Offloading in Mobile-Edge Computing
System With Energy Harvesting Devices,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 10, pp. 4642–4655, 2018.

[31] M. J. Neely, “Stochastic Network Optimization with Application
to Communication and Queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[32] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading
for multi-core mobile devices,” IEEE Access, vol. 3, pp. 2306–2316,
2015.

Abhishek Hazra currently pursuing Ph.D. in
IIT(ISM) Dhanbad, India. He completed his mas-
ter’s degree in Computer Science and Engineer-
ing from NIT Manipur, India in 2018 and Bach-
elor degree from NIT Agartala, India in 2014.
He has authored and co-authored various na-
tional and international journal and conference
articles. His research area of interest is in the
field of Fog computing and Industrial Internet of
Things.

Mainak Adhikari is currently working as a
Post Doctorate Research Fellow at University
of Tartu, Estonia. He has completed his Ph.D
in Cloud Computing from IIT(ISM) Dhanbad, In-
dia in 2019. He has obtained his M.Tech. from
Kalyani University in the year 2013. He earned
his B.E. Degree from West Bengal University of
Technology in the year of 2011. He is the As-
sociate Editor of Cluster Computing Journal and
IEEE IoT Magazine and Technical Committee
member of Computer Communication Journal.

Tarachand Amgoth received B.Tech in Com-
puter Science and Engineering from JNTU, Hy-
derabad and M.Tech in Computer Science En-
gineering from NIT, Rourkela in 2002 and 2006
respectively and Ph.D. form IIT(ISM), Dhanbad
in 2015. Presently, he is working as an Assis-
tant professor in the Department of Computer
Science and Engineering, IIT(ISM), Dhanbad.
His current research interest includes Fog/Edge
computing, and Internet of Things.

Satish Narayana Srirama is an Associate Pro-
fessor at School of Computer and Information
Sciences, University of Hyderabad, India. He
was a Research Professor and the head of the
Mobile & Cloud Lab at the Institute of Computer
Science, University of Tartu, Estonia. His current
research focuses on cloud computing, mobile
cloud, IoT, Fog computing, migrating scientific
computing and large scale data analytics to the
cloud. He received his PhD in computer science
from RWTH Aachen University in 2008. He is an

IEEE Senior Member and an Editor of Wiley Software: Practice and
Experience journal.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNSE.2020.3021792

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

