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Collaborative AI-enabled Intelligent Partial Service
Provisioning in Green Industrial Fog Networks
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Abstract—With the evolutionary development of the latency-
sensitive Industrial Internet of Things (IIoT) applications, delay
restriction becomes a critical challenge, which can be resolved
by distributing IIoT applications on nearby fog devices. Besides
that, efficient service provisioning and energy optimization are
confronting serious challenges with the ongoing expansion of
large-scale IIoT applications. However, due to insufficient re-
source availability, a single fog device cannot execute large-scale
applications completely. In such a scenario, a partial service
provisioning strategy provides a promising outcome to enable
the services on multiple fog devices or collaboration with cloud
servers. By motivating this scenario, in this paper, we introduce a
new Deep Reinforcement Learning (DRL)-enabled partial service
provisioning strategy in the green industrial fog networks. With
this strategy, multiple fog devices share the excessive workload of
an application among themselves. To reflect this, a task partition-
ing policy is introduced to partition the requested applications
into a set of independent or interdependent tasks. Further, we
develop an intelligent partial service provisioning strategy to
utilize maximum fog resources in the network. Experimental
results express the significance of the proposed strategy over the
traditional baseline algorithms in terms of energy consumption
and latency up to 25% and 16%, respectively.

Index Terms—IIoT application, industrial fog networks, partial
service provisioning, DRL, energy optimization, latency.

I. INTRODUCTION

RECENTLY, the industrial revolution has caught the at-
tention of researchers and developers toward intelligent

service provisioning of the large-scale Internet of Things (IoT)
applications by integrating Artificial Intelligence (AI) tech-
nology in fog networks. Besides that, integrating intelligent
sensors with modern industrial applications such as smart coal
mining, connected vehicles, smart cities, and a sustainable
grid can generate enormous data, attaining several challenges
while transmitting and processing in the networks. With the
advancement of fog computing, the industrial sector is revo-
lutionizing to a large extent for processing the delay-sensitive
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applications at the edge of the network by reducing delay and
energy usage [1]. At present, AI-enabled technology comes
into play for processing large-scale industrial applications at
the fog networks by distributing the applications efficiently
with an intelligent service provisioning strategy. As a result,
computation offloading and intelligent service provisioning
aids in shortening execution time and extending battery life in
IIoT devices to support the design of green industrial networks.

Thus, to utilize the computing resources efficiently of
resource-constrained fog devices and meeting the objectives of
the industrial applications, an intelligent service provisioning
strategy needs to be designed. Nowadays, researchers prefer to
design a smart service provisioning strategy with AI-enabled
technology for distributing large-scale industrial applications
over the fog networks [2]. Despite such technologies and
recent advances, there are several significant challenges in
distributing the IIoT applications in the fog networks due to
the limited resource capacity of the fog devices. Although
resource-rich cloud servers mitigate the storage and process-
ing demand to some extent, latency and energy-associated
issues for delay-sensitive industrial applications cannot be
neglected [3]. In such a scenario, a partial service provisioning
strategy with AI-enabled technology plays a critical role in
distributing the industrial applications on local fog devices
instead of transmitting them to the centralized cloud servers.

A. Related Work
In recent years, several service provisioning and offloading

strategies have been designed in fog networks to efficiently
process industrial applications while meeting various quality
of service (QoS) constraints. For example, in [4], Hazra et
al. have designed a service deployment strategy for utilizing
fog resources efficiently in the network. Furthermore, in [3],
Adhikari et al. have developed deadline-aware fair scheduling
and computation offloading strategy for delay-sensitive appli-
cations. However, binary service provisioning strategies for
large-scale industrial applications might not fully handle all
the users’ requests due to the limited resource capacity of the
fog devices [5]. Thus, to satisfy the resource requirements of
industrial applications, it is preferable to partition the appli-
cation data into a set of independent sub-tasks and distribute
them among multiple fog devices instead of transferring them
to the centralized cloud servers [6]. Existing frameworks, for
example, [7] and [8] analyze the partial data transmission of
IoT applications but fail to consider the intelligent service
provisioning mechanism in fog networks.

DRL is an emerging topic of interest from both the industry
and academia due to its high applicability in the dynamic
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industrial environment. Over the years, several attempts have
been made to incorporate DRL technology and take advantage
of self-learning capability in industrial networks. For example,
in [9], Misra et al. designed a decentralized computation
offloading framework using reinforcement learning for fog-
enabled IoT applications. Similarly, in another work [9],
Tiwari et al. designed an intelligent service provisioning
strategy for fog-based IoT applications. It can be seen that
the DRL strategy efficiently optimizes the energy and latency
constraints of sensitive IIoT applications without the explicit
human intervention [10]. However, these advancements can be
further enhanced by allowing partial service provisioning into
the industrial environment [11]. Specifically, the DRL-enabled
intelligent service provisioning strategy further helps to boost
up the distribution of excessive workload from one overloaded
fog device to another underloaded computing device.

Current research initiatives focus on standalone IIoT-
enabled fog/cloud service distribution frameworks, which are
not beneficial for large-scale industrial data processing. How-
ever, digital industrial applications mostly rely on 4K or 8K
video streaming, big data, and multimedia data streaming,
etc. Therefore, a satisfactory industrial fog network with an
effective service provisioning strategy should support exces-
sive service requests of the large-scale IIoT applications [12].
Thus, the two key challenges of partial service provisioning
in the industrial fog networks are a) how to design a task
partitioning strategy to decompose a large-scale industrial
application into a set of independent sub-tasks?, and b) how
to develop an intelligent partial service provisioning strategy
that can optimize the energy-latency trade-off by distributing
the partitioned tasks on the nearby fog devices?

B. Motivation

In standard industrial networks, IIoT devices transfer data
to the nearby fog devices through a wired/wireless channel
for optimizing energy-latency constraints. Existing fog frame-
works partially help to process IIoT applications by offering
cloud functionality near the edge devices. However, there
is still a high demand for faster processing of the large-
scale industrial applications among the local fog devices [13].
In such a scenario, the use of an intelligent partial service
provisioning strategy can be beneficial, which can partition
the large-scale IIoT applications data into some independent
set of sub-tasks and assign them to the distributed fog devices
in the network while optimizing latency-energy burden and
handle higher data traffic in the industrial network [14]. In
addition, DRL is an essential self-learning tool for under-
standing complex network behaviors and taking perspective
action by controlling the network parameters. DRL enabled
systems efficiently maximize network run-time, predict the
network downtime, self-correct the network events and reduce
network congestion. Therefore, the critical research gap in
the fog networks is to design a DRL-enabled partial service
provisioning strategy with an efficient task partitioning policy
for large-scale industrial applications.

C. Contribution

By motivating the above-mentioned challenges, in this work,
we aim to jointly optimize the energy usage and latency for the
large-scale industrial applications in the fog networks with an
efficient task partitioning and intelligent service provisioning
strategy. The foremost contributions of this work are summa-
rized as follows.

• We develop an AI-enabled framework for supporting
large-scale IIoT applications with an intelligent partial
service provisioning strategy, where a set of distributed
fog devices intelligently process the partitioned tasks at
the edge of the network with minimum energy usage.

• We formulate the proposed service provisioning strategy
as a nonlinear integer programming problem while the
objective is to minimize the service delay and energy
usage of industrial applications. Furthermore, a heuristic
task partitioning strategy is designed to deal with higher
processing delay by considering both CPU frequency and
the data transmission power of fog devices.

• Considering high congestion in the industrial environ-
ment, we devise an intelligent partial service provision-
ing strategy with a DRL-based mode to distribute the
sub-tasks intelligently and optimize the available fog
resources within minimum energy-delay consumption on
the local fog devices.

• Finally, the simulation results demonstrate the efficiency
of the proposed service provisioning strategy over the
existing baseline algorithms in terms of various perfor-
mance matrices.

The remaining sections are organized as follows. Section II
highlights the network model of industrial fog networks fol-
lowed by the problem formulation of the work. The proposed
intelligent service provisioning strategy is discussed in Sec-
tion III. Then, the empirical analysis of the proposed strategy
is elaborated in Section IV. Finally, Section V concludes the
work followed by the future research plan.

II. NETWORK MODEL

As per Fig. 1, the traditional fog framework suffers from a
lack of data co-offloading among the distributed fog devices,
which causes high processing delay. Partial service provision-
ing strategy resolves the issue of traditional fog framework
by partitioning the real-time data into several independent
tasks and distributing among the fog devices in the network
with a controlling node, namely master fog device. Here, we
consider a fog framework with a set of IIoT devices M =
{1, 2, . . . ,M} and a set of fog devices F = {1, 2, . . . , F}, are
randomly distributed over the network as presented in Fig. 1.
The master fog device belongs to set F that distributes the
partitioned tasks among the nearby fog devices for further
processing. Thus the main responsibility of the master fog
device is to partition the incoming data and distribute them
among the standard fog devices in the network, whereas the
main purpose of the standard fog devices is to process the
partitioned data independently and send the results back to
the master fog device for further decision making.
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Fog device Master fog Neighbour

Traditional Fog: In the standard fog model,
DRL basically makes task execution decisions
to the fog device or cloud server services. 

Fog-enabled Partial Service Provisioning: DRL-enabled partial
service provisioning strategy allows fog devices to share their excessive
workload to the nearby fog devices intelligently. 
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Fig. 1. Differentiation between traditional fog framework and fog-enabled
partial service provisioning framework in the industrial networks.

Additionally, a set of S = {1, 2, . . . , S} cloud servers are
deployed to reduce the excessive workload of the local fog
devices in the industrial network. Further, consider a quasi-
static network, where IIoT devices M request computing
services I = {1, 2, . . . , I} on various computing devices
CD = {F ∪S} for further processing. Let Di amount of CPU
cycle is needed to execute Bi bits of task on a computing de-
vice CD. We consider an IIoT device m ∈M, which transmits
the data to the master fog device f ∈ F through a gateway
device and requests services in the fog network with minimum
latency and energy usage. We consider γ(i,m) = {0, 1} as
a binary decision variable, where γ(i,m) = 0 represents
that services are executed in IIoT devices itself, otherwise
offload to the fog master for further processing [15]. Further,
we consider I × J as the sub-task deployment matrix Γ for
master fog device f ∈ F , where each entry Γ(i, j) ∈ [0, 1],
∀j ∈ {F ,S} represents the amount of task requested for
partial computation. To make the fog network more realistic,
we consider IIoT devices M can request multiple services I
from fog devices F [16]. Subsequently, fog devices F can
receive requests from multiple IIoT devices M and other
working fog devices F̃ .

A. Local Execution

In an industrial environment, an IIoT device m ∈M often
executes a small amount of service request i ∈ I locally.
Denote G CPU

m be the CPU frequency of the IIoT devices m ∈
M. Then the processing delay TIoT

i,m and energy consumption
EIoT
i,m to execute ith service request on the mth IIoT device

can be represented as follows.

TIoT
i,m =

γ(i,m)BiDi
G CPU
m

(1)

EIoT
i,m = γ(i,m)BiDik(G CPU

m )
2

(2)

Where i ∈ I and m ∈ M. For IIoT devices, we consider the
energy consumption model as k(G CPU

m )
2, presented in [17],

where k is the chip coefficient of the IIoT device. Let Btrans
mf

and N0 are the data transmission bandwidth and additive
gaussian noise of the fog network, respectively [3]. Thus
the uplink transmission rate Rtrans

m,f of IIoT device m ∈ M

to master fog device f ∈ F can be defined as Rtrans
m,f =

Btrans
mf log2

(
1+Ppower

m Gmf

N0

)
, where Ppower

m represents the ex-
pected transmission power of IIoT device m ∈ M in the
industrial networks.

B. Service Deployment on Master Fog Device

Initially, IIoT devices M try to execute the tasks locally,
however, limited processing capacity creates execution barrier
to IIoT devices. The uplink transmission time Tuplink

m,f for
sending a service request i ∈ I from IIoT device m ∈ M
to master fog device f ∈ F can simply be represented as
Tuplink
m,f =

(
1− γ(i,m)

)
Bi/Rtrans

m,f . As the task size Bi in-
creases, the required transmission energy Euplink

m,f also increases
and is represented as Euplink

m,f =
(
1− γ(i,m)

)
BiPpower

m /Rtrans
m,f ,

where m ∈ M and i ∈ I. Moreover, we can simply define
the time required to process ith service requests ∀i ∈ I i.e.,
execution delay Tfog

i,f on master fog device f ∈ F as follows.

Tfog
i,f =

(
1− γ(i,m)

)
BiDi

G CPU
f

(3)

Where G CPU
f be the achievable CPU frequency of the master

fog device f , ∀f ∈ F . Now, if we consider the power
consumption model for the IIoT device as k(G CPU

f )
2, then we

can calculate the total energy consumption Efog
i,f to process ith

service request on f th master fog device as follows.

Efog
i,f = (1− γ(i,m))BiDik(G CPU

f )
2

(4)

In this model, we exclude delay and energy burden for obtain-
ing the output results from master fog devices F . This is due to
the fact that downloading time and energy consumption from
fog devices F are as low as 1/30 and 5.5 times respectively,
than the uplink data transmission [17].

C. Service Deployment on Nearby Fog Device

Ideally requesting a computation service i ∈ I and transfer
a portion of generated tasks Γ(i, f̃)Bi to the nearby active
fog device f̃ ∈ F̃ can be a suitable option for reducing
overall delay. Similarly, we can derive the data uploading time
and energy consumption to nearby fog device as Tuplink

m,f̃
=

Γ(i, f̃)Bi/Rtrans
m,f̃

and Euplink
m,f̃

= Ppower
f Γ(i, f̃)Bi/Rtrans

m,f̃
, re-

spectively. Let G CPU
f̃

be the maximum CPU frequency (in

cycles/second) of the neighbour fog devices F̃ , thus the
execution delay Tfog

i,f̃
to satisfy service requests i ∈ I on the

fog device f̃ ∈ F̃ can be represented as follows.

Tfog
i,f̃

=
Γ(i, f̃)BiDi

G CPU
f̃

(5)

Thus the energy consumption rate Efog
i,f̃

to process ith service
request with κ chip coefficient on a nearby active fog device
f̃ ∈ F̃ can be expressed as follows.

Efog
i,f̃

= Γ(i, f̃)BiDik(G CPU
f̃

)
2

(6)
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D. Service Deployment on Cloud Server

Let Rtrans
m,s be the expected transmission rate of fog devices

F , then the uplink transmission delay Tuplink
m,s and energy

consumption Euplink
m,s for deploying a service request i ∈ I

from master fog device f ∈ F to cloud server s ∈ S can
be represented as Tuplink

m,s = Γ(i, s)Bi/Rtrans
m,s and Euplink

m,s =
Ppower
f Γ(i, s)Bi/Rtrans

m,s , respectively, where Ppower
f be the

transmission power of master fog device f ∈ F . Similarly,
we can derive processing delay Tcloud

i,s and energy consumption
Ecloud
i,s on the cloud server s ∈ S, defined as follows.

Tcloud
i,s =

Γ(i, s)BiDi
G CPU
s

(7)

Ecloud
i,s = Γ(i, s)BiDik(G CPU

s )
2

(8)

As the cloud servers S are capable of faster data transmis-
sion, we simply omit the result fetching delay from cloud
servers [11]. In summary, when an IIoT device m ∈ M
requests a computation service i ∈ I from remote processing
devices j, ∀j ∈ {F , F̃ ,S}, it may include transmission and
execution time and energy on various computing devices i.e.,
Tremote
i,j = Tuplink

m,f + Tfog
i,f + Tuplink

m,f̃
+ Tfog

i,f̃
+ Tuplink

m,s + Tcloud
i,s and

Eremote
i,j = Euplink

m,f + Efog
i,f + Euplink

m,f̃
+ Efog

i,f̃
+ Euplink

m,s + Ecloud
i,s .

E. Problem Formulation

In this section, we formulate the proposed energy-optimized
partial service provisioning strategy in terms of minimizing
processing delay (Ttotal

i ) and energy consumption (Etotal
i ) i.e.,

J =
∑
i∈I
(
Etotal
i + Ttotal

i

)
under the condition of local exe-

cution power gm = (G CPU
m )∀m, remote execution speed gj =

(G CPU
j )∀j , uplink transmission power p = (Ppower

m )∀m and
offloading ratio ς = (Γ(i, j))∀(i,j), ∀i ∈ I,∀j ∈ {F , F̃ ,S}.
Where Ttotal

i = TIoT
i,m + Tremote

i,j and Etotal
i = EIoT

i,m + Eremote
i,j .

Thus without the loss of generality, the optimization problem
is expressed as follows.

minimize
ς, p, gm, gj

wiJ
(

Γ(i, j),G CPU
m ,G CPU

j ,Ppower
m

)
(9a)

subject to
∑
i∈I

∑
j∈CD

Γ(i, j)BiDi ≤ Cmax, (9b)∑
i∈I

Elocal
i ≤ Emax, ∀i ∈ I, (9c)∑

i∈I
Tlocal
i ≤ Tmax, ∀i ∈ I, (9d)

The above optimization problem represents the joint optimiza-
tion of energy and delay with an associated weight wi, where
wi ∈ [0, 1]. Constraints (9b), (9c) and (9d) represent that
the total processing capacity, energy consumption and delay,
which must be bounded by threshold Cmax, Emax and Tmax

respectively.

III. AI-ENABLED SERVICE PROVISIONING STRATEGY

This section presents a brief overview of our intelligent
service provisioning strategy while minimizing energy and
latency for each service request. In order to introduce the

Maximum energy consumption

Local task execution

Service request to
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Fig. 2. Partial service deployment among the computing devices.

proposed scheme more concisely, we further divide the partial
offloading strategy into two steps, namely task partitioning and
intelligent service provisioning. The task partitioning strategy
divides the large-scale industrial data into a sequence of sub-
tasks, whereas the intelligent service provisioning strategy uses
the DRL technique for efficient workload distribution among
the computing devices, which are discussed below.

A. Task Partitioning

An essential factor for partial service provisioning is to
ascertain the suitable fraction of service request i distributed
by a master fog device, as it concerns both time consumption
for fog execution Tfog

i,f , data transmission Tuplink
i,j , nearby fog

processing Tfog
i,f̃

, and energy usage for task execution Efog
m,f and

partial service deployment time Tuplink
i,j . The task partitioning

strategy mainly depends on maximum energy consumption
Emax and maximum tolerable delay Tmax, as presented in
constraint (9c) and (9d), respectively. Therefore, the proposed
task partitioning strategy is motivated by two premises (a)
the local and remote execution should be parallel to complete
the execution of the task within the deadline Tmax [4], and
(b) the expected energy utilization for data transmission and
remote execution should be bounded by maximum energy
consumption Emax [18], as illustrated in Fig. 2.

It can be recognized that the smallest latency can be
achieved if sub-tasks execution completes in parallel on differ-
ent computing devices. Then the upper bound of total latency
on the master fog device Tfog

i,f ,∀f ∈ F can be derived from
constraint Tmax, defined as follows.(

1− γ(i,m)
)
BiDi

G CPU
f

≤ Tmax (10)

Now if a task uploaded to master fog device, then from
(10), we can derive the lower bound of γ(i,m) as

(
1 −

γ(i,m)
)
BiDi/G CPU

f = Tmax, by replacing
(
1 − γ(i,m)

)
as

Γmini,f we can define Γmini,f BiDi/G CPU
f = Tmax, which can be

simply represented as follows.

Γmini,f =
Tmax G CPU

f

BiDi
(11)
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Similarly, the upper bound of Emax for partial service provi-
sioning of tasks to the remote computing device is obtained
from Efog

i,f + Efog
i,f̃

+ Ecloud
i,s , where.

Efog
i,f + Efog

i,f̃
+ Ecloud

i,s ≤ Emax (12)

If γ(i,m) = 0, tasks are transferred to master fog device
f ∈ F and Γ(i, f) amount of task executed. Thus we can
rewrite equation (4) by replacing (1 − γ(i,m)) as Γ(i, f),
defined as follows.

Efog
i,f = Γ(i, f)BiDik(G CPU

f )
2

(13)

Moreover from equation (12), we can derive the upper bound
of partial service provisioning Γ(i, j) as Γmaxi,j , which can be
derived separately for different computing devices j, ∀j ∈
{F , f̃ ,S}, defined as follows.

Γmaxi,f =
1

BiDik(G CPU
f )2

(
Emax − Γ(i, f̃)BiDik(

G CPU
f̃

)2 − Γ(i, s)BiDik
(
G CPU
s

)2) (14)

Γmax
i,f̃

=
1

BiDik
(
G CPU
f̃

)2(Emax − Γ(i, f)BiDik

(G CPU
f )2 − Γ(i, s)BiDik

(
G CPU
s

)2) (15)

Γmaxi,s =
1

BiDik
(
G CPU
s

)2(Emax − Γ(i, f)BiDik

(G CPU
f )2 − Γ(i, f̃)BiDik

(
G CPU
f̃

)2) (16)

Theorem 1 : The optimal amount of service requests
Boptimal
i , ∀i ∈ I to be transferred to a nearby active fog device

f̃ ∈ F̃ is Boptimal
i =

(
DiBi/Di + G CPU

f βif̃
)
.

Proof : When a master fog device f ∈ F wants to partially
provide service request i ∈ I to the nearby active fog device
f̃ ∈ F̃ , it tries to transfer partial data size of a sub-task
Boptimal
i to minimize delay and increase execution speedup

such that the processing time and remote execution time at
the active fog device are equal [4], i.e., Tfog

i,f = Tuplink
m,f̃

+ Tfog
i,f̃

.
As the uploading delay is an important concern to calculate
total delay, we can define the data size of optimal task based
on the execution time of tasks in the master fog device as
Tfog
i,j = (1− γ(i,m))BiDi/G CPU

f . Let Boptimal
i be the opti-

mal amount of task offloaded to the neighbour fog device
f̃ ∈ F̃ , where 0 ≤ Boptimal

i ≤ Bi. Then replacing Boptimal
i

in Tfog
i,f = Tuplink

m,f̃
+ Tfog

i,f̃
, we obtain-

BiDi
G CPU
f

= βif̃B
optimal
i (17)

Where, βif̃ = Γ(i,f̃)
Rtrans

m,f̃

+ Γ(i,f̃)Di

G CPU
f̃

. By adding the amount of

executable data in IIoT/end-device yields-

Di(Bi − Boptimal
i )/G CPU

i = βif̃B
optimal
i (18)

By replacing the amount of executable data in master fog
device f ∈ F and neighbour fog device f̃ ∈ F̃ with optimal
offloaded data yields-

DiBi
G CPU
f

− DiB
optimal
i

G CPU
f

= βif̃B
optimal
i (19)

Algorithm 1: Task Partitioning algorithm

1 INPUT: I: Set of service requests, G CPU: Computation
frequency, Bi: Size of the service request.

2 OUTPUT: I∗: Set of new service requests
1: Initialize Cmax, G CPU

f ,G CPU
f̃

, and G CPU
s

2: for i = 1 to I do
3: if

∑
i∈I Γ(i, j)BiDi ≤ G CPU

f then
4: Do not split the service requests I
5: Execute tasks on master fog device f ∈ F
6: end if
7: Observe G CPU

f , G CPU
f̃

and G CPU
s

8: if
∑
i∈I Γ(i, j)BiDi > G CPU

f then
9: if Bi ≥ Cmax then

10: Partition into random number of sub-tasks with
Bi < G CPU

f , Bi < G CPU
f̃

and Bi < G CPU
s

11: end if
12: else Do not split the service request i, ∀i ∈ I
13: end if
14: end for
15: Return set of service requests I∗ ← I

DiBi = DiBoptimal
i + βif̃B

optimal
i G CPU

f (20)

Rearranging both the side yields of the above equation-

Boptimal
i =

DiBi
Di + G CPU

f βif̃
(21)

Thus, by uploading Boptimal
i amount of service request i ∈ I

to the neighbour fog device f̃ ∈ F̃ , master fog devices F
efficiently minimize overall end-to-end processing delay in the
industrial fog networks. This completes the proof.

At this stage, the master fog device f ∈ F checks whether
G CPU
f is suitable to process all the service requests I. If

service requests exceed capacity, then the master fog device
f selects a set of service demands and randomly partition
them into an appropriate member of independent sub tasks
Ik =

{
Ik1 , Ik2 , . . . , Ikx

}
, where k ∈ I and x ∈ CD. Then

Ik1 , Ik2 , . . . , Ikx satisfy the followings:

Ik1 ∪ Ik2 ∪ · · · ∪ Ikx = Ik (22)

Iki ∩ Ikj = φ, (1 ≤ i, j ≤ x and i 6= j) (23)

The steps of the task partitioning process are presented in
Algorithm 1. Next, the set of sub-tasks are put into the DRL-
based online learning algorithm for distributing the service
requests on various computing devices.

B. Intelligent Service Provisioning

In this section, we have presented our proposed DQN based
service provisioning strategy, which aims to select optimal
action and maximize reward to achieve our objectives in the
industrial fog networks. Initially, we discuss Reinforcement
Learning (RL) as presented in [19], then followed by the
motivation of the DQN technique, and finally, we briefly
explain the proposed intelligent service provisioning strategy.
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1) Reinforcement Learning (RL): RL technique regards
as the Markov decision-making process, as the underlying
RL environment follows the Markovian property [20]. Let
s, a, and r(st, a) are the state, action, and reward of an
environment, where an agent takes action a based on the state
s and obtains a reward r from the environment with a policy
π. Thus, the total reward, popularly known as the Q function
for a set of state-action pairs, can be expressed as follows.

Qπ(st, a) = (1− α) Q(st, a) +

α
(
r(st, a) + γ max

a′
Q′(st+1, a

′;π′)
) (24)

Where α and γ are the learning rate and decaying factor
of the Q function, respectively. To represent the proposed
strategy, we consider state s = {Γ(i, j),G CPU

f } including
fraction of task partition Γ(i, j) and computation frequency
of various computing devices G CPU

j . Action a denotes the
identical move/change of various states s. It can be noted
that the complexity of the Q function increases exponentially
with the increase in the dimension of state-action space (st, a).
Thus, a promising solution is to approximate Q-value with a
flexible number of parameters.

2) Introduction to DQN: Q-learning is a model-free learn-
ing algorithm that teaches an agent to learn the quality of
behavior under unknown environmental conditions. In Q-
learning, state-action pairs (st, a) are stored in the Q-table.
One significant limitation of the Q-learning algorithm is that
the conventional Q-learning algorithm becomes computation-
ally expensive when the entries of state-action pairs (st, a)
in the Q-table becomes large. Although, this challenge can
be handled by predicting the Q-values using replay memory
as illustrated in Fig 3, which leads to the key essence of
the DQN. A batch of previous experience/records is typically
used for training the Q-networks, and replay memory contains
each record (st, at, rt, st+1) in every step while learning
DQN. One can feed a large number of training samples for
predicting state-action pairs (st, a) accurately, which leads to
Qold(st, a, w) ≈ Q∗(st, a) [20]. In DQN, an analysis network
is used for prediction, and the resultant network is used for
labeling the network, which is defined as follows.

Qlab(st, a) = r(st, a) + γ max
a′

Qout(st+1, a
′, w′) (25)

The gradient-based algorithm is used to minimize the loss
L (Q(w)) so that weight w is modified to reduce the difference
between the expected value and the objective values.

L (Q(w)) =
(
Qlab(st, a)−Qold(st, a, w)

)2
(26)

3) Service Provisioning Strategy: The proposed service
provisioning strategy mainly considers a set of computing de-
vices CD, where fog devices F have the highest responsibility
to satisfy delay-deadline constraints as compared with cloud
servers S. In this section, we firstly transform our objective
function for the convenience of partial service provisioning,
followed by the benefit of using the DRL technique for
intelligent service provisioning.

Maximum CPU constraint Cmax on the computing devices
CD considered as the strict deadline constraints. However, in a
complex industrial application scenario, there might not be any

Learning Target

Update

Training
Path information

Mini batch
data samples

Update

State     
Action     

Reward     

Environment

Agent

Service

IIoT devices Processing devices

Offloading 
decision

Computing 
resource

State       

Fig. 3. Illustration of DRL-based service provisioning strategy.

possible set of variables that takes decisions while satisfying
both Cmax and Tmax constraints. Thus, we consider the delay
constraint Tmax as a soft deadline constraint and introduce a
penalty function P (T) to handle the deadline constraint.

P (T) =
∑
i∈I

max
[
Ttotal
i − Tmax, 0

]
(27)

Penalty functions P (.) intend to transform constrained opti-
mization problems into unconstrained problems by adding a
substitute penalty function for breaking the constraint. Thus,
the objective function J (.) for the master fog device f can
be transformed as follows.

minimize
γ, gj

wiJ
(
Γ(i, j),G CPU

j

)
+ wTP (T) (28a)

subject to
∑
i∈I

Elocal
i ≤ Emax, ∀i ∈ I, (28b)∑

i∈I
Γ(i, j)BiDi ≤ Cmax, (28c)

γ(i, j) ∈ {0} ∪ CD, ∀i ∈ I, j ∈ CD, (28d)

Where wT is the weight used for controlling the penalty
function. Based on the above formulation, we can define the
system state st, action a and reward r as follows.

1) State: To interpret the objective function, we define the
system states st at the arbitrary index of t, which is defined
as follows.

st =
{
γ(t), G (t)

}
= {γ1(t), γ2(t), . . . , γj(t),G1(t),G2(t), . . . ,Gj(t)

} (29)

In particular, the system state is a 1× 2N dimensional vector,
which includes all the partial offloading decision γ(i, j)(t) ∈
{0} ∪ CD and computing resource Gj(t) ∈ [0,G ] for all
computing devices.

2) Action: The action a is used to signify how an agent move
between two distinct system states st and st+1. Precisely, we
indicate γ′(i, j)(t) = γ(i, j)(t + 1) ∈ {0} ∪ CD as the new
service provisioning decision for a master fog device f ∈
F and ∆Gn(t) = Gn(t + 1) − Gn(t) as the variation in the
allotted service resources by the remote computing devices j.
The system actions are defined as follows.

at =
{
γ′1(t), . . . , γ′j(t),∆G1(t), . . . ,∆Gj(t)

}
(30)
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Algorithm 2: Service Provisioning algorithm

1 INPUT: I∗: Service requests, Di: Input data size,
2 OUTPUT: s∗(t): Optimal decision,

1: Initialize state-action pair Q(s, a)
2: Initialize Q network and replay memory
3: for each episode e = 1, 2, . . . , E do
4: if e mod 100 == 0 then
5: Change initial state
6: st = argmin Js(t)(t)
7: end if
8: Observe st+1 and rt from environment
9: Store (st, at, rt, st+1) into replay memory

10: Extract mini-batch samples
11: Calculate

Qlab(st, a) = r(st, a) + γ max
a′

Qout(st+1, a, w)

12: Calculate Loss =
(
Qlab(st, a)−Qold(st, a, w)

)2

13: Update network parameters w
14: Update J ∗s(t)(t) = Js(t)(t)
15: Take optimal decision s∗(t)
16: end for

3) Reward: For a given state st and action a, we can determine
next transition st+1 and reward rt+1 based on policy π. For
the sake of easy understanding, we can rewrite the objective
function as follows.

Js(t)(t) = J
{
γ(t),G (t)

}
(31)

Where γ(t) and G (t) are given by state st at time t. Now
based on Js(t)(t) and Js(t+1)(t+1), we define reward for the
state-action pair (st, a) as follows.

r(t+ 1)=


1, If Js(t)(t) > Js(t+1)(t+ 1)

0, If Js(t)(t) = Js(t+1)(t+ 1)

−1, If Js(t)(t) < Js(t+1)(t+ 1)

(32)

The proposed DRL-enabled partial service provisioning
strategy is an efficient workload distribution strategy for han-
dling large data traffic in the industrial networks, as illustrated
in Fig. 3. In the first phase, IIoT devices generate a large
amount of data, which is difficult to process locally. Thus, IIoT
devices M try to execute a portion of generated tasks locally
and request additional services I from the remote computing
device, i.e., connected master fog device f ∈ F . Initially,
the master fog device tries to execute the requested service
request itself, however, if the available CPU frequency G CPU

f

of the master fog device f ∈ F is less than the requested
services i, then the master fog device first partitions the tasks
and partially requests additional assistance from the nearby fog
devices f̃ ∈ F̃ or centralized cloud server s ∈ S. This process
continues until all the requests are satisfied. It is important
to note that the proposed strategy is suitable for a partial
service provisioning mechanism while minimizing the energy
usage and delay of industrial applications. The steps of the
DRL-based partial service provisioning strategy are shown in
Algorithm 2.

TABLE I
PARAMETERS & RELATED VALUES USED IN SIMULATION

Parameters Values Parameters Values
M 100 F 10
S 3 wT 1
α 0.0001 Ppower 3.25× 10−7

Btrans 130 MHz Number of epoch 10000
I 4 Training samples 2000

IV. EMPIRICAL EVALUATION

This section emphasizes the performance analysis of the
proposed partial service provisioning strategy with existing
baseline algorithms, such as Local Execution (LE), where
IIoT devices process all the service requests locally without
considering the remote processing functionality, Fog Execution
(FE), where IIoT devices assign the complete or incomplete
data to the remote fog device for execution, heuristic DPTO [3],
and EETO [6] strategies in terms of total energy usage and
delay minimization.

A. Simulation Setup

For the simulation setup, we use Python on Intel i7 CPU
@ 3.40GHz system with 10GB RAM for implementing our
proposed partial offloading strategy. In particular, we use
Keras, an open-source library for implementing machine learn-
ing or deep learning algorithms. Besides that, we consider
total number of IIoT devices M = [10, 100], fog devices
F = [5, 10], number of service requests from each IIoT device
I = 4 and cloud server S = 3. We set the transmission
bandwidth is Btrans = 130MHz, task size Bi = [5, 20] Kb,
and processing density is 1900 [cycles/second] for all the
IIoT devices. Other simulation parameters are taken from
[3] and [4], as depicted in Table I. Moreover, we set the
maximum CPU frequency in IIoT devices G CPU

a = 500× 106

[cycle/second], fog devices G CPU
f = 50 × 109 [cycle/second],

cloud server G CPU
s = 100 × 106 [cycle/second], and the

transmission energy as 1.42× 10−7 J/bit.
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Fig. 4. Performance analysis of execution delay.

B. Execution Delay

The metric delay represents the total processing delay Ttotal
i

for satisfying one service request i ∈ I on different set of com-
puting devices j, ∀j ∈ {M,F ,S}, which includes processing
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delay TIoT
m , uploading delay Tuplink

j , and remote execution delay
Tremote
i,j . The average processing delay directly depends on the

input data size Bi, and CPU frequency on various computing
devices G CPU

j . Equation TIoT
i,m = γ(i,m)BiDi/G CPU

m represents
that the processing delay TIoT

i,m on the IIoT device m inversely
proportional to the computational frequency G CPU

m . However,
the total processing delay TIoT

i,m increases with the increase of
the input data size Bi. From Fig. 4, we can easily observe
that the performance of the proposed DRL based service
provisioning strategy is much higher than the baseline LE
strategy, FE strategy, EETO strategy, and DPTO strategy. The
reason is that the proposed strategy uses a penalty function
to control the delay deadline restricted service requests and
reduces upto 16% processing delay compared with existing
baseline algorithms.
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Fig. 5. Performance analysis of energy consumption.

C. Energy Consumption
The energy consumption to process an IIoT generated ser-

vice request i ∈ I can be regarded as the combination of local
processing energy EIoT

i,m, data transmission energy to nearby
computing device Euplink

i,j and remote processing energy EIoT
i,j

for any application. The average energy consumption mostly
depends on input data size Bi and the processing frequency
G CPU
j of the remote computing device j, ∀j ∈ {F ,S}.

From EIoT
i,m = γ(i,m)BiDik(G CPU

m )
2, it can be observed that

the energy consumption on local IIoT device EIoT
i,m increases

with the increase in data size Bi. Similarly from Efog
i,f =

(1−γ(i,m))BiDik(G CPU
f )

2 and Efog
i,f̃

= Γ(i, f̃)BiDik(G CPU
f̃

)
2

it can also be analysed that energy consumption rate on the
local fog devices can be minimized by reducing the CPU
frequency on those devices. From Fig. 5 it can be easy to
understand that the energy consumption rate using proposed
DRL base strategy is less compared with the baseline LE
strategy, FE strategy, EETO strategy and DPTO strategy. The
reason is that the proposed strategy partition the requested
services and immediately distribute to the underloaded local
fog devices instead of transmitting to the centralized cloud
servers, which minimizes the energy usage upto 23% to 25%.

D. System Throughput
This parameter describes the absolute number of service

requests I satisfied within the stipulated time period Tmax.
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Fig. 6. Performance analysis of system throughput.

Fig. 6 illustrates the variation of the completed tasks on
various computing devices CD including master fog device
F , nearby fog device F̃ , and centralized cloud server S with
the number of services requests I. From Fig. 6, it can clearly
be witnessed that the proposed partial service provisioning
strategy achieves the highest throughput compared with the
existing LE strategy, FE strategy, EETO strategy, and DPTO
strategy, and this rate increases over time. The intelligence
behinds that the proposed strategy initially takes arbitrary
action across the network. However, the performance improves
after training with an appropriate number of samples. Further
to achieve higher throughput, the master fog device divides
the long-scale application data into a sequence of independent
sub-tasks and distributed them among the nearby fog devices
using the DRL technique.
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Fig. 7. Overall system performance: (a) using random action strategy, (b)
proposed service provisioning strategy.

E. DRL Performance Analysis

To analyze the performance of the proposed DRL-based ser-
vice provisioning strategy, we consider a mini-batch training
method with batch size 32, learning rate 0.0001, number of
epochs 10000, and replay memory size 2000. To train both
the network parameters and computing resources, we generate
initial data samples through a random process and outline
a Deep Neural Network (DNN) with one input layer, three
hidden layers, and one output layer. We employ the dense layer
for the intermediate layers and nonlinear ReLU activation layer
to obtain all the network features and understand dynamic
network parameters. Besides that, we use descent network
optimizers, Boltzmann Q-policy, sequential memory, and the
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best set of hyper-parameters from the available parameter set.
For the beginning setup, we consider random weights and high
target values to train the industrial fog network.

From Fig. 7(a), it is observed that the random action strategy
performs in an uncontrolled manner and failed to optimize the
overall system performance. The proposed DRL network is
also trained with Adamax, SGD, and RMSprop to analyze the
variation of reward values over the industrial networks. The
performance of system cost for the proposed partial service
provisioning strategy with the interpretation of the iterations is
illustrated in Fig. 7(b). From the figure, we can easily observe
that the proposed DRL-based method optimizes the overall
system cost with the comparison of random action strategy.
The reason is that the proposed DRL-based approach initially
takes random action due to insufficient training samples. How-
ever, after training specific iterations and obtaining experiences
from the previous mistakes, the DRL agent makes the best
decision and achieves desired output. Moreover, we observe
the run-time complexity of these optimization algorithms are
116, 117, 117 and 119 seconds, respectively.

V. CONCLUSION

In this paper, we have introduced a collaborative AI-enabled
partial service provisioning strategy for handling large-scale
industrial applications in fog networks. The proposed fog
framework has considered a two-dimension resource integra-
tion policy among distributed fog devices and centralized
cloud servers, including horizontal (fog-to-fog) and vertical
(fog-to-cloud) resource sharing. At first, we aim to jointly
optimize the processing latency and energy consumption rate
of all the IIoT applications in the industrial fog networks.
To achieve this objective, we introduce a task partitioning
strategy for dividing large IIoT tasks into a set of independent
tasks. Then a DRL-enabled service provisioning strategy is
adopted for distributing the partitioned tasks among the nearby
fog devices intelligently. The simulation results demonstrate
that the proposed service provisioning strategy outperforms
the standard baseline algorithms by minimizing the energy
consumption upto 23.3% to 24.5% and delay upto 15.5% to
16.3%, respectively. In the future, we will enhance the pro-
posed service provisioning model for intelligent autonomous
transportation systems to improve the performance of the 6G-
enabled fog networks.
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