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Abstract—The seamless integration of sensors and smart com-
munication technologies has led to the development of various
supporting systems for Financial Technology (FinTech). The
emergence of the Next-Generation Internet of Things (Nx-IoT)
for FinTech applications enhances the customer satisfaction ratio.
The main research challenge for FinTech applications is to
analyse the incoming tasks at the edge of the networks with
minimum delay and power consumption while increasing the pre-
diction accuracy. Motivated by the above-mentioned challenge,
in this paper, we develop a ranked-based service deployment
strategy and an Artificial Intelligence technique for financial data
analysis at edge networks. Initially, a risk-based task classification
strategy has been developed for classifying the incoming financial
tasks and providing the importance to the risk-based task for
meeting users’ satisfaction ratio. Besides that, an efficient service
deployment strategy is developed using Hall′s theorem to assign
the ranked-based financial data to the suitable edge or cloud
servers with minimum delay and power consumption. Finally,
the standard support vector machines (SVM) algorithm is used
at edge networks for analysing the financial data with higher
accuracy. The experimental results demonstrate the effectiveness
of the proposed strategy and SVM model at edge networks over
the baseline algorithms and classification models, respectively.

Index Terms—IoT; FinTech applications; Task classification;
Service deployment; Support Vector Machines; Edge networks.

I. INTRODUCTION

The Internet of Things (IoT) is a promising and emerging
technology in the Industrial domain that connects an enormous
amount of smart devices including sensors and actuators to the
network [1]. The smart devices and advanced sensors collect
the environmental parameters and transfer the data to remote
computing devices for analysis, and take appropriate action
[2]. In recent times, IoT-enabled technology has been applied
in many real-time applications including smart transportation,
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smart industry, smart grid, smart city, etc., in which smart
Financial Technology (FinTech) application has received more
attention by leveraging IoT technology [3], [4]. The emerging
phenomenon of next-generation IoT (Nx-IoT) for FinTech
application is going to reveal one of the most significant moves
towards smart worldwide economic diaspora. Using a smart
FinTech framework, the Banks and financial institutions can
provide quality services to the customers using personalized
virtual supervision by optimising the financial services with
advanced Artificial Intelligence (AI) technology [5]. In such a
scenario, the computations and communications become more
vulnerable for analysing the large volume of financial data
at remote computing devices by meeting various Quality-of-
Service (QoS) parameters. [6]–[8].

Nowadays, FinTech applications such as various Banking
services, i.e. ATMs, Bank APPs, etc. are relying on Nx-
IoT to interface with their customers and require reliable
remote computing services for analysing large-scale financial
data. In the past decades, centralized cloud servers provided
a plethora of resources for analysing financial data with
advanced AI technologies. However, the major bottleneck
faced by the cloud infrastructure is their limited scalability
and centralized architecture that increases the latency and
drops the overall performance of FinTech applications [9]. The
advancement of a new paradigm in the industrial environment
such as edge computing plays an important role in FinTech
applications by bringing the resources closer to the customers
and provides low latency and energy usage as compared to
the centralized cloud servers [10]. In practice, Banks use
the local edge devices for satisfying personalized customer
experience by processing the latency-sensitive applications
locally with minimum delay [11], [12]. For example, virtual
tellers or facial recognition technology was difficult to analyze
in the centralized cloud servers due to the high latency and
low transmission speed. In recent times, due to the edge-
centric framework of FinTech applications, the customers’
faces can be recognized instantly, receive relevant loan offer
information, delivering information to the Banking staff, etc.
with minimum delay.

A. Motivation

The main focus of the Bank and FinTech institutes is to
process or analyze the financial data, mainly the latency-
sensitive applications, namely virtual tellers or facial recog-
nition technology at the edge of the network with minimum
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delay. Besides that, due to the limited resource capacity of the
local edge devices, the computation-intensive financial data
need to be transferred to the centralized cloud servers for
analysis. Thus, two main research questions for developing
an efficient edge-centric framework for FinTech applications
are- 1. how to classify the mixed financial data as per their
importance, so that the latency-sensitive risk-based data are
analysed at local edge devices? 2. how to provide the services
for the classified data, so that the risk-based data are analyzed
at local edge devices with minimum delay and energy usage?
Besides that, 3. finding a suitable classification model to
analyze the financial data at the edge of the networks with the
minimum set of data with higher accuracy is another important
research challenge? Nowadays, FinTech applications generate
a huge volume of financial data at an exponential rate from the
next-generation IoT devices, customers, Banks, and insurance
sectors, etc. One of the major critical tasks in financial indus-
tries is to predict the credit risks of legal clients and detect and
prevent fraudulent activities. The traditional risk assessment
techniques used in the financial sectors are costly and time-
consuming to process labor-intensive tasks and cannot handle
the large volume of financial data.

B. Related Work

To tackle the aforementioned issues, several research works
have focused on service deployment and resource provisioning
in edge networks. To provide a network service across multiple
domains, a chain-based network deployment strategy has been
introduced in [13]. This strategy aims to reduce the cost and
latency using the virtual network function. Similarly, in [14],
a collaborative service deployment and assignment scheme
has been proposed in edge networks. The integrated resource
provisioning model has been designed to seamlessly provide
services across the edge servers and cloud server in [15].
This method effectively considered various service demands
from the users and dynamically schedules the incoming tasks
to achieve efficient service deployment. In [16], an energy-
efficient task allocation scheme for a mobile cloud system
has been designed to minimize the power consumption of the
computing servers while meeting the deadline.

Authors in [6] have developed a 6G-aware fog federation
model to effectively schedule the resources in fog networks
using a non-cooperative Stackelberg game theory with min-
imum service costs while maximizing the users’ satisfaction
ratio. To balance the power consumption and delay tradeoff
between the mobile devices and computing servers, three
queuing models have been applied in [17] that find the optimal
uploading probability and transmit power for each server. The
energy-efficient multitasking strategy has been proposed at
multi-access mobile edge computing networks in [18] that
minimized the total power consumption of the computing
devices with a suitable scheduling order. Further, a joint
optimization problem has been formulated in [19] to minimize
the power consumption and delay of the incoming tasks using
a weighted function.

In [20], authors have evaluated the series of Machine Learn-
ing (ML) models over credit card fraud detection datasets to

find the best classification model concerning the type of frauds.
The various ML classification models have been investigated
over different financial datasets in [21] to resolve the issue
of the data imbalance. Authors in [22] have studied the ML
classification models in various financial institutions include
credit rating, bankruptcy prediction, and fraud detection. In
[23], authors have developed an automated insurance predic-
tion system to reduce human interaction, secure the insurance
activities, notify risky customers, and detect fraudulent claims.
In [24], the authors have revealed the classification models in-
effectively only when the financial data are highly imbalanced.
Authors in [25] have considered the Random Forest algorithm
to classify the churned customers using two datasets with
higher prediction accuracy. Therefore, the critical challenge
for analysing the FinTech applications at the edge level is
to distribute the incoming tasks on the local edge devices
or centralized cloud servers as per their importance through
an efficient service deployment and prediction strategy with
higher accuracy. Considering these challenges as a motivation,
we design an efficient ranked-based service deployment strat-
egy for predictive analysis of FinTech applications with SVM
algorithm at edge networks for achieving higher prediction
accuracy and minimum delay.

C. Contributions

Our main contributions of the Ranked-Based Service De-
ployment (RBSD) strategy for predictive analysis of the Fin-
Tech applications at edge networks are summarized as follows.
• Design a new ranked-based strategy for classifying the

incoming financial tasks at the edge of the network
such as risk-based and nonrisk-based tasks as per their
priority. Such a classification aids for analysing the risk-
based financial data at the distributed edge devices with
minimum delay and higher accuracy.

• Devise a service deployment strategy with a perfect
matching theorem in Graph theory, i.e., Hall′s theorem
for distributing the ranked-based tasks to the remote
computing devices. Hall′s theorem is used to find a
perfect matching between the ranked-based tasks and the
active set of computing devices for minimizing power
consumption at networks.

• Introduce a standard SVM classification model for
analysing the ranked-based tasks at the edge networks
using a real dataset with higher accuracy and precision.
The SVM model uses a small-scale dataset for risk
prediction at the edge level, whereas a large-scale dataset
is used for prediction at the cloud level with minimum
error.

• Extensive simulation results demonstrate the effectiveness
of the proposed RBSD strategy at edge networks for
FinTech applications in terms of average delay and power
consumption. Besides that, the standard SVM technique
demonstrates the effectiveness of analysing financial tasks
with real datasets at edge networks over standard classi-
fication models in terms of accuracy and precision.

The remaining sections of the paper are organized as follows.
Section II highlights the system model followed by the prob-
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Fig. 1. Edge Framework for Predictive Analysis of FinTech Applications

lem formulation of edge networks for FinTech applications.
The proposed service deployment strategy for predictive anal-
ysis of FinTech applications is discussed in Section III. The
empirical evaluations of the proposed methodology over the
existing ones are elaborated in Section IV. Finally, Section V
concludes the work and highlights future directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the proposed edge-centric service
deployment framework for predictive analysis of FinTech IoT
applications followed by the problem formulation.

A. System Model

The proposed edge-centric service deployment framework
for FinTech applications is depicted in Fig. 1. This net-
work is constructed with a set of edge servers S =
{S1, S2, S3, . . . , Sd} and finite number of remote cloud servers
R = {R1, R2, R3, . . . , Ro}. The computing servers are
highly capable to process the large amount of financial
data, collected from the set of FinTech IoT devices D =
{D1, D2, D3, . . . , Df}. These devices seamlessly generate the
financial tasks T = {T1, T2, . . . , Tf} with various degrees
of importance including risk-based (R) and non-risk (NR)
financial tasks, i.e., (T ∈ (R ∪ NR)). Further, the financial
tasks are processed either locally or transmitted to the remote
computing servers for further predictions through a set of
gateway devices G, denoted as G = {G1, G2, . . . , Gd}. The
local gateway devices are responsible for task ranking and
service deployment decisions over the received data. Due to in-
efficient processing capacity (τCPUend ) and power consumption
(PCPUend ), the efficiency of these two metrics for IoT devices
are always less than the edge and cloud servers. Likewise,
the CPU capacity and power consumption of an edge device
(τCPUedge , PCPUedge ) should be less than the remote cloud server
(τCPUcloud , PCPUcloud ).

In this network, the set of local edge devices and remote
cloud servers are represented as SR = (S ∪ R). The edge-
centric network cogitates that the ith risk-based financial task,
referred to as TRi , is assigned to the local edge devices.

Similarly, the nonrisk-based financial task, referred to as TNRi ,
is deployed to the remote cloud servers. The input and output
size of each task are denoted as T ini and T outi , respectively.
For instance, the task assignment probability X(i, j) is stated
that the assignment of a financial task i to the jth computing
device, ∀j ∈ (D ∪ SR). In this scenario, the value of task
assignment probability X(i, j) is 1, if ith task is assigned to
the jth computing device, where ∀j ∈ (D ∪ SR), otherwise
X(i, j) is 0. Therefore, this work mainly focuses to investigate
the impact of both power consumption and delay of financial
tasks in three different operational modes including financial
task uploading, downloading, and processing.

B. Local Execution Mode

The local FinTech IoT devices have limited power, and
CPU frequency (τCPUi ). For instance, the ith task can process
locally when the required CPU frequency of the incoming task
is less than or equal to the available CPU capacity of the local
IoT device. The total time required to execute the ith task in
jth IoT device is expressed as follows.

PRij = X(i, j)× T ini
τCPUi

: ∀i ∈ T , j ∈ D (1)

Processing the task at local IoT devices depends on CPU
frequency instead of the communication delay. Let us consider
that the required power to process a 1-bit task at jth IoT device
is defined as PCPUj . Thus, the overall power consumed by the
task i at jth IoT device is computed as follows.

P procij = X(i, j)× T ini
τCPUi

× PCPUj : ∀i ∈ T , j ∈ D (2)

C. Remote Execution Mode

Due to the limited processing and storage capacity of the
FinTech IoT devices, the large volume of financial tasks T
is directly uploaded to the remote edge or cloud servers
for further predictions. Therefore, the total time required
to process the financial tasks at remote computing devices
depends on the uploading, downloading, and processing time.
For instance, if a task i is assigned to the jth computing
device, i.e., ∀i ∈ T , j ∈ (S,R), then, the transmission rate
of the ith task to jth computing device is defined as γupij =

Win
ij log(1 + Pupj ×

δpower
i

α2
i

). Here, Win
ij indicates the channel

utilization factor between the ith IoT device and jth computing
device. α2

i and PUPj represent the Additive White Gaussian
Noise of the local IoT device and the transmission power
to offload the task to the jth computing device, respectively.
Thus, the total transmission time required to upload the task
to the remote computing device can be formulated as follows.

Tupij = X(i, j)× T ini
γupij

: ∀i ∈ T , j ∈ (S,R) (3)

Consequently, the uploading power consumption (Pupij ) of
ith financial task to jth remote computing device is expressed
as follows.
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Pupij = Tupij × P
up
j : ∀i ∈ T , j ∈ (S,R) (4)

The total time required to execute a task i ∀i ∈ (T Ri , T NRi )
on the jth remote computing device ∀j ∈ (S,R) is defined
as follows.

Pij =



µRkj ×X(i, j)× T in
i

TCPU
i

if, Ti ∈ T Ri , j ∈ S

µNRkj ×X(i, j)× T in
i

TCPU
i

if, Ti ∈ T NRi , j ∈ S

(1− µRkj)×X(i, j)× T in
i

TCPU
i

if, Ti ∈ T Ri , j ∈ R

(1− µNRkj )×X(i, j)× T in
i

TCPU
i

if, Ti ∈ T NRi , j ∈ R
(5)

The arrival rate of the financial task on the remote edge and
cloud servers are represented as λedgei and λcloudi , respectively.
Further, the waiting time lij of ith task before assigning to the
jth computing device is defined as follows.

lij = λedgei

T in2i

τCPUi

(τCPUi − λedgei × T ini ) : j ∈ (S,R) (6)

The total execution delay of the ith task on jth computing
device at time t is expressed as l(t) =

∑q
i=1 lij . Let PCPUj

represents the processing power to process 1-bit data at remote
computing device. Thus, the total consumed power to process
ith task on the jth remote computing device is measured as
follows.

P procij = Pij × PCPUj : ∀i ∈ T , j ∈ (S,R) (7)

Let σpowerj represents the channel power gain of jth com-
puting device. W out

ij and δpowerj denote the channel utilization
between remote jth computing device to ith IoT device
and required transmission power of jth remote computing
device. Thus, the power consumption of ith task during the
downloading process (γdownji ) is defined as follows.

γdownji =Wout
ij log(1+P downj ×

δpowerj

α2
j

) : ∀i ∈ T , j ∈ (S,R)

(8)
Where α2

j denotes the Gaussian noise ratio on the jth remote
computing device. The downloading time T downji from jth
computing device to the ith IoT device is defined as follows.

T downij = X(j, i)× T outi

γdownji

: ∀i ∈ T , j ∈ (S,R) (9)

Subsequently, the downloading power consumption of ith
financial task is computed as follows.

P downij = X(i, j)×T outi ×
P downj

W out
ij × log(1 + P downj × δpower

j

α2
j

)

(10)
The total power consumption of a financial task i during

computation at jth remote computing device is measured as
follows.

P totalij = (Pupij + P procij + P downji ) (11)

Therefore, the total power consumption (P totalij (t)) of a
financial task i during uploading, processing, and downloading
to the jth computing device at time t is expressed as follows.

P totalij (t) = (Pupij (t) + P procij (t) + P downij (t)) (12)

D. Problem Formulation

The main goal of this work is to minimize the power
consumption and delay of the financial tasks in three different
modes such as uploading, processing and downloading phase.
If a financial task is assigned to the local IoT device D, then
the total power consumed (i.e. P totalij ) by the ith financial
task is equal to the processing power (P procij ) in the local
IoT device. However, if the i is assied to the local edge
or remote cloud server j, then the total power consumption
(P totalij ) by the task i depends on the uploading power Pupij ,
downloading power P procij and processing power P procij , i.e.,
P totalij = (Pupij + P procij + P downij ). The objective function of
the work with necessary constraints are formulated as follows.

minimize

n∑
i=1

P totalij (t) (13a)

subject to P totalij (t) ≤ ηmaxj , j ∈ (S ∪R) , (13b)

lij(t) ≤ lmaxj , j ∈ (S ∪R); , (13c)

τCPUi (t) ≤ τmaxi , j ∈ (S ∪R); , (13d)
(|T |)∑
i=1

|SR|∑
j=1

X(i, j) ≤ |S ∪ R|; , (13e)

(|T |)∑
j=1

X(i, j) = 1; (13f)

From the above problem formulation, constraints (13b) and
(13c) state the total power consumption and delay of a finan-
cial task i should be less than or equal to the maximum power
consumption ηmaxj and delay lmaxij , respectively. According
to the constraint (13d), the required CPU frequency of ith
financial task should be less than or equal to the selected
computing device j. (13e) represents the active number of
remote computing devices in the network. Finally, constraints
(13f) states that each financial task should be assigned at most
one computing device at time t.

III. RANKED-BASED SERVICE DEPLOYMENT STRATEGY

This section presents an effective Ranked-Based Service
Deployment (RBSD) strategy for FinTech IoT applications
at edge networks. Initially, the incoming tasks from various
FinTech IoT devices are ranked according to their importance
and priorities. Then, the ranked financial tasks are assigned to
the suitable computing devices for further analysis.

A. Ranked-based Task Classification

In the ranked-based classification model, the incoming fi-
nancial tasks from the IoT devices are classified based on their
degrees of importance and service requirements. Subsequently,
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the ranked tasks are placed into the buffers of a local gateway
device for making further decisions. To get instant response
from the local edge devices, the rank index (η) factor is
introduced to identify the importance of the financial tasks
and locate them according to the non-decreasing order. We
consider η is a priority threshold value to classify the severity
of incoming financial tasks. With the help of (η) value, the
financial tasks are effectively categorized into two types, risk-
based (R) and non-risk-based (NR) tasks, represented as TRi
and TNRi , respectively. The value 0 and 1 indicates the types
of the incoming task, i.e., 0 represents risk-based task TRi and
1 represents the non-risk-based task TNRi .

In this way, the proposed RBSD strategy satisfies the follow-
ing two constraints: (i) a task Ti is called a risk-based task if
η(Ti) ≥ 0.5 or (ii) a non-risk-based task if η(Ti) < 0.5. Based
on the ranking orders, the risk-based tasks are placed into the
risk-based buffer ωRi (t), if Ti ∈ TRi or to the non-risk based
buffer ωNRi (t), if Ti ∈ TNRi . The systematic workflow of the
ranked-based classification model is illustrated in Fig. 2. In
this model, the arrival rate of financial tasks are symbolically
represented using a Poisson process with the density function
f(t) = λei − λti. The parameters λi and φjk denote the
financial task arrival rate and the task uploading probability
from jth IoT device to the kth gateway device, respectively.
The offloading decisions at the kth gateway device is defined
as λremjk = φjk × λi,∀j ∈ D. Thus, the arrival rate of the ith
task for processing locally on the jth IoT device is formulated
as follows.

λlocalij = (1− φjk)× λi (14)

The arrival rate of the set of financial tasks (σjk ) under
a risk-based buffer of kth local gateway device is defined as
follows.

λRjk = σjk × λremjk (15)

Similarly, the remaining set of financial tasks that arrive un-
der a non-risk-based buffer of kth gateway device is expressed
as follows.

λNRjk = (1− σjk)× λremjk (16)

The probabilities of assigning risk-based and non-risk-based
financial tasks to the jth computing device are expressed as
µRkj and µNRkj , respectively. Thus, the arrival rate of the ith task
from the kth gateway device to the jth edge device, ∀j ∈ S
is expressed as follows.

λedgei = µRkj × λRjk + µNRkj × λNRjk (17)

= µRkj × σjk × λremjk + µNRkj × (1− σjk)× λremjk (18)

Similarly, the task arrival rate of the ith task to the jth
remote cloud server, ∀j ∈ R from kth gateway device is
represented as follows.

λcloudi = (1− µRkj)× λRjk + (1− µNRkj )× λNRjk (19)

= (1− µRkj)× σjk × λremjk + (1− µNRkj )× (1− σjk)× λremjk
(20)

The total arrival rate of risk-based (i.e.
∑

(j∈I) ω
R
i (t)λ

R
i )

and non-risk-based financial tasks (i.e.
∑

(j∈J) ω
NR
j (t)λNRj ),

and service rate (µij) at the local buffer of the gateway device

Fig. 2. Workflow of Ranked-based Task Classification

do not create much impact on financial tasks uploading and
downloading decisions at time t. Further, the power-efficient
task uploading decisions can be achieved using the following
function.

βoutTi
(t) = minimize

∑
j∈S,R

(T ini × P
up
j )

W in
ij

+

PCPUj × T ini
τCPUi

+
(T outi × P downj )

W out
ji

+∑
i

∈ IωRi (t)× µi(t)−
∑
j

∈ JωNi R(t)× µj(t)

Based on the above formulation it is proved that the ranked-
based classification model satisfies the power consumption
and delay constraints (from (13a)-(13h)) in the edge networks.
Next, the classified tasks are assigned to the suitable remote
computing devices for further analysis using a perfect match-
ing algorithm.

B. Service Deployment Strategy with Perfect Matching

This section discusses the proposed service deployment
strategy with a perfect matching theorem for assigning the
ranked-based tasks of the FinTech IoT applications to suitable
remote computing devices for further prediction while mini-
mizing the power consumption and delay. To map the ranked
financial tasks with the active set of computing servers, a
well-known perfect matching theorem in Graph theory, namely
Hall′s theorem is considered in edge networks. Mathemati-
cally, the perfect mapping function is expressed as P : Ti → C
between the ranked task set T and the computing devices
c using a link weight function F : Q → R+ ∪ ∞. In
this model, the weight function Fij between the ranked task
Ti and computing server Cj always depends on the total
power consumption (P totalij ). Constantly, the gateway device
produces a new set of ranked financial tasks concerning the
availability of the active set of computing devices.

The Hall′s perfect matching theorem for FinTech IoT
applications at the local gateway device is depicted in Fig.
3. The decision making graph is constructed using hall’s
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Fig. 3. Service Deployment with Perfect Matching Theorem

complete bipartite graph G (M,N), which consists of set of
vertices and dummy edges with a positive link weight∞ in the
form of power consumption. In this graph, the ranked-based
task assignment starts with a dual matching solution such that
Dj = 0,∀j ∈ C and Di = MIN(Fij) : Nij ∈ K(i),∀i ∈ T .
This condition states that the tight edges N ′ has at least one
perfect matching in subgraph G′, defined as Fij = Di+Dj . If
there is no matching N ′, then the dual value of corresponding
Hall′s financial tasks set is modified by adding a constant
value K to Ti and subtracting the value K from Cj , referred
as Di = Di +K and Dj = Dj −K, respectively.

In a given task assignment graph G = (M,N) with
bi-partition (T,C), where M = (T ∪ C) and a perfect
matching function P : T → C such that G assigns set of
all ranked-based tasks T in each time frame if and only if
|X| ≥ |B(X)|, where X ⊆ T and B(X) = (h ∈ C|C =
(S ∪ R), (T,C) ∈ Q, and ∀T ∈ X). Let us consider that
X = (T1, T2, T3, T4), X ⊆ T , then B(X) = B(T1) ∪
B(T2)∪B(T3)∪B(T4) = (C1, C2, C3, C4). Hence, the Hall′s
condition is satisfied with |X| ≤ |B(X)|, where X is the set
of all possible combination of tasks in the financial task set T .
The condition |X| ≤ |B(X)| denotes that all the subsets of T
are mapped when there exists a mapping from financial tasks
to the corresponding computing devices. Therefore, Hall′s
condition is satisfied and the graph G has saturated matching
from task T to the edge device S.

As shown in Fig. 3, the financial task T2 is perfectly
matched with C2, and T3 is matched with C3. However, for
task T3, there is no tight matching in the set C, which indicates
that among the tight edges in N ′ both the task T2 and T3
have a perfect matching. Furthermore, for a task T1, there is
a Hall′s set, i.e., T1∪T3. Accordingly, the ranked-based task
assignment graph needs to be modified using the dual value,
so the sub-graph G′ extends with untight edges until a perfect
match is found. For this purpose, the sub-graph G′ is modified
by adding the value of K in the financial task set T and
removing K from the set C. Based on the perfect matching
theorem, each ranked task Ti is assigned or mapped to at most
one remote computing device Cj , which ensures the financial
task assignment constraint (13d). Finally, all the ranked-based
financial tasks are assigned to the suitable edge devices based
on their perfect matching order. Furthermore, the proposed
service deployment strategy decreases the computation and
communication overhead of the network by assigning the

Algorithm 1: Ranked-based Service Deployment

1 INPUT: Rank index factor: η, Incoming tasks: Ti, Set
of computing servers:C ← (S ∪R), Risk based
buffer: ωRi

2 OUTPUT: Classify and assign the incoming tasks to
the suitable computing servers using η
1: for i:1 to n do
2: Assign rank index factor η to the incoming tasks
3: if A task ωNRi ← TNRi ≤ η then
4: Assign a TNi R to non-risk-based buffer ωNRi
5: end if
6: if A task ωRi ← TRi ≥ η then
7: Assign a TRi to risk-based buffer ωRi
8: end if
9: Assign ranked tasks to the suitable C using Perfect

matching
10: if |X| ≤ |B(X)|) then
11: Graph has a saturated matching of Ti
12: end if
13: if |X| ≥ |B(X)|) then
14: Find matching from N ′ Where (Fij = Di −Dj);
15: Modify Di = Di + k, ∀i ∈ T
16: Modify Dj = Dj + k, ∀i ∈ T
17: Update the value of tight edges N ′ based the

matching function F
18: end if
19: Assign risk based financial tasks TRi to the edge

server Sj
20: end for
21: for All ranked tasks Tij ∈ ωNRj do
22: Assign non-risk based financial tasks TNRi to the

remote cloud server Rj
23: end for
24: Return a perfect mapping function

nonrisk-based tasks to the remote cloud servers while finding a
maximum matching between the ranked-based tasks and local
edge devices. The systematic procedures of the ranked-based
service deployment strategy are depicted in Algorithm 1.

C. Predictive Analysis at Edge Networks

The huge volume of data, collected from various Fin-
Tech applications through Nx-IoT demands instant decisions
and service requirements from the banking or financial sec-
tors. However, most of the financial industries still pro-
cess customer-related information using traditional or manual
screening and analytic tools. Due to the digital transformation
of financial data using Nx-IoT, the instant prediction and
identification of cybercriminals and frauds are challenging
tasks in financial industries. Thus, the financial industries
must require an intelligent predictive and analytical model
to deal with them. Besides that, the transmission of mixed
types of financial data from FinTech IoT devices to the remote
cloud server increases the delay and power consumption of
the customer service requirements. In such cases, instigating
predictive analytic models at the local edge devices helps to
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analyze, and identify the huge volume of risk-based financial
data and provide instant services closer to the customers with
minimum delays and errors.

Based on these perceptions, various machine learning clas-
sification models such as Logistic Regression (LR), Decision
Trees (DT), Support Vector Machine (SVM), and Random
Forest (RF) have been studied and validated using different
real-time financial datasets. However, the proposed edge-
centric predictive analysis considers the SVM model as the
baseline model to effectively analyze and estimate the banking
crises with higher accuracy over other classification models.
The reason behind selecting the SVM classification model is
that the SVM model is capable to handle high-dimensional
financial data and improves significant accuracy with less
computation power [26], [27]. Further, to estimate the decision
function with minimum error, the SVM model uses a linear
model with a non-linear boundaries class based on support
vectors. In the proposed strategy, with the help of the SVM
classification model, the ranked-based tasks are analyzed and
predicted at the resource-constraints edge devices to get an
instant response and enhance the service requirements of the
customers. Similarly, the non-risk-based tasks are analysed at
the remote cloud server for future predictions.

IV. EMPIRICAL EVALUATION

This section briefly discusses the empirical evaluation of
the proposed ranked-based classification model and service
deployment strategy in edge networks. The proposed edge-
centric FinTech framework is quantified and validated concern-
ing average delay and power consumption. To verify the ability
of the edge-centric framework, we compare the proposed
framework with two baseline schemes such as CoISDA [14]
and OSP [15]. Further, the predictive classification model,
i.e., the SVM technique is applied over the financial tasks
at both edge and cloud server to prove the superiority of the
proposed framework and the results are compared with the
state-of-the-art models including LR [28], DT [29], and RF,
[30]. Further, different validation metrics including accuracy,
precision, recall, and F1 score are considered to find the
effectiveness of the SVM classification models for financial
risk predictions.

A. Experimental Setup and Dataset
The proposed strategy has been implemented on Intel Core

i7-8550U Quad-Core CPU with 12GB RAM using Ubuntu
LTS operating system. The simulation test parameters are
summarized in Table I. The edge network consists of 500
FinTech IoT devices that generate 500 tasks/sec in each
timestamp. Here, the maximum data transmission rate is fixed
to 2.5 Mb/s, the range of input task size is T ini is [50kb-
10Mb], and the financial task arrival rate on the edge devices
λedgei is 0.125 and the remote cloud server λcloudi is 0.25.
Here, the ranked-based financial tasks are analyzed using real
datasets such as credit card fraud prediction (D1)1, credit
card risk prediction (D2)2, Customer Churn Prediction (D3)3,

1https://www.kaggle.com/nandini1999/credit-card-fraud-detection
2https://www.kaggle.com/kabure/predicting-credit-risk-model-pipeline
3https://www.kaggle.com/kmalit/bank-customer-churn-prediction

TABLE I
SIMULATION PARAMETERS

Parameters Values
Number of IoT devices (D) 500
Number of Edge devices (S) 20
Number of cloud servers (R) 2

Number of gateway devices (G) 2
Average number of incoming data (λi) 500 [tasks/sec]

Maximum channel bandwidth (W) 20 MHz
CPU frequency of IoT devices (τCPU

i ) 10 × 105 [cycles/sec]
CPU frequency of edge devices (τCPU

e ) 20 × 110 [cycles/sec]
CPU frequency of cloud servers (τCPU

c ) 30 × 120 [cycles/sec]
CPU processing power usage (PCPU ) 0.5 Joules

Transmission power of IoT devices (T I ) 1 mW

and Insurance Claim Prediction (D4)4. Table II contains the
summary of FinTech datasets and their properties for edge-
cloud level analysis.

B. Simulation Results

The simulation results of the proposed service deployment
strategy are evaluated in two different phases such as commu-
nication and computation, respectively. In the first phase, the
delay and power consumption of the incoming financial tasks
have been analyzed in edge networks. Likewise, the prediction
accuracy of the classification models has been tested and
validated in the computation phase. The quantitative results of
the proposed strategy are concisely described in the following
subsections.

1) Analysis of Delay: Fig. 4 shows the impact of task
assignment over the delay in edge networks. The delay of
the financial task depends on the processing, uploading, and
downloading time while assigning to the remote computing
devices. The delay variation of the risk-based tasks is 29.6
ms, which is lower than the non-risk-based tasks (41.2 ms),
as depicted in Fig. 4(a). Moreover, the rank index factor η is
introduced to classify the incoming financial tasks based on the
different order of severity. Fig. 4(b) presents the comparative
analysis of the average delay of the proposed RBSD with
the baseline schemes. From the analysis, it is noticed that
the average delay of the baseline schemes, i.e., CoISDA
(37.2 ms) and OSP (46.9 ms) is increased while varying
task arrival rate, which is higher than the proposed RBSD
strategy (19.4 ms). The main reason behind that the existing
schemes do not consider any ranking model to classify the
incoming financial tasks based on their importance and assign
them to suitable computing devices. However, the proposed
RBSD method used a ranked-based classification model and an
efficient service deployment strategy for analysing the FinTech
tasks at the edge of the networks, which reduces the delay. The
proposed RBSD strategy has minimized the delay by 17.8%
and 27.5% over CoISDA and OSP, respectively.

2) Analysis of Power Consumption : The impact of power
consumption during the financial task assignment from the
IoT devices to the remote computing devices through a local
gateway is shown in Fig. 5. From Fig. 5(a), it is noted that
the total required power of the IoT device (24.53 mW ) is

4https://www.kaggle.com/saikrishna223/insuranceclaimprediction
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TABLE II
SUMMARY OF FINTECH DATASETS AND THEIR PROPERTIES FOR EDGE-CLOUD LEVEL ANALYSIS

Level of Analysis Dataset(s) No of Instances No of Attributes Purpose

Edge Server D1 284808 31 Credit Card Fraud Detection
D2 1000 20 Credit Card Risk Prediction

Cloud Server D3 1000 14 Customer Churn Prediction
D4 1338 8 Insurance Claim Prediction

(a) (b)

Fig. 4. The impact of task assignment over delay (a) Various financial tasks
(b) Comparative analysis with baseline schemes

(a) (b)

Fig. 5. The impact of task assignment over power consumption (a) Various
financial tasks (b) Comparative analysis with baseline schemes

less than the distributed edge devices (33.67 mW ) or remote
cloud servers (46.82 mW ) while task analysis. However, the
total power consumption of the financial tasks depends on the
uploading, downloading, and processing power. Besides that,
the long communication distance between the IoT devices
and remote computing devices can increase the uploading
and downloading time of the financial tasks, which further
increases the total power consumption. The proposed RBSD
strategy distributes the ranked-based tasks on the local edge
devices (mainly risk-based tasks), which causes communica-
tion distance and required power consumption of the FinTech
tasks. Fig. 5(b) presents the comparative analysis of average
power consumption of the proposed strategy with baseline
schemes. From the analysis, it is observed that the proposed
strategy consumes low power (29.93 mW ), while the existing
schemes CoISDA and OSP consume 37.71 mW and 43.59
mW , respectively. Moreover, the quantitative analysis results
show that RBSD outperforms over CoISDA and OSP schemes,
which reduces the power consumption by 7.7% and 13.6%,
respectively.

3) Predictive Analysis at edge level: The predictive analysis
results of various classification models at the edge devices are
listed in Table III. After uploading the risk-based financial
tasks to the local edge devices, the standard classification
models have been applied over the risk-based datasets. In the
edge-based analysis, two different types of risk-based financial
datasets (i.e. D1 and D2) are considered to validate and test
the classification models. The prediction results of standard

(a) (b)

Fig. 6. Edge Level Analysis using MLCAs (a) Prediction Results of D1 (b)
Prediction Results of D2

classification models with respect to the various performance
metrics over D1 and D2 are shown in Fig. 6(a) and Fig. 6(b),
respectively. From the analysis, it is evident that the SVM
model provides better accuracy over the standard classification
models such as LR, DT, and RF models. The SVM model
achieves 98.49% accuracy while predicting the valid and fraud
customers using the D1 dataset. However, the accuracy result
of this model is different when considering the D2 dataset
to predict the good and bad credit risk assessments. In this
case, the accuracy rate of the SVM classifier achieves 99.02%,
which is much higher than other standard classification mod-
els. Thus, SVM yields a minimum mean absolute error of 0.27
at edge level, which is less than the standard baseline models.
This is achieved by ranking and selecting more critical features
from the dataset before training the models at edge networks.

4) Predictive Analysis at cloud level: The predictive analy-
sis results of various classification models at the cloud server
are summarized in Table IV. The proposed service deployment
strategy is deployed the non-risk-based financial tasks to
the cloud server and the standard classification models have
been applied over the non-risk-based financial datasets for
further analysis. In the cloud-based analysis, two different
types of non-risk-based financial datasets (i.e. D3 and D4) are
considered to validate and test the classification models. The
prediction results of the standards classification models over
D3 and D4 are shown in Fig. 7(a) and Fig. 7(b), respectively.
From the analysis, it is observed that the accuracy of the
SVM classification model is greatly increased than the other
standard classification models. The SVM classification model
achieves 99.64% accuracy while predicting the churned and
retained banking customers using the D3 dataset. However, the
accuracy of the same model for the D4 dataset is improved by
99.26%, which predicts the status of claimed and unclaimed
insurance of the customers, which is higher than the standard
classification models. Thus, SVM yields a minimum mean
absolute error of 0.36 at cloud level, which is less than the
standard baseline models.

Also, it is noticed that the values of precision, recall, F1
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TABLE III
PREDICTION ACCURACY OF VARIOUS CLASSIFICATION MODELS IN EDGE SERVER

Edge Level Analysis
Dataset MLCA Models Fraud Detection Accuracy Precision Recall F1 Score

Valid Frauds

D1 LR 0.6645 0.5331 0.8867 0.8959 0.8362 0.8636
DT 0.5993 0.6148 0.7532 0.8642 0.7925 0.8386
RF 0.7076 0.5637 0.8387 0.7306 0.8254 0.8159

SVM 0.8228 0.7406 0.9849 0.9639 0.9356 0.9211
Dataset MLCA Models Risk Prediction Accuracy Precision Recall F1 Score

Good Bad

D2 LR 0.8711 0.6039 0.8946 0.8273 0.8306 0.8093
DT 0.6203 0.7321 0.7997 0.7527 0.6914 0.7236
RF 0.8511 0.6939 0.9246 0.8273 0.7706 0.7993

SVM 0.9062 0.8657 0.9902 0.9615 0.9558 0.9381

TABLE IV
PREDICTION ACCURACY OF VARIOUS CLASSIFICATION MODELS IN CLOUD SERVER

Cloud Level Analysis
Dataset MLCA Models Churn Prediction Accuracy Precision Recall F1 Score

Churned Retained

D3 LR 0.7939 0.6133 0.8618 0.7457 0.7822 0.7635
DT 0.5846 0.6674 0.9465 0.8769 0.9031 0.8328
RF 0.6382 0.7092 0.9013 0.7643 0.8429 0.7976

SVM 0.8915 0.8365 0.9964 0.9523 0.9241 0.9354
Dataset MLCA Models Insurance Prediction Accuracy Precision Recall F1 Score

Claimed Unclaimed

D4 LR 0.4835 0.5960 0.7953 0.8067 0.7714 0.7602
DT 0.6167 0.4928 0.8802 0.7561 0.6992 0.7353
RF 0.7522 0.6239 0.9350 0.8134 0.8519 0.8225

SVM 0.8908 0.7014 0.9626 0.9257 0.8911 0.9076

(a) (b)

Fig. 7. Cloud Level Analysis using MLCAs (a) Prediction Results of D3 (b)
Prediction Results of D4

score for all the datasets (i.e., D1-D4) show higher variations
in the SVM model, whereas other classification models yield
fewer variations for the same set of performance metrics. Thus,
the proposed ranked-based service deployment strategy along
with the SVM classification model improves the risk prediction
accuracy of the financial tasks and power consumption of the
edge networks.

V. CONCLUSION

In this paper, we have proposed a ranked-based service
deployment strategy for predictive financial data analysis at
the edge networks. The main aim of this work is to analyze
the risk-based financial task at the local edge devices with a
standard SVM algorithm for minimizing the average delay and
power consumption while maximizing the prediction accuracy.
To achieve this, a ranked-based strategy has been designed for
classifying the incoming financial tasks based on their priori-
ties. Further, a service deployment strategy has been developed
using a prefect matching theorem, i.e., Hall theorem for

assigning the classified task on the suitable remote computing
devices as per their importance. Extensive simulation results
exhibit the effectiveness of the proposed ranked-based service
deployment strategy and the SVM algorithm at edge networks
over baseline algorithms and standard classification models,
respectively. The proposed strategy minimizes 17.8%-27.5%
average delay and 7.7%-13.6% power consumption over the
baseline algorithms. Further, the SVM algorithm achieves
98.49%, and 99.02% accuracy while analysing the data at
the edge level of the network. In the future, we will enhance
the proposed strategy for FinTech application by introducing
various data aggregation and data fusion techniques at edge
networks for minimizing network overhead and achieving
higher prediction accuracy.
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