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Abstract—Cybertwin leverages the capabilities of networks and
serves in multiple functionalities, by identifying digital records of
activities of humans and things, from the Internet of Everything
(IoE) applications. Cybertwin emerges as a promising solution
along with next-generation communication networks, i.e., 6G
technology, however, it increases additional challenges at the edge
networks. Motivated by the above-mentioned perspectives, in this
paper, we introduce a new cybertwin-driven edge framework us-
ing 6G-enabled technology with an intelligent service provisioning
strategy, for supporting a massive scale of IoE applications. The
proposed strategy distributes the incoming tasks from IoE appli-
cations using the Deep Reinforcement Learning technique based
on their dynamic service requirements. Besides that, an Artificial
Intelligence-driven technique, i.e., the Support Vector Machines
(SVM) classifier model is applied at the edge network to analyze
the data and achieve high accuracy. The simulation results over
the real-time financial datasets demonstrate the effectiveness of
the proposed service provisioning strategy and SVM model over
the baseline algorithms in terms of various performance metrics.
The proposed strategy reduces the energy consumption by 15%
over the baseline algorithms, while increasing the prediction
accuracy by 12% over the classification models.

Index Terms—Cybertwin, Edge Computing, Internet-of-
Everything, Resource provisioning, 6G networks, Data analytics.

I. INTRODUCTION

IN recent times, the Internet of Everything (IoE) plays a
key role by enabling massive data-intensive applications

including smart healthcare, VMR-based gaming, smart in-
dustry, etc., which requires technological advancement and
the evolution of communication channels beyond the fifth-
generation (5G) networks [1]. As per the estimation of the
International Telecommunication Union, within 2030 real-time
IoE applications will generate 4395 EB data traffic, where 5G
networks would be unable to provide support to most of the
next-generation IoE applications [2]. Therefore, the invention
of 6G technology with terahertz communication media is
expected to enhance the capabilities of 5G technology, where
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millions of IoE applications can transmit real-time data seam-
lessly to the remote computing device for further processing
with minimum latency and high data rate [3].

Nowadays, the 6G technology plays a major role by support-
ing massive interconnectivity between the centralized cloud
servers and IoE applications with highly diverse service re-
quirements [4]. However, the centralized architecture of cloud
computing increases the congestion of the network while
increasing latency. Thus, one of the critical challenging tasks
for the IoE application is to analyze the sensory data at
the edge of the network with minimum latency and energy
usage. In 2012, CISCO has invented a new technology, namely
fog/edge computing that can provide the cloud servers at the
edge of the networks, while reducing the latency and meeting
the user’s dynamic resource requirements [5]. Besides that, the
collaborative edge-cloud framework with 6G technology can
support various data-intensive and computation-sensitive IoE
applications, with an efficient resource provisioning strategy.

Meanwhile, Cybertwin emerges as a promising technology
for the future communication network, i.e., 6G-enabled Cyber-
twin technology goes beyond the concept of the digital twin,
which is a virtual representation that performs the real-time
digital replica of physical things or process. It serves as a
contact hub and digital record of activities of the IoE appli-
cations in cyberspace at the edge networks. The current edge-
cloud framework cannot address the dramatically increasing
demands of the IoE application, which leads to the scalability
issue in the network. Cybertwin leverages the capabilities of
multi-access edge computing and provides multiple function-
alities at the edge of the network while meeting the scalability
requirements and Quality-of-Service (QoS) objectives of the
6G-enabled edge networks [2].

A. Related Studies

In recent times, the researchers have been focused to en-
hance service provisioning and edge intelligence by incorpo-
rating 6G network and Artificial Intelligence (AI) techniques
for analyzing the massive amount of data at the edge of the
network with low latency [6]. In [7], the authors have designed
a 6G-enabled fog federation framework for processing IoE
applications with an efficient service deployment strategy
while reducing latency and energy usage. Similarly, Lin et al.
have designed a collaborative AI-driven resource allocation
strategy at 6G-enabled IoT networks [8]. In [9], the authors
have designed a distributed probabilistic approach for IoE
applications at 6G-enabled edge networks. Sanguanpuak et
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al. have developed a resource sharing and caching technique
with Stackelberg game technique at edge networks [10]. In
[3], the authors have designed a new scheme at 6G-enabled
edge networks with digital twin for IoE applications. Further,
in [11]–[14], the authors have discussed various resource
provisioning and management strategies for 6G-enabled IoE
applications along with their research outcomes. A network
architecture for 6G-enabled massive IoE applications with
various AI techniques for enhancing edge intelligence is
presented in [15]. An automatic and self-learning 6G-enabled
edge network architecture is introduced in [6] to identify and
classify unknown services.

In [16]–[18], the authors have developed various types
of resource provisioning strategies for real-time applications
at fog/edge networks while meeting various QoS objectives.
Besides that, some of the important resource provisioning
strategies along with their research outcomes for processing
and analyzing real-time applications at fog/edge networks are
highlighted in [19]–[21]. Nowadays, cybertwin is a new era for
handling IoE applications with next-generation network archi-
tecture. In [22], the authors have designed a novel cybertwin-
enabled network architecture with 6G technology for pro-
cessing the IoE application efficiently using a collaborative
edge-cloud framework. Further, Liang et al. have designed
a resource trade mechanism with barter and combinatorial
auction mechanism through cybertwin network for handling
the network services efficiently with minimum cost [23]. The
existing literature reviews state that most of the mechanisms
apply the 6G and cybertwin technology for analyzing data at
the edge of the networks. Thus, one of the important research
aspects in the fields of IoE and edge computing is to handle
the network resources efficiently while reducing the energy
consumption of the network.

B. Motivations

From the theoretical and analytical point of view, the follow-
ing key research questions need to be addressed while design-
ing an intelligent resource provisioning strategy at cybertwin-
driven edge networks: 1. how to develop an intelligent edge-
centric framework by supporting cybertwin and 6G technology
while reducing latency and energy consumption of the IoE
applications? 2. how to design an intelligent resource provi-
sioning strategy with an efficient AI technique at edge net-
works while meeting user’s dynamic resource requirements?
3. how to analyze the IoE applications at edge networks using
a standard classification model with collaborative edge-cloud
computing servers?

The advanced cybertwin technique at edge-centric frame-
work brings the computing and storage resources closer to the
end-users by providing services at the edge of the networks.
Besides that, the 6G technology supports terahertz communi-
cation for transferring the real-time data from IoE applications
to remote computing devices through cybertwin server with
minimum latency. Therefore, the critical and yet unsolved
challenge is to design an intelligent resource provisioning
strategy at cybertwin-driven edge networks to distribute the
incoming applications to the local edge devices or centralized

cloud servers through 6G-enabled communication links while
reducing energy consumption. Moreover, analyzing the real-
time data with higher accuracy with a feature selection strategy
and AI technique is another important research aspect at the
edge of the network.

C. Contributions

Motivated by the above-mentioned challenges, in this paper,
we propose a new cybertwin-driven resource provisioning
strategy for analyzing the IoE applications at the 6G-enabled
edge networks. The major contributions of the work are
summarized as follows.
• Develop an intelligent edge-centric framework with a

cybertwin server as a communication assistant that can
allocate computing and communication services coordi-
nately at 6G-enabled networks with an AI-assisted re-
source provisioning strategy for handling user’s dynamic
service requests. The new and unique features of the
cybertwin and 6G technology make the proposed edge-
centric framework flexible, scalable while reducing delay
and energy consumption for IoE applications.

• Design an intelligent resource provisioning strategy at the
cybertwin server using the Deep Reinforcement Learning
(DRL) technique that can provide the services at the edge
of the network or centralized cloud servers as per the
user’s requirements. The proposed resource provisioning
strategy meets the user’s satisfaction ratio while utilizing
the computing resources of the edge networks efficiently.

• Design an AI-enabled technique, namely Support Vector
Machines (SVM) with a feature extraction strategy, i.e.,
Intonation Groups (IGs) for analyzing the IoE applica-
tions at the edge of the networks. The IGs strategy is used
to extract the important features of the IoE applications
for noise reduction and reduce the complexity of the
incoming tasks for further data analysis. The proposed
SVM technique is implemented at local edge devices
for analyzing the selected features of the tasks while
increasing the accuracy of the applications.

• Extensive simulation results and performance analysis
demonstrate the effectiveness of the proposed resource
provisioning strategy over the baseline algorithms in
terms of various performance metrics. Besides that, the
proposed SVM technique is evaluated with real-time
financial datasets over the standard classification model
in terms of accuracy and error.

The remaining sections of the paper are organized as
follows. Section II demonstrates the system model followed by
the problem formulation of the work. The proposed cybertwin-
driven resource provisioning strategy at a 6G-enabled edge
network is elaborated in Section III. The performance analysis
of the proposed strategy is demonstrated in Section IV. Finally,
Section V concludes the work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Considering a cybertwin network with a set of K IoE
devices, where K = {1, 2, . . . ,K}, ∀k ∈ K, are taking
services from the collaborative edge-cloud networks, which
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is equipped with a set of local edge devices and centralized
cloud servers [24], as depicted in Fig. 1. Let us consider that
the requirements of the incoming tasks of the IoE application
are represented by two tuples (Jk,Lk), where Jk denotes the
input size and Lk represents the application dependent delay
requirement of the IoE device k, respectively. Considering an
interference-free network with a set of distributed edge devices
N , where N = {1, 2, . . . , N}, ∀n ∈ N and the transmission
bandwidth is exclusively distributed among the edge devices
in the network. Let γk,n denotes a binary allocator of edge
network, where

γk,n=

{
1 if IoE application k is assigned to edge device N
0 otherwise.

Further, the requested computation frequency for device k can
be modelled as AkJk, where Ak > 0 indicates the number of
CPU cycles that needed to complete a one bit computation.
Let Xk(0 ≤ Xk ≤ 1) be the amount partitioned input data
executed by the IoE device k and the remaining (1 − Xk)
tasks are offloaded to the remote computing devices for further
processing. Therefore, the executable data on the IoE device
is XkJk and the edge device is (1−Xk)Jk. In the following
sub-sections, we discuss the delay and energy usage of the
IoE applications at the edge of the network during local and
remote execution.

Fig. 1. Cybertwin-driven 6G-enabled edge networks.

A. Local Execution Model

Let Fk be the processing frequency of the IoE device k,
∀k ∈ K. The execution delay Tuserk on IoE device k ∈ K for

processing XkJk amount of task can be expressed as follows.

Tuserk =
AkXkJk
Fk

(1)

The overall power dissipation is represented as P = εF3,
where ε denotes the chip coefficient depending on IoE devices
K [24]. The corresponding energy consumption Euserk on the
local IoE device k ∈ K can be expressed as follows.

Euserk = AkXkJkεF2
k (2)

B. Resource Provisioning Model

Ideally, IoE devices have limited resource capacity and can
process a limited scale of data locally, which are generated
by the sensor or IoE devices. However, the inadequacy of
computation capability Fk on the IoE devices creates a barrier
for local execution and distributes the tasks on the remote edge
devices through a cybertwin server. The local cybertwin server
brings the centralized cloud servers on the edge of the network
for the IoE applications and distributes the tasks through an
intelligent resource provisioning strategy while minimizing
delay and energy consumption. Let Dup

k and hupk,n be the
transmission bandwidth and instantaneous channel power gain
of the IoE device k ∈ K [24]. The data transmission rate Rk,n

on the remote edge device n ∈ N is represented as follows.

Rk,n = Dup
k log2(1 +

Pk,nh
up
k,n

Dup
k σ2

) (3)

where σ2 and Pk,n denotes the noise spectral density and
transmission power of the IoE device k ∈ K. Thus, the uplink
transmission rate Rk and corresponding energy consumption
Pk by IoE device k are represented as follows.

Rk =

N∑
n=1

γk,nRk,n (4)

Pk = P0 + δ
N∑
n=1

γk,nPk,n (5)

where P0 and δ denotes the static energy consumption and
inverse of the power amplifier efficiency, respectively. The
uploading transmission delay Tuploadk and energy consumption
Euploadk with data size (1−Xk)Jk can be expressed as follows.

Tuploadk =
βk(1−Xk)Jk

Rk
(6)

Euploadk = PkTuploadk (7)

where βk denotes the additional transmission overhead over
the channel. Fk represents the allocated computational fre-
quency by the remote edge device. The execution delay
Tserverk and energy consumption Eserverk on the remote edge
device can be represented as follows.

Tserverk =
Ak(1−Xk)Jk

Fk
(8)

Eserverk = Ak(1−Xk)JkεF2
k (9)

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3096672

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



4

Based on the above formulations of uploading, and processing,
the overall delay and energy consumption of the IoE applica-
tions on the remote edge devices are represented as follows.

Toffloadk = Tuploadk + Tserverk (10)

Eoffloadk = Euploadk + Eserverk (11)

C. Problem Formulation

The key objective of the cybertwin-driven edge networks is
to derive the sum of weighted energy consumption wkEk(.)
of all the IoE users K, which can be obtained by consid-
ering CPU frequency of the IoE device Fl = (Fk)∀k, CPU
frequency of the remote edge devices Fc = (Fk)∀k, edge
device allocation γ = (γk,n)∀k,n, transmission power P =
(Pk,n)∀k,n, and offloading ration X = (Xk)∀k. Therefore,
the mathematical formulation of the objective function with
corresponding constraints for developing an efficient resource
provision strategy is formulated as follows.

minimize
Fl,Fc, γ,P,X

K∑
k=1

wkEk(Fl,Fc, γk,n,Pk,n,Xk) (12a)

subject to

N∑
n=1

γk,nPk,n ≤ PTk
, (12b)

K∑
k=1

Fk ≤ Fc, (12c)

K∑
k=1

γk,n ≤ 1, (12d)

max {Tk,Tk} ≤ Lk, (12e)
Fk ≥ 0; Pk,n ≥ 0 (12f)

The objective of the resource provisioning at cybertwin-driven
edge networks for minimizing the overall energy consumption
for the IoE applications is presented in (12a), subject to satisfy-
ing constraints (12b)-(12h). Where constraints (12b) represents
the maximum transmission power over the remote edge device
n. Constraint (12c) denotes the allocated CPU frequency must
be limited by the capacity of the edge device. Constraint (12d)
denotes the maximum edge device assigned for an IoE device
is 1. The latency bound for each IoE application presented
in constraint (12e). Finally, constraint (12f) represents the
non-negative feature of computation resource and transmission
power of the remote edge device.

III. CYBERTWIN-DRIVEN RESOURCE PROVISIONING

In this section, we design an intelligent resource provi-
sioning strategy using the DRL technique for distributing
the incoming applications of IoE applications on the local
edge devices through a cybertwin server while minimizing
energy consumption and delay. Besides that, a feature selection
technique, namely IGs technique is incorporated in the local
edge devices for extracting the important features of the
incoming data of IoE applications. Finally, the SVM technique
analyzed the extracted features for further prediction with
higher accuracy.

A. Intelligent Resource Provisioning Strategy

To design an efficient resource provisioning strategy, the
DRL technique is introduced in the cybertwin server using
state (S), action (A), and reward (R) for distributing the
incoming tasks on the remote edge devices. The key aim
to use this formulation is to obtain maximum reward from
the environment. In each state S, the local cybertwin server
takes action A and reaches the next state S’ and obtains
immediate reward R(S’/SA) using a stationary policy π, where
π(S) = A. However, to obtain optimal policy π∗, the agent
has to solve the state-action pair using Bellman’s equation,
defined as follows.

π∗(S) = argmax
A∈A

Q(S,A) (13)

Q∗(S) = max
A∈A

Q(S,A) (14)

and the function Q(S,A) can be defined as follows

Q(S,A) =
∑
S′∈S

P (S′|S,A) [R(S′|S,A) + XQ∗(S)] (15)

where X is a discount factor and is defined as X ∈ (0, 1). One
simple approach to solve this Bellman equation is dynamic
programming. Although dynamic programming requires state
transition probability in each step, which is uncertain due to
the dynamicity of the edge devices and network parameters.
Q-learning is a well-known algorithm popularly used for
approximating state transition probability, which is defined as
follows.

Q(St, At) = Q(St, At)+

µt

[
Rt+1 + Xmax

A
Q(St+1, A)−Q(St, At)

] (16)

where St is the current state, St+1 is the next state and
Rt+1 is the next state reward. However, the complexity of
the Q-learning equation increases with the increase on state
action pair. A promising approach to solve Q-values in the Q-
Learning equation is the DQN. A DQN strategy mainly contain
three components such as state, action and reward, which are
defined as follows.
• State: A state S represents the information about the

resource provisioning decision variable on the cybertwin
networks. The states in the cybertwin networks can be
defined as S = s =

{
γkn
}

.
• Action: The action A in the proposed network represents

the workload distribution decision for any given state.
The action space can be derived as A = a =

{
γ′kn
}

.
• Reward: The key intuition of the DRL strategy is to max-

imize the utility over the edge network while minimizing
the energy consumption. The reward of the edge network
can be defined as the difference between two consecutive
energy consumption functions as R = Ek(.)− E′k(.).

DQN is a Reinforcement Learning (RL) approach, where
Deep Learning (DL) models are developed to determine the
operations of an agent at each time stamp. In DQN-based
learning, the cybertwin server makes offloading action at from
state st in such a way that maximizes the future reward in the
long run. The DQN function can be derived as follows [25].
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Algorithm 1: DRL-based resource provisioning

1 INPUT: Jk: Input size and Lk: Deadline requirement
2 OUTPUT: π∗(st): optimal decisions

1: Initialize st, at, K and Θt

2: for p = 1 to do
3: On state st execute action at
4: Observe st+1, rt
5: calculate Ek(Fl,Fc, γk,n,Pk,n,Xk)
6: Store (st, at, rt, st+1) into the memory
7: Select mini-batch examples from memory
8: Calculate Yt = rt + γ max

a′
Q(st+1, a

′; Θt−1)

9: Update loss function using Yt and Q(st, at)

Lt(Θt) = E
[
(Yt −Q(st, at; Θt))

2
]

10: Update network weight Θ
11: Take optimal decision π∗(st)
12: end for

Q∗(s, a) = max
π

E

[
rt +

∞∑
k=1

γkrt+k|st = s, at = a, π

]
(17)

where γ is the discount factor. Moreover, the Q-network is
trained with weight w to minimize the loss L(θt) at timestamp
t, which is defined as follows.

Lt(θt) = E
[(
rt + γmax

a′
Q(st+1, a

′; θt−1)−Q(st, at; θ)
)2]
(18)

The steps for the proposed DQN-based resource provisioning
strategy are presented in Algorithm 1. It is worth noting that
the proposed DRL strategy initially starts with random action.
However, after a few iterations, DRL starts making optimal
decisions based on obtaining experience. This process gradu-
ally optimizes the decision-making time and helps to achieve
minimal energy emission from the industrial environment.

B. Feature Extraction Strategy

The massive amount of data, collected from IoE devices is
difficult to analyze and store at the local edge device. Most
of the data generated from these devices contain redundant
and irrelevant features, which imposes processing overhead on
the edge network, reduces the prediction accuracy and feature
dimensionality. Therefore, the inclusion of feature extraction
techniques at the edge networks can greatly minimize the
processing overhead, training time, and help to improve the
prediction accuracy of the AI models. Stimulated by this idea,
we introduce IGs feature extraction technique to precisely
extract the data features from IoE applications. Let U and
V be the difference between two feature variables. Then, IGs
selects a distinct feature as given below.

IG(U|V) = H(U)−H(U|V) (19)

where U and V denote the discrete random variables. The
prior entropy of feature Ui is defined as follows.

H(U) = −
∑
i

P (Ui)log2P(Vi) (20)

where P(Ui) represent the prior probability of Ui. Let U be
the conditional entropy after substituting the post entropy of
feature V , formulated as follows.

H(U|V) =


−
∑
i

P(Uj)H(U|Vi)

−
∑
i

P(Uj)
∑
i

(
P(Ui|Vj)log2P(Ui|Vj)

)
(21)

By substituting the terms of Equations (20) and (21) into
Equation (19), we can obtain the final value of IGs as follows.

IG(U|V) = −
∑
i

P(Ui)log2P(Ui)−(
−
∑
i

P(Uj)
∑
i

(
P(Ui|Vj)log2P(Ui|Vj)

))
(22)

The IGs technique performs well with a minimum number
of feature sets. Thus, it is very difficult to select the most
significant features from the large volume of IoE data. To
address this issue, we assign feature weight to each feature
to efficiently remove the irrelevant and redundant features.
Let C be the set of feature variables of a particular class
C = C1, C2, C3, . . . , Ck, where ∀ck ∈ C. Then, an instance
of a particular class with weight is represented as W =
W1,W2,W3, . . . ,Wk, where ∀wk ∈ W . Thus, the weight of
a particular instance can be expressed as follows.

Ω(ck,wk) = −
∑
k

P(Q|wk)log
P(Q|wk)

P(Q)
(23)

where Q represents the weight of a specific feature set wk of
the class Q. The values of W(ck,uk) should be in the range
of [0, 1], which is related to feature variable ck of the class
Q. The overall procedures of feature extraction and predictive
analytic model are described in Algorithm 2.

C. Edge-cloud Collaborative Data Analytics

The volume of data traffic on IoE applications is constantly
increasing and highly demanding instant predictions and iden-
tifications of digital records of human activities and things,
and better service requirements. However, handling a huge
volume of irrelevant or redundant data is one of the most
crucial issues in edge-centric IoE applications. Further, the
transmission of a huge volume of data from IoE devices to
the centralized cloud server increases the processing overhead,
power consumption, and delay. Such applications must require
an edge-level analysis with an efficient feature extraction
technique and predictive analysis model with higher accuracy.

However, due to less storage and processing capacity of
local edge devices, only the critical features, extracted using
the IGs technique are analysed at the resource-constraint
edge devices and the rest of the data is stored and analyzed
on the remote cloud server for future predictions. For this
validation, we consider a standard SVM model as the baseline
model to predict and classify various labels based on the
extracted feature set. The main reason behind introducing
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Algorithm 2: Feature Extraction and Data Analysis

1 INPUT : W: Weight of an instance, Q: Weight of a
particular feature set, C: Set of feature variables of a
particular class, ks: Number of iterations

2 OUTPUT : Ω(ck,wk): Extracted feature set and
classification accuracy
1: Select distinct feature variables
2: Calculate the conditional probability using Eq.no (21)
3: Obtain final value of IGs using Eq.no (22)
4: Compute weight of a particular instance using the

formula Ω(ck,wk) = −
∑
k

P(Q|wk)logP(Q|wk)
P(Q)

5: Normalize the datasets
6: Apply SVM classification model over datasets
7: for i = 1 to m do
8: Sort W =W1,W2,W3, . . . ,Wk

9: Select Wk according to its Ck
10: Store newly generated feature set Ω(ck,wk)

11: Sort Sr= (Sort C = C1, C2, . . . , Ck +m), Ks )
12: end for

SVM technique at edge network is to its relative memory
efficiency, support for high dimensional dataset, and increased
prediction accuracy while analysing IoE applications [26].

IV. NUMERICAL ANALYSIS

In this section, we analyze the performance of the pro-
posed DRL-based resource provisioning strategy in terms of
delay, energy consumption, and reward. Moreover, to present
the effectiveness of the proposed strategy, we compare the
proposed strategy over three baseline algorithms such as
Local Execution (LE), Random Execution (RE), and Server
(SE) framework. A short description of these algorithms is
explained below.
• Local Execution (LE) : In the LE strategy, IoE devices

process all the computation locally without considering
the server execution.

• Random Execution (RE) : In the RE strategy, IoE devices
offload and process tasks on remote computing devices
using a randomized selection strategy.

• Server Execution (SE) : In the SE strategy, tasks are
processed on remote cloud server without considering any
proper task assignment strategy.

Furthermore, we consider a standard SVM classification model
at both edge server and cloud server to analyse and evaluate
the most significant features extracted from IoE applications.
To show the superiority of the proposed predictive model, we
validate our SVM model with existing classification models
such as Logical Regression (LR), Random Forest (RF), and
Decision Tree (DT) under different performance metrics in-
cluding accuracy, precision, recall, and F1 score, respectively.

A. Simulation Setup

For the simulation setup, we use an Intel i7 CPU@ 3.40
GHz system with 16GB RAM and Python platform for imple-
menting this work. More specifically, we use GYM OpenAI,

an open-source python library, which is popularly used for
implementing DRL-based techniques. We consider the number
of IoE devices = 500 and edge server = 10, uniformly
distributed over the network. We set the clock frequency of the
IoE device = 5 and edge server = 10, respectively. Furthermore,
we consider transmission bandwidth = 5, transmission power
= 5, η = 10−19. Other simulation parameters of 6G-enabled
edge networks are presented in Table I.

TABLE I
PARAMETERS USED FOR SIMULATION

Parameters Values Parameters Values
Wk 1 N [4,7]
Dup

k 100GHz δ 1
γk,n [0,1] Di 1900
Fi 5×107 FJ 50×109
λi 0.5 P0 500mW

• Dataset: To empirically validate the prediction accuracy
of the proposed predictive model, we consider two distinct
real-time datasets such as loan approval prediction dataset
(D1)1 and lending club loan dataset (D2) 2, respectively. The
dataset D1 is used for edge-level analysis, which contains 615
instances and 13 attributes. Similarly, D2 is considered for
cloud-level analysis that consists of 887379 instances and 74
attributes. For this validation, we split the dataset into 80:20
ratio, where 80 % of the data is assumed for training the model
while 20% of the data is used for testing the model.

B. Average Energy Consumption

The energy consumption of the 6G-enabled edge networks
depends on the computation (Euserk ) and communication
(Euploadk ) energy while processing and transmitting the data
of IoE applications on remote computing devices, respectively.
The proposed DRL-driven resource provisioning strategy dis-
tributes the incoming tasks on the local edge devices through
the cybertwin server while observing dynamic changes of the
network parameters and input task parameters (Jk,Lk). Fig.
2 represents the comparative analysis of the proposed DRL
resource provisioning strategy over the baseline algorithms.
The comparative analysis demonstrates that the proposed
strategy outperforms the baseline algorithms in terms of energy
consumption up to 15% while processing the incoming tasks
on 6G-enabled edge networks.

C. Average Delay

The average delay of the IoE applications depends on the
uploading time (Tuploadk ) of the incoming tasks on the remote
computing devices before start processing on it. Thus, an intel-
ligent resource provisioning strategy distributes the incoming
tasks on the local edge devices based on the requirements
of the incoming tasks (Jk,Lk) and the resource availability
of the edge devices. The proposed DRL-driven resource pro-
visioning strategy distributes the incoming tasks intelligently
on the remote edge devices through a local cybertwin server.

1https://www.kaggle.com/ajaymanwani/loan-approval-prediction
2https://www.kaggle.com/aamirsiddiqui/lending-club-loan-machine-

learning
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Fig. 2. Energy consumption of intelligent resource provisioning strategy.

Besides that, THz communication of the 6G network helps
to reduce the delay of the IoE applications while uploading
the tasks on the remote edge devices. Fig. 3 represents the
comparative analysis of the proposed DRL-driven resource
provisioning strategy over the baseline algorithm. The compar-
ative analysis depicts that the proposed strategy outperforms
with 23% of delay minimization compared with the baseline
algorithms due to intelligent tasks distribution using cybertwin
server and THz communication of 6G networks.

Fig. 3. Average delay of intelligent resource provisioning strategy.

D. Reward

To find the average reward for each iteration, we consider
learning rate 0.001, batch size 32, decay rate 0.7, and the
number of iterations 10000. We consider the mean absolute
error as the loss function and the bellman equation as the
policy. Further, we use memory size 5000 bytes and four
different optimizers such as Adam, SGD, RMSprop, and
Adamax. Fig. 4 represents the cumulative reward by using
a random action strategy. From the figure, it is observed that
the variation between maximum and minimum reward in each
iteration is large. The reason behind that the random action
strategy starts with randomly choosing the action state, and this
continues in all the iterations rather than selecting a predicted
action state. This causes lower reward calculation from the
environment.

However, by using the proposed DRL-driven resource pro-
visioning strategy, as presented in Fig. 5, the deviation was
minimized to small rage. It can also be observed from the ex-
periment that the Adam optimizer performs well as compared

Fig. 4. Reward using random action strategy.

with other optimizer to reduce the overall energy consumption
rate in the cybertwin networks.

Fig. 5. Reward using proposed DRL strategy.

E. Feature Extraction and Analysis on Computing Devices

1) Predictive Analysis at Edge Server: Fig. 6 shows the
edge-level analysis of various classification models under
dataset (D1). From the analysis, it is noticed that the SVM
classification model yields 87.23% accuracy while predicting
the status of loan approval as compared to other classification
models such as LR, DT, and RF. Besides that, after extracting
the significant features from D1, the overall accuracy of SVM
is greatly improved, i.e., 95.39 %, which is higher than the
baseline classification models. Table II presents the prediction
accuracy of various classification models in the distributed
edge servers.

Fig. 6. Prediction Accuracy Results of D1 at distributed edge servers.
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TABLE II
PREDICTION ACCURACY OF VARIOUS CLASSIFICATION MODELS IN EDGE SERVER.

Edge Level Analysis
Dataset Classification Models Loan Approval Accuracy Precision Recall F1 Score

Yes No

D1 LR 0.7586 0.6425 0.7754 0.7513 0.6987 0.7362
DT 0.6895 0.6942 0.7462 0.6906 0.7381 0.7045
RF 0.8051 0.6233 0.8921 0.8311 0.7054 0.7929

SVM 0.8723 0.7688 0.9539 0.9268 0.8652 0.9087

2) Predictive Analysis at Cloud Server: Fig. 7 shows the
cloud-level analysis of various classification models under
data set (D2). From the analysis, it is also proved that the
SVM classification model achieves 66.52 % accuracy while
predicting the status of lending load whether the customer has
fully paid or not. Further, the SVM model enhances the overall
accuracy by 31.9% as compared with other baseline models
based on the significant feature sets. However, other models
such as LR, DT, and RF are improved only by 24.32%, 0.08%,
and 28.65%. Table III shows the prediction accuracy of various
classification models in the centralized cloud servers.

Fig. 7. Prediction Accuracy Results of D2 at centralized cloud servers.

3) Analysis of Training time: Fig. 8 presents the training
time of the standard classification models. The training time of
the SVM is less, i.e., 0.28 seconds after injecting the optimal
features. However, the training time of LR and RF is much
higher, i.e. 0.42 and 0.37, respectively. Thus, we conclude that
the selection of the most critical set of features with the SEM
model at the edge server can improve the overall prediction
accuracy of the models.

Fig. 8. Training time of edge-cloud collaboration

V. CONCLUSION

In this paper, we have developed a new cybertwin-driven
edge-centric framework by supporting 6G technology for ana-
lyzing IoE applications efficiently. For handling the incoming

tasks of the applications, an intelligent resource provisioning
mechanism is designed the cybertwin server with a DRL
model that can distribute the incoming tasks on the remote
edge devices as per their requirements with minimum latency
and energy consumption. Besides that, the SVM classification
model is introduced at the remote computing devices at the
edge network along with an IGs-enabled feature selection
strategy for analyzing the tasks of the IoE application effi-
ciently with critical features while increasing prediction ac-
curacy. The experimental evaluation of the proposed resource
provisioning and data analytics demonstrate the effectiveness
of the proposed strategies over the baseline algorithms and
standard classification models respectively. From the simula-
tion results, it is observed that the proposed resource provi-
sioning strategy reduces 10%-15% energy consumption over
baseline algorithms and the proposed SVM model improves
10%-12% accuracy over the standard classification models. In
the future, we will enhance the cybertwin-driven edge-centric
framework by incorporating mobility and privacy techniques
to improve its capability in a dynamic environment.
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