
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 1

Intelligent Service Deployment Policy for
Next-Generation Industrial Edge Networks
Abhishek Hazra, Mainak Adhikari, Member, IEEE, Tarachand Amgoth, Member, IEEE, and

Satish Narayana Srirama, Senior Member, IEEE

Abstract—Edge computing has appeared as a promising tech-
nology for realizing industrial computation data at the edge
of the network. The fundamental challenge in edge-enabled
industrial networks is how to deploy the service requests while
utilizing the available edge resources efficiently. In this paper,
we aim to design an intelligent service deployment strategy
for simultaneously handling both Industrial Internet of Things
(IIoT) generated dynamic service requests and edge resources in
the next-generation industrial networks. Initially, we present the
objective function as the mixed-integer nonlinear programming
problem for optimizing the weighted energy-delay in the edge
environment. To accomplish this objective, we model a heuristic-
based task execution strategy and exploit the advantage of
Deep Reinforcement Learning (DRL) to make accurate decisions
in industrial networks. The proposed DRL-based strategy can
learn well to control the industrial networks from its own
experience and guarantees to handle as many service requests
as possible using the set of available resource constraint edge
servers. Experimental analysis reveals that the proposed strategy
is robust to network changes and achieves better performance
than existing algorithms in terms of energy consumption up to
13%, delay minimization by 23%, and other Quality of Service
(QoS) parameters.

Index Terms—Service deployment, edge computing, energy
efficiency, deep reinforcement learning, industrial networks.

I. INTRODUCTION

DUE to the proliferation of delay-restricted industrial
services, the resource (e.g., storage, CPU frequency, and

energy) faulty Industrial Internet of Things (IIoT) devices
endeavor supplementary support from the edge computing
that extends the capability of the centralized cloud servers to
the edge of the network [1]. It is obliged that the requested

Manuscript received October 00, 2021; revised January 00, 2021 and
January 69, 2021; accepted February 00, 2021. Date of publication February
00, 2020; date of current version July 00, 2021. This work was supported by
DST (SERB), Government of India, under Grant EEQ/2018/000888 and UoH-
IoE by MHRD, India (F11/9/2019-U3(A)). The associate editor coordinating
the review of this letter and approving it for publication was xxxx xxxx.

(Corresponding author: Tarachand Amgoth.)
A. Hazra and T. Amgoth are with the Computer Science and Engineering,

Indian Institute of Technology(Indian School of Mines) Dhanbad, Jharkhand,
India, 826004. (e-mail: abhishekhazra.18DR0018@cse.iitism.ac.in, tarac-
hand@iitism.ac.in).

M. Adhikari is with the department of Computer Science, Indian
Institute of Information Technology, Lucknow, India-226002. (e-mail:
mainak.ism@gmail.com).

S. N. Srirama is with the School of Computer and Information Sciences,
University of Hyderabad, India (e-mail: satish.srirama@uohyd.ac.in).

Digital Object Identifier 10.1109/TNSE.2020.3021XXX
15XX-32XX © 2020 IEEE. Personal use is permitted, but republica-

tion/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more informa-

tion.

services can be performed within their specific deadline-bound
to achieve the best possible outcomes. Industrial edge provides
an interconnecting bridge between the IIoT device and edge
server by deploying computation servers near the proximity
of IIoT devices [2]. However, considering dynamic service
demands from several IIoT devices and satisfy delay-deadline
constraints at the same time becomes a challenging process
for the edge-enabled industrial networks. In several cases,
requesting a service without estimating resources directly from
the edge server can degrade the Quality of Service (QoS)
performance to the IIoT devices. Besides that, the downside
of energy and delay restrictions for IIoT devices cannot be
neglected [3]. For example, healthcare and mining applications
require a prompt response from the processing devices to
make immediate decisions [4]. Therefore, the edge server
needs a suitable task execution mechanism, and a service
deployment strategy to increase the devices satisfaction ratio
in the industrial environment.

A. Role of DRL Integration in the Industrial Networks

Next-generation industrial networks are becoming very
complex and highly dynamic with millions of smart devices,
IoT data, multimedia data, and sensor data, making it difficult
to analyze, control, and model [5]. On the other hand, edge-
enabled applications undergo several resource utilization, dy-
namic network access, and efficient service deployment issues
while meeting various QoS objectives (e.g., energy, latency,
and cost) [6]. Recent developments of the Deep Reinforcement
Learning (DRL) technique present an assuring approach that
allows industrial networks to control the dynamic system
by training the edge environment and learning experience
from the environment. By adopting the DRL strategy into the
industrial environment, edge servers can easily be transformed
into intelligent edge servers and bring several key benefits, in-
cluding a) making an unbiased decision to effectively process
real-time industrial applications on smart IIoT devices or edge
servers, b) DRL approach can be used to maintain and control
distributed IIoT devices in a complex and scalable manner [7],
and c) it can handle extremely complex time-variant industrial
environments including changing device states and devices
service demands.

B. Purpose of Study

IIoT devices generate a massive volume of real-time data
in each time instance for processing and analysis [8]. Besides
that, the service requests from different IIoT devices have

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 2

variable sizes and priorities. Due to insufficient computing
power, most IIoT devices need to transfer the sensory data
to the nearby edge server or centralized cloud servers for
further analysis [9]. Such a mechanism introduces a funda-
mental challenge for on-device task execution and service
deployment of IIoT applications for optimizing the energy
consumption rate and delay in the industrial networks [10].
Precisely, service deployment denotes the number of tasks
to deploy on remote computing devices. On the other hand,
energy consumption has become skyrocketing in the industrial
networks while computing and communicating IIoT service
requests on remote computing devices. Hence, minimizing
overall energy consumption while controlling the delay is
one of the critical and open challenging issues in the edge
environment [11]. Recently, DRL is one of the frequently used
algorithms to solve such challenges efficiently and intelligently
while observing several network or system parameters. There-
fore, the essential research scope of this paper is to model
an intelligent service deployment framework for delay critical
industrial applications in the edge networks.

C. Contribution
To tackle the above-mentioned challenges, in this paper,

we develop a novel service deployment strategy by inter-
coupling IIoT devices and edge server resources in the edge
networks. The primary objective of the proposed strategy is
to find an error-free service assignment policy for minimizing
the execution delay and overall energy consumption of the
applications during data transmission and processing. The
main contributions of this paper are listed as follows.
• Aiming to envision an efficient industrial environment,

we express the objective function as the sum of weighted
energy-latency and introduce several network-wide QoS
constraints. In particular, the devices service deployment
policy is formulated as a non-linear integer programming
problem under the optimized energy and service delay.

• Design a heuristic-based task execution strategy for al-
locating executable tasks on the IIoT devices. Further,
to acquire desired output, we model the problem as the
MDP-based state-action-reward problem and adopt the
DRL technique for intelligent service deployment of IIoT
requests in the edge networks.

• Extensive simulation results confirm that the proposed
DRL-based service deployment strategy encompassed
near-optimal solutions and presented better results than
baseline algorithms over the industrial networks.

The rest of the sections are structured as follows. A sum-
mary of the existing related articles is presented in Section II.
Section III presents the system model and formulates the ob-
jective function with associated constraints. In Section IV, we
presented the proposed service deployment policy. Section V
depicts the numerical analysis of the proposed technique with
various performance metrics. Finally, the conclusion and future
research direction are conferred in section VI.

II. RELATED WORK

Over the last few years, various research attempts have
been made on edge networks to balance IIoT service requests

©

©

©
©

©
©

©

©

©

© ©

©

©

©

©©

©

© ©

©

© ©

©

© ©

©

©

©
User 1

Cell tower

Edge
server

User 2

User 3

User 4 User 5

User 6

User 7

User 8

User 9
User 10

User 11

User 12

User 13

User 14

User 15 Service
deployment

Service
deployment

Service
deployment

Cell tower Cell tower

Cell tower

Service
deployment

Fig. 1. Illustration of a standard edge computing model.

and edge resources in the distributed industrial environment.
In a pioneering work, Xu et al. [8] have designed a ser-
vice offloading framework for utilizing maximum vehicular
resources in the industrial networks. Mukherjee et al. [12] have
investigated a parallel resource provisioning strategy for delay
critical industrial applications in a fog environment. In [13],
Hazra et al. have designed a joint computation and scheduling
strategy for handling delay-sensitive IoT applications in fog
networks. Iqbal et al. [14] have presented a blockchain-based
resource sharing and collaborative computing model for the
IIoT environment. Similarly, Misra et al. [15] have introduced
a decentralized task offloading strategy for IoT applications in
fog networks. Chen et al. [16] have also designed an energy-
aware computation offloading algorithm for fog-enabled in-
dustrial applications using the dynamic voltage scaling (DVS)
technique.

Recently Reinforcement Learning (RL) algorithms have
drawn widespread awareness to resolve service offloading and
resource provisioning related research issues in academia and
industry. For example, in [17], Ale et al. have developed an
end-to-end DRL framework for optimizing energy and delay in
the edge networks. Chen et al. [18] have designed an energy-
efficient computation offloading scheme for augmented reality
applications in edge networks. A DRL-based adaptive task
offloading strategy have been developed by Ke et al. [10],
where the heterogeneous vehicles use the DRL strategy for
optimizing energy consumption cost, delay cost, and queue
buffer cost in the edge networks. In [19], Sun et al. have
designed a machine learning approach for optimizing data
communication, computation, and migration delay in industrial
networks. Recently, in [9] and [4], Goswami et al. have in-
troduced AI-enabled resource allocation techniques for secure
IIoT networks. Cao et al. [20] have also presented a multi-
channel task offloading mechanism using the multi-agent DRL
technique for Industry 4.0 applications.

From the review of the related studies, it can be observed
that existing works mainly consider service deployment strate-
gies with various greedy and heuristic techniques [12], [21].
Moreover, very few works consider the identification of IIoT
executable tasks and intelligent service deployment strategy
combined for complex industrial applications. In specific, DRL

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 3

techniques are capable of making error-free decisions and
simultaneously handle devices dynamic service requests in the
unseen industrial environment by optimizing various network
and system parameters. In summary, the challenging issues
are “how to design an efficient task execution strategy for
identifying executable data on the IIoT devices”, and “how to
develop an intelligent service deployment framework for delay
restricted industrial edge environment”. The current study
complements the use of state-of-the-art DRL techniques with
a significant focus on the intelligent decision-making system
and optimizing energy consumption rate and processing delay
in the industrial networks. A summary of the current related
strategies is presented in Table. I.

TABLE I
COMPARATIVE STUDY AMONG THE SERVICE DEPLOYMENT STRATEGIES

Existing
works

Task
classification

Trade-off
analysis

Low complexity
framework

Service
deployment

Intelligent
decisions

[2] X × × X ×
[4] × × X X X
[6] × × × X ×
[8] × × × X X
[11] × × X X X
[12] X × X X ×
[13] X × × X ×
[15] × × X X X
[20] × X X × ×
[21] × × × X X

Our work X X X X X

III. NETWORK MODEL

Considering an edge-enabled industrial networks with a set
of IIoT devices M = {M1,M2, . . . ,MI} and a set of edge
server, denoted by S = {S1,S2, . . . ,SJ}, are randomly and
uniformly distributed over the edge networks [13], depicted in
Fig. 1. Let an IIoT device Mi executes and simultaneously
offloads a set of tasks to the ST, which is equipped with
edge server Sj . We assume a service request generated from
a IIoT device Mi with random arrival probability λi, can be
described asMi = 〈Di,Oi, T max

i 〉, where Oi is the requested
data size, Di is the computation requirement, and T max

i is
the service processing strict deadline. Let, for a user Mi, Di
amount of computation cycle is demanded to perform Oi-
bit data. Considering a binary service deployment scenario
with the assignment vector Γi ∈ {0} ∪ {1}, where Γi = 0
denotes the local execution, otherwise request services to
edge servers S . Ideally, IIoT devices M strive to process
the incoming tasks locally. However, due to the inadequate
CPU frequency (QIIoT

i) of the IIoT device Mi, the services
are forwarded to the remote processing device Sj (e.g., edge
server) that should satisfy minimum latency and resource
requirements [17]. For the model uniformity, we consider IIoT
devices M can transmit multiple service requests; however,
each service request can be accepted by at most one edge
server Sj , i.e.,

∑
i∈|M|

∑
j∈|S| Γi ≤ |Sj |. Table II summarizes

the key notations used in this article.

A. Local Execution Model

Initially, the set of IIoT devices M decide to process the
incoming tasks on-device. Let QIIoT

i denotes the computation
frequency [cycle/second] of a IIoT device Mi. The task

TABLE II
IMPORTANT NOTATIONS

Symbols Definition

M Total number of IIoT devices in the edge networks
S Total number of edge servers in the industrial networks
λi Arrival rate of a service request with random probability
Pi Transmission power of the IIoT device Mi

Oi Size of the IIoT generated service request
Di Computation requirement of each service request
T max
i Execution deadline of each service request

Γi Binary service deployment decision vector for Mi

QIIoT
i Computation frequency of each IIoT device Mi

QMEC
j CPU frequency of the jth processing device

Rij Data transmission rate for each service request
Dmax CPU-bound on the IIoT devices M
Omax Memory-bound on the IIoT devices M
Wi Transmission bandwidth for IIoT devices Mi

Tprocess
i Processing delay on the remote computing device Sj

Eprocess
i Energy consumption on a remote computing device Sj

Tupload
i

Data transmission time from IIoT device Mi

Eupload
i

Energy consumption for data transmission
TMEC
i Total delay in executing a service request on a server Sj

EMEC
i Total energy consumption on the edge server Sj

execution delay TIIoT
i on the IIoT deviceMi can be expressed

as follows.

TIIoT
i =

(
1−

∑
i∈M Γi

)
OiDi

QIIoT
i

(1)

Now, we present the energy consumption of a device Mi

as k
(
QIIoT
i

)3
[22], where k is the chip coefficient of the IIoT

deviceMi. Thus, the corresponding energy consumption EIIoT
i

on the IIoT device Mi is represented as follows.

EIIoT
i =

(
1−

∑
i∈M

Γi

)
OiDik

(
QIIoT
i

)2
(2)

B. Service Deployment

IIoT service deployment comprises two phases: uplink data
transmission (i.e., through wireless access) and edge server
processing. Let Yi,j be the channel gain between IIoT device
Mi and ST Sj , and Pi be the consumable transmission
power of the IIoT device Mi. According to the Shannon
formula, the data transmission rate Ri,j to request a service
on the computing device Sj with noise Di can be given by
Ri,j = Wilog2

(
1 +

PiYi,j

Di

)
. Where Wi be the achievable

transmission bandwidth between Mi and Sj [6]. Based on
Ri,j , the uplink transmission time Tupload

i and transmission
energy Eupload

i to deploy a request on the computing device
Sj can be expressed as follows.

Tupload
i =

∑
i∈M

∑
j∈S

ΓiOi
Ri,j

(3)

Eupload
i =

∑
i∈M

∑
j∈S

ΓiOi
Ri,j

Pi (4)

After receiving, services are being started processing in the
edge server. Denote QMEC

j be the computational capacity of

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 4

the edge server Sj . Then, the task processing delay Tprocess
i

and execution energy consumption Eprocess
i to process the IIoT

service requests on edge server Sj can be represented by.

Tprocess
i =

∑
i∈M

∑
j∈S

ΓiOiDi
QMEC
j

(5)

Eprocess
i =

∑
i∈M

∑
j∈S

ΓiOiDik(QMEC
j)

2
(6)

Throughout this experiment, we consider the industrial edge
server Sj has more innumerable computation frequency than
the IIoT device Mi and service request Di, i.e., QIIoT

i <<
QMEC
j and Di << QMEC

j . Considering a static CPU cycle
of device Mi while deploying a service request on server
Sj , then the overall latency TMEC

i to process an IIoT service
request on the edge server can be expressed as TMEC

i =

Tupload
i + Tprocess

i =
∑
i∈M,j∈S

(
ΓiOi

Ri,j
+ ΓiOiDi

QMEC
j

)
.

Consequently, the total energy consumption EMEC
i to process

the same service request will be EMEC
i = Eupload

i + Eprocess
i =∑

i∈M,j∈S

(
ΓiOi

Ri,j
Pi+

∑
j∈S ΓiOiDik(QMEC

j)
2
)

. It is inher-
ent to perceive that the storage and processing requirement of
a service request should not surpass the maximum capability
of the selected edge server Sj and is defined as follows.∑

i∈M

∑
j∈S

ΓiOiDi ≤ QMEC
j , ∀i ∈M,∀j ∈ S (7)

Moreover, processing delay on the IIoT device Mi and
edge server Sj for each service request must be confined by
maximum tolerable delay T max

i , can be expressed as follows.

∑
i∈M

{
1(Γi = 0)TIIoT

i + 1(Γi 6= 0)TMEC
i

}
≤ T max

i (8)

where, 1(.) is a indicator function and 1(.) = 1 once the
event is true, otherwise 0. In this model, we exclude the energy
consumption and delay overhead of downloading results from
the edge server because the downloading data size is as tiny
as 1/30 times the original uploading data size. Moreover,
the downloading energy consumption is 5.5 times lower than
the uploading energy [23]. As a consequence, we ignore the
calculation of energy consumption for downloading the result.

C. Problem Formulation

Based on the above derivations, we formulate a service
deployment optimization model in which a set of tasks are
performed on IIoT devices M, and the remaining tasks are
transferred to the edge servers S for execution. Given the
service deployment vector for devices Γ = {Γ1,Γ2, . . .ΓI}
and resource provisioning vector for edge server Q =
{QMEC

1 ,QMEC
2 , . . . ,QMEC

J }, we can derive the overall latency
Ttotal(Γ,Q) and energy decay Etotal(Γ,Q) for various comput-
ing devices as follows.

Ttotal
i (Γ,Q) = 1(Γi = 0)TIIoT

i + 1(Γi 6= 0)TMEC
i (Γ,Q) (9)

Etotal
i (Γ,Q) = 1(Γi = 0)EIIoT

i + 1(Γi 6= 0)EMEC
i (Γ,Q) (10)

The key objective of this paper is to optimize the weighted
sum of energy Etotal

i (Γ,Q) and delay Ttotal
i (Γ,Q) of all IIoT

devices M in the edge-enabled industrial networks, which
is represented as J (Γ,Q) =

∑
i∈M

∑
j∈S

(
αEtotal

i (Γ,Q) +

βTtotal
i (Γ,Q)

)
, where α+β = 1 and α, β ∈ [0, 1], respectively.

Further, the resource constraint
∑
i∈M 1(Γi 6= 0)Qi ≤ Qmax

is a hard deadline constraint. In addition, there could be no fea-
sible solution that satisfies both

∑
i∈M 1(Γi 6= 0)Qi ≤ Qmax

and
∑
i∈M Ttotal

i (Γ,Q) ≤ T max
i . Thus we consider T max

i as
the soft deadline constraint as presented in [24] and added
a penalty function

∑
i∈Mmax[Ttotal

i (Γ,Q) − T max
i , 0] with

J (Γ,Q) while making the objective as follows.

J (Γ,Q) =
∑
i∈M

∑
j∈S

(
αEtotal

i (Γ,Q) + βTtotal
i (Γ,Q)

)
+ ν

∑
i∈M

max
[
Ttotal
i (Γ,Q)− T max

i , 0
] (11)

where ν is a constant positive weight for the penalty
function. Thus, the formulated service deployment strategy and
the associated QoS constraints for the edge-enabled industrial
networks are expressed as follows.

minimize
Γ,Q

J (Γ,Q) (12a)

subject to Γi ∈ {0} ∪ {1}, ∀i ∈M, (12b)
Wi ≥ 0, ∀i ∈M, (12c)∑
i∈M

1(Γi 6= 0)Qi ≤ Qmax, (12d)∑
i∈|M|

Γi = 1, ∀i ∈M, (12e)

∑
i∈|M|

∑
j∈|S|

Γi ≤ |S|, ∀j ∈ S, (12f)

QIIoT
i ≥ 0, and QMEC

j ≥ 0, (12g)

where Γ = {Γi| ∀i ∈M} and Q =
{
QMEC
j | ∀j ∈ S

}
.

In the above formulation, constraint (12b) represents the
services generated from IIoT devices M are executed on its
own device or request to the edge servers S. The available
transmission bandwidth Wi of IIoT device Mi is either 0
or positive, as given in constraint (12c). Constraint (12d)
specifies that the maximum computation resource Qmax

i on
the edge server cannot exceed the total required computation
resources

∑
i∈M 1(Γi 6= 0)Qi. Constraint (12e) restricts the

service deployment decision
∑
i∈M Γi to each IIoT device

Mi is at most 1. Constraint (12f) presents the total number
of service requests are within the capacity of the edge server
Sj . Finally, constraint (12g) defines the non-negative feature
of computation resources.

IV. PROPOSED STRATEGY

In this work, we intend to collectively optimize the distribu-
tion of communication and computation resources in various
computing devices to achieve the least possible delay and
energy consumption rate for the next-generation of industrial
networks. To confirm this, we split the intended service

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 5

deployment strategy into two phases: at first, a heuristic-
based task execution strategy is employed to identify IIoT
executable tasks, then we outline a DRL-based service deploy-
ment strategy for optimizing delay and corresponding energy
consumption over the edge-enabled industrial environment.
The detailed study of these strategies are explained below.

A. Task Execution Strategy

Execution of each IIoT-generated task is the preprocessing
step of the proposed service deployment technique. Initially,
the IIoT device Mi stores all the generated tasks in a local
queue for making task execution decisions Γi based on two
QoS parameters. Denote x− type be the executable tasks i.e.,
x− type ∈ {i− type, s− type}. Here, i− type represents the
IIoT executable tasks, and s− type defines server executable
tasks. The task execution strategy takes decisions based on
data input size Oi and CPU clock speed Di. This strategy also
consider CPU-bound Dmax and memory-bound Omax (IIoT
decided parameter) to restrict the computation overhead in
IIoT devicesM. Thus we have the following policies for each
device Mi at the initial stages of time t.

• i−type tasks: IIoT deviceMi creates a task list for all the
executable tasks, where each task must satisfy i−type ={
Mi ∈ M | (Oi ≤ Omax) ∩ (Di ≤ Dmax)

}
, ∀i ∈ M.

These i − type tasks are finally processed in the IIoT
device Mi.

• s − type tasks: Similarly unsatisfied tasks are kept in a
separate list, where each task set must satisfy s− type ={
Mi ∈ M | (Oi,Di ≥ Omax,Dmax) ∪ (Oi ≥ Omax) ∪

(Di ≥ Dmax)
}
,∀i ∈ M. Due to the limited computa-

tional capacityQIIoT
i of IIoT deviceMi, s−type tasks are

not executed on IIoT device Mi and request additional
assistance from the edge server Sj .

From the above execution policy, we can define a sym-
metric difference relation between i − type and s − type
with respect to task execution as i − type ∆ s − type ={
Mi | (Mi ∈ i− type ∪Mi ∈ s− type)∩Mi /∈ (i−type∩
s − type)

}
i.e., each task strictly follow these relations for

execution. The detailed steps are summarized in Algorithm 1.

Algorithm 1: Task Execution algorithm

1 INPUT: M, Oi and Di
2 OUTPUT: Task execution decision

1: Initialize x− type tasks with attributes Oi and Di
2: Initialize Dmax and Omax

3: for i = 1 to |M| do
4: if (Oi ≤ Omax) ∩ (Di ≤ Dmax) then
5: Execute tasks on IIoT device Mi

6: end if
7: if (Oi,Di ≥ Omax,Dmax) ∪ (Oi ≥ Omax)

∪ (Di ≥ Dmax) then
8: Request for additional services from server Sj
9: end if

10: end for

B. DRL-Based Service Deployment

The key objective of adopting the DRL technique is to
intelligently optimize the devices dynamic service requests
and minimize the utilization of energy consumption rates Etotal

on edge servers S . DRL combines the Deep Neural Network
(DNN) and RL into the solution, enabling agents to obtain
the best decision from unorganized sets of inputs. Moreover,
this dynamic nature of the environment can be expressed as
a Markov Decision Process (MDP) based state-action-reward
problem. MDP helps in solving a problem when probability
or rewards are untold. Moreover, it provides a viable solution
that will eventually converge to an optimal solution.

1) MDP-based Learning: The problem of intelligent ser-
vice deployment strategy for the IIoT devices M can be for-
mulated as a finite MDP with four attributes X = (S,A,R,P),
where S signifies the system state, A denotes the action space
and P(st+1|st, at) denotes the transition probability between
state st ∈ S and st+1 ∈ S, and R(st, at) represents the
immediate reward [25]. In general, an agent makes a transition
from state st to st+1 using action a ∈ A and obtain immediate
reward R(st, at) with probability P(st+1|st, at), which maps
state to action defined by a policy π, i.e., π(st) = at. The
primary goal of MDP is to get optimal policy π∗(st) busing
the best possible action a∗ in order to maximize reward R over
the long run. Therefore, to define MDP, we begin by describing
the essential factors of DRL, namely the state, action, and
reward.
• State : To evaluate the service deployment strategy as an

MDP problem, we define system states for reaching accurate
service deployment decisions at the time of t as below.

S = {st = (Γ(t), Q(t)}
= {Γ1(t),Γ2(t), . . . ,ΓI(t),Q1(t), . . . ,QJ(t)}

(13)

Specifically, the system state st is a 1 × (IJ) dimensional
vector, which incorporates all the devices service deployment
decisions

(
Γi(t) ∈ {0} ∪ {1}

)
∀i∈M and corresponding com-

putational resources
(
Qj(t) ∈ [0,Qmax]

)
∀j∈S in the environ-

ment.
• Action : For the DRL technique associating with the IIoT

device Mi, the action at ∈ A represents the desired service
deployment decisions on edge server Sj , defined as follows.

A = {at = {a1(t), a2(t), . . . , aI(t)} | ai(t) ∈ amax} (14)

where amax denotes the maximum number of service re-
quests, processed by the edge server Sj . In practice, MDP
converges fastly to an optimal policy π∗(st) by taking appro-
priate actions A over the industrial environment.
• Reward : Given a particular state st and action at,

the industrial environment makes the error-free decision to
reach st+1 from st, where the primary goal is to maximize
long term reward R(.) and minimize delay-energy rate J (.)
of each device. For notational simplicity, we use Jst(Γ,Q) =
J (Γ(t),Q(t)} as the objective function. Therefore, we define
the immediate reward R(st, at) for the state-action pair (st, at)
as follows.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 6

Replay memory

Mini-batch

Loss

Policy

St
at

e

R
ew

ar
d

Action

Weight update

Best action

En
vi

ro
nm

en
t

ReLU ReLU

...
1 0 1 1...

Small-cell
tower

Upload

IIoT#2

1 0 1 1...
Download

Tasks Tasks

Upload Download

Store

IIoT#1

Fig. 2. Illustration of DRL-based service deployment strategy.

R(st, at) = Jst(Γ,Q)− Jst+1
(Γ,Q) (15)

2) Proposed DRL-based Solution: To find the solution to
the above MDP-based problem, we introduce the well-known
Deep Reinforcement Learning (DRL) algorithm as illustrated
in Fig. 2. DRL is an online model-free learning approach,
which provides a viable solution in larger state-action (st, at)
space, where an agent (IIoT device Mi) interacts with the
environment and selects action at through policy π for state
st in a fashion that maximizes the expected long-term reward
in discrete timestamp t [26], which is given by.

Q∗(s, a) = max
π

E
[
rt +

∞∑
b=1

γbrt+b|st = s, at = a, π
]

(16)

where E[.] represents the expectation of a function, and γ
is the discount factor. Furthermore, the system uses a gradient
descent algorithm to update loss and is represented as follows.

Lt(Θt) = Est,at,rt,st+1∼P(.)

[(
Yt −Q(st, at; Θt)

)2]
(17)

where Θt denotes the weight vector of the neural network.
Further, Yt is called the TD (temporal difference) target and
can be expressed as follows.

Yt = rt + γ max
a′

Q
(
st+1, a

′; Θt−1

)
(18)

Here, weights Θ are used to minimize the squared error be-
tween predicted Q(st, at) and targeted rt+γ max

a′
Q(st+1, a

′)

value. We adopt the experience replay memory ζ technique to
reduce the complexity of larger state-action space. The idea is
to store the recent state-action pairs (st, at) in a large memory
buffer as experiences. Once the memory is full, less frequently
used samples are replaced with current or frequently used
examples. Hence search space is also reduced to the size of
the replay memory ζ. For faster convergence, adaptive moment
estimation (Adam) is used to train the network parameters.

3) Learning Process: The learning mechanism for DRL
appears to be different from that of a traditional deep learning
model, where a batch of training samples are fed into the target
and learning network [17]. Then loss Lt(Θt) is calculated
in the forward propagation by the difference between reward
values and weights Θ are adjusted with partial derivative ∇Θt

of the loss function, which can be derived as follows.

Θ← Adam
(
Θ, α∇ΘtLt(Θt)

)
(19)

Further, we can derive the loss function as.

Lt(Θt) = Est,at,rt
[
Vs (Yt)

]
+

Est,at,rt,st+1

[(
Yt −Q(st, at; Θt)

)2] (20)

where Vs (Yt) defines the value function. From the Lt(Θt)
we can derive the derivative of the loss function as follows.

∇Θt
Lt(Θt) = ∇Θt

Est,at,rt
[
Vs
(
Yt
)]

+

∇Θt
Est,at,rt,st+1

[(
Yt −Q(st, at; Θt)

)2]
= ∇Θt

Est,at,rt,st+1

[(
Yt −Q(st, at; Θt)

)2]
(21)

Since Est,at,rt
[
Vs (Yt)

]
is independent from weight Θ, we

simply ignore this term from the partial derivative. Now by
substituting the value of Yt = rt + γ max

a′
Q(st+1, a

′; Θt−1)

in (21), we can derive the gradient of Lt(Θt) as follows.

∇ΘtLt(Θt) = Est,at,rt,st+1

[(
rt + γ max

a′
Q(st+1, a

′;

Θt−1)− Q(st, at; Θt)
)
∇Θt

Q
(
st, at; Θt

)] (22)

Finally weights are updated in the DRL environment as Θ =
Θ + α∇Θt

Lt(Θt). The detailed steps of the proposed DQN-
based solution are presented in Algorithm 2.

Theorem 1. For a distributed industrial edge networks with
two critical time utilities (Ti1,Ti2) and a speedup factor F ,
the task offloading decision always follows the requirements
TIIoT
i > max(Ti1,Ti2) and Ti1

Ti2
< 1. Where Ti1 and Ti2 are

the coefficients of processing delay and energy consumption.
Proof: Let Tupload

i denote the data transmission time to a
edge server. In order to improve system performance, the
computation time on remote computing device including trans-
mission and processing should be less than the computation
time on the IIoT devices as follows TIIoT

i > Tprocess
i + Tupload

i .
Therefore, it is worth offloading when processing on the
remote computing device is faster rather IIoT devices. Sim-
ilarly to save energy consumption rate, IIoT devices always
offload tasks when, Pmi TIIoT

i > Pidle
i Tprocess

i + PiTupload
i . Let

TIIoT
i = FTprocess

i , where F > 1 is the speedup indicator for
computing devices. Further to improve performance and save
energy, task offloading has to satisfy the following conditions.

TIIoT
i >

TIIoT
i

F
+ Tupload

i (23)

Pmi TIIoT
i > Pidle

i

TIIoT
i

F
+ PiTupload

i (24)

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 7

Algorithm 2: Service Deployment algorithm

1 INPUT: M, S, Wi, Oi, Di, k, Pi, and Yi,j
2 OUTPUT: a∗t : Best action, π∗(st): Optimal decision

1: Initialize replay memory ζ
2: Initialize state st, action at and weight Θt

3: for i = 1 to M do
4: On state st execute action at
5: Recognize nest state st+1 and immediate reward rt
6: Calculate objective function J (Γ,Q)
7: Store current information (st, at, rt, st+1) into ζ
8: Choose mini-batch samples from memory ζ
9: Calculate Yt = rt + γ max

a′
Q(st+1, a

′; Θt−1)

10: Update loss function utilizing Yt and Q(st, at) as
Lt(Θt) = Est,at,rt,st+1∼P(.)

[
(Yt −Q(st, at; Θt))

2
]

11: Update weights as Θ← Adam
(
Θ, α ∇Θt

Lt(Θt)
)

where Θ =
Θ + α Est,at,rt,st+1

[(
rt + γ max

a′
Q(st+1, a

′; Θt−1)−

Q(st, at; Θt)
)
∇Θt

Q
(
st, at; Θt

)]
12: Update the target network
13: Take best action a∗t and accurate decision π∗(st)
14: end for

The inequalities in (23) and (24) maintains larger F , small
Oi and larger Ri,j values. Let Ti1 and Ti2 be the two time
values and when TIIoT

i arrives at the equilibrium point in (23)
and (24), then according to Wu et al. [27] we have.

Ti1 =
Ti1

F
+ Tupload

i ⇒ Ti1 =
Tupload
i

1− 1
F

(25)

Pmi Ti2 > Pidle
i

Ti2

F
+ PiTupload

i ⇒ Ti2 =
PiTupload

i

Pmi −
Pidle
i

F

(26)

Equation (25) and (26) requites 1− 1
F > 0 and F >

Pidle
i

Pm
i

.
Especially when Pidle

i = Pi, inequality in (24) reduced to
TIIoT
i >

Pidle
i

Pm
i

(
TIIoT
i

F + Tupload
i

)
. Therefore, in order to minimize

the processing time, meanwhile to extend battery life, TIIoT
i

has to meet the bellow requirement TIIoT
i > max(Ti1,Ti2).

Which fulfil the first condition. Further to compare Ti1 and

Ti2, we consider Ti1

Ti2
=

Tupload
i

1− 1
F
.
Pm

i −
Pidle
i
F

PiTupload
i

< 1, which also satisfy
the second condition and this completes the proof.

C. Complexity Analysis

The overall complexity of our service deployment strategy
relies on both task execution strategy and DRL-based strategy.
In Algorithm 1, IIoT executable tasks are identified in O(1)
times. For |M| number of devices, the complexity will be
|M| × O(1), i.e., O(|M|), which is polynomial in time.
Next, in Algorithm 2, the MDP model considers input state
as offloading decision Γi and computation capability of the
edge server QMEC

j . Hence, the DRL has (1× IJ) dimensional
vector as input. Let DNN contain K numbers of neurons in
the hidden layer and E numbers of neurons in the output

layer. If the DNN contains L hidden layer, then the required
multiplication operation is (1 × IJ) × K + L × K + K ×
E = O(K((1 × IJ) + L + E)) and can be simplified into
O(K(IJ + L + E)). To be more precise, the complexity
of applying the activation function is O(L × K). Now the
complexity becomes O(K(IJ + L + E + L)) which can be
further simplified into O(K(IJ +E + L)). Since the service
deployment decision is with O(I) times. The overall run-time
computational complexity becomes O(|M|)+O(K(IJ+E+
L)) ≈ O(K(IJ + F + L)) as |M| << K(IJ + E + L).

V. PERFORMANCE EVALUATION

In this section, we examine the performance of the in-
tended DRL-based service deployment strategy with numerous
performance metrics. For the comparative analysis, we study
four standard service deployment strategies, such as local
execution, cloud execution, heuristic DPTO [21] and stochastic
EETO [13] algorithms, respectively.
• Local execution: In the local execution strategy, re-

quested services are processed in the IIoT devices without
considering the provision of the cloud server. Though
this strategy eliminates service deployment process but
increases computation overhead among the IIoT devices.

• Cloud execution: In the cloud execution strategy, all
the requested services are carried to randomly selected
computing devices without considering the availability of
the storage and computational resources.

TABLE III
SIMULATION PARAMETERS

Parameters Values
Number of IIoT devices (M) [20,50]
Number of edge-enabled small-cell towers (S) [4,7]
Transmission bandwidth of IIoT device (Wi) 20MHz
Transmission noise for IIoT device (Di) 10−9W
Service deployment vector of IIoT device (Γi) {0,1}
CPU requirement of the service request (Di) 1900
CPU frequency of the IIoT device (QIIoT

i) 4×107

Size of the replay memory (ζ) 50000
Input data size (Oi) [5,50] Mb
CPU frequency of the remote server (QMEC

j) 40×109

Task arrival rate on IIoT device (λi) 0.5
Transmission power of the IIoT device (Pi) 500mW

A. Simulation Setup

For the experimental analysis, we use an Intel i7 CPU
with 10GB RAM and Python language for training this
network. More precisely, we use TensorFlow, Keras-rl2 and
GYM OpenAI open-source libraries, which are widely adopted
for executing DRL-based techniques. In the simulation, we
consider a ST base station with radius 60m. We set number
of IIoT devicesM = [20, 50], ν = [1.5,2.5], small-cell towers
S = [4, 7], transmission bandwidth Wi = 20MHz, data size
Oi = [5, 50] Mb, noise Di = 10−9W, and transmission power
Pi = 500mw. Further, we consider processing requirement
Di = 1900 [cycles/byte], processing capacity of IIoT device
QIIoT
i = 4×107 and ST server QMEC

j = 40×109, respectively.
Moreover, we consider learning rate 0.001, number of episode
100000, discount factor γ = 0.8 and batch size {16,32,64}.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 8

Other parameters are considered from [12], [28] and [21],
respectively. Detailed simulation parameters are presented in
Table III.

10 20 30 40 50

30

60

90

120

150

Executable data from IIoT devices

O
ve

ra
ll

de
la

y
T

to
ta

l

IIoT device
Edge server

(a)

10 20 30 40 50

30

60

90

120

150

Executable data from IIoT devices

A
ve

ra
ge

de
la

y
T

to
ta

l

Local execution
Cloud execution
DPTO approach
EETO approach
Proposed DRL

(b)

Fig. 3. Delay performance analysis, (a) On various computing devices. (b)
Comparison with standard baseline algorithms.

B. Average Delay

The Average delay Ttotal of a set of tasks represents the
combination of average delay on the IIoT devices M and
edge servers S, where the edge server delay TMEC included
transmission delay Tupload

i and processing delay Tprocess
i in the

small-cell edge networks. In other words, this metric tells
us how long the tasks generated through IIoT devices M
had waited before they started processing. From TMEC

i =∑
i∈M,j∈S

(
ΓiOi

Ri,j
+ ΓiOiDi

QMEC
j

)
it can be observed that the com-

putation delay TMEC
i on remote computing device Sj can

be optimized by increasing the data transmission rate Ri,j
and CPU frequency QMEC

j of the edge server Sj . Further
from TIIoT

i = (1−
∑
i∈M Γi)OiDi/QIIoT

i it is also noted
that the processing delay TIIoT

i on the IIoT device Mi can
be minimized by increasing the CPU frequency on the IIoT
device QIIoT

i . Fig. 3(a) represents the normalized delay Ttotal

performance of the network on various computing devices,
whereas Fig. 3(b) illustrates the comparative analysis of the
proposed DRL-based strategy with standard baseline algo-
rithms. Results show that the proposed strategy performs better
as compared with local execution, cloud execution, DPTO,
and EETO strategies while optimizing average delay upto
23%, 21%, 16%, and 18%, respectively. Specifically, the task
execution strategy assists in reducing the computation overload
from the IIoT devices while overcoming the complexity of the
decision-making process. Thus, overall computation time also
reduces from edge-enabled industrial networks.

C. Average Energy Consumption

The overall energy consumption Etotal for a set of service
requests can be determined by processing energy EIIoT

i on
the local IIoT device Mi, transmission energy consumption
Eupload
i on the IIoT device, and processing energy consumption

Eprocess
i on the remote computing device. From the formu-

lation EIIoT
i =

(
1 −

∑
i∈M Γi

)
OiDik

(
QIIoT
i

)2
and EMEC

i =∑
i∈M,j∈S

(
ΓiOi

Ri,j
Pi+

∑
j∈S ΓiOiDik(QMEC

j)
2
)

, the energy
consumption depends on the data size Oi and CPU frequency

10 20 30 40 50

10

20

30

40

50

Executable data from IIoT devices

O
ve

ra
ll

en
er

gy
E

to
ta

l

IIoT device
Edge server

(a)

10 20 30 40 50

30

60

90

120

150

Executable data from IIoT devices

A
ve

ra
ge

en
er

gy
E

to
ta

l

Local execution
Cloud execution
DPTO approach
EETO approach
Proposed DRL

(b)

Fig. 4. Energy performance analysis, (a) On various computing devices. (b)
Comparison with standard baseline algorithms.

of the IIoT device QIIoT
i . Whereas the energy consumption

on remote computing device EMEC
i is directly depends on

transmission power Pi of the IIoT device and the CPU fre-
quency QMEC

j of the computing server Sj . Fig. 4(a) represents
the amount of normalized energy consumption Etotal rate on
various computing devices while executing a set of service
requests and Fig. 4(b) depicts the energy-based performance
analysis of our DRL-base strategy with existing algorithms.
It is interesting to notice that the proposed strategy reduces
the energy consumption rate Etotal upto 13%, 11%, 8%, and
9% as compared with local execution, cloud execution, DPTO,
and EETO strategies while satisfying the maximum number of
service requests within the delay bound T max. The reason is
that the proposed DRL-based strategy considers the offloading
variable Γ(t) and currently available resources Q(t) of various
computing devices for making the accurate decision π∗(st)
over the industrial networks.

0 20000 40000 60000 80000100000
Iteration

0

100

200

300

400

Ov
er

al
l S

ys
te

m
 C

os
t

(a)

0 20000 40000 60000 80000100000
Iteration

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

Ov
er

al
l S

ys
te

m
 C

os
t

(b)

Fig. 5. Performance analysis of the industrial edge networks, (a) Using
random offloading strategy. (b) Using MDP based state-action-reward policy.

D. Training of DRL Technique

This metric represents the run-time performance of the
industrial environment, where the implementation of the DRL
strategy largely depends on the number of hidden layers,
an output layer, and input data size Oi. For training the
DRL model, we define a MobileEnv environment with four
functions as Init, CalReward, Step, and Reset. At
first, system performance J (Γ,Q) is considered using random
offloading strategy presented in Fig. 5(a). Then we study
the MDP-based state-action-reward approach and calculate
objective J (Γ,Q) with random values. Surprisingly, MDP
reduces overall system performance up to 10-20 times, as

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 9

20000 40000 60000 80000 100000
Iterations

80

81

82

83

84

85

Tr
ai

ni
ng

 ti
m

e

(a) IIoT#1

20000 40000 60000 80000 100000
Iterations

82
84
86
88
90
92

Tr
ai

ni
ng

 ti
m

e

(b) IIoT#2

20000 40000 60000 80000 100000
Iterations

84
85
86
87
88
89
90
91
92

Tr
ai

ni
ng

 ti
m

e

(c) IIoT#3

20000 40000 60000 80000 100000
Iterations

87
88
89
90
91
92
93

Tr
ai

ni
ng

 ti
m

e

(d) IIoT#4

20000 40000 60000 80000 100000
Iterations

90

92

94

96

98

Tr
ai

ni
ng

 ti
m

e

(e) IIoT#5

Fig. 6. Run-time complexity using DRL technique on, (a) IIoT device#1. (b)
IIoT device#2. (c) IIoT device#3. (d) IIoT device#4 and (e) IIoT device#5.

IIoT#1 IIoT#2 IIoT#3 IIoT#4 IIoT#5
Name of devices

0

200

400

600

800

Tr
ai

ni
ng

 ti
m

e

(a)

IIoT#1 IIoT#2 IIoT#3 IIoT#4 IIoT#5
Name of devices

0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Av
er

ag
e

re
wa

rd

(b)

RMSprop Adam SGD Adamax
Name of optimizations

0

200

400

600

800

1000

Tr
ai

ni
ng

 ti
m

e

(c)

Fig. 7. Training performance, (a) Various IIoT devices for execution time. (b)
Average reward on IIoT devices. (c) With various optimization techniques.

illustrated in Fig. 5(b). Further, to optimize the edge resources
J (Γ,Q), we define a DNN network with 3 hidden layers
and 1 output layer. We import the hidden layers as dance
layer, activation as ReLU, and for the last layer, we took
the Softmax function. To iterate the DRL over the entire
environment, we run the model up to 100000 independent
iterations with 4 optimization techniques and plot the run-
time complexity for five different devices in Fig. 6 and Fig. 7.
Moreover, for four different optimizer, such as RMSprop,
Adam, SGD, and Adamax, the computational complexity are
950.693, 960.727, 922.164, and 953.491 (in second) time,
which is also depicted in Fig. 7(c). On the other hand, the
overall system performance J (Γ,Q), as shown in Fig. 8(a)
also optimized over the industrial edge networks, and the
proposed DRL technique obtained better results compared
with standard algorithms. Similar types of analysis are also
found with varying the computational capacity QMEC

j of the
edge server Sj in Fig. 8(b).

E. Reward Calculation

The reward function R(st, at) allows the DRL technique
to conclude a decision Γi instead of arriving at a prediction.
For obtaining maximum reward from the proposed environ-
ment, we train the DRL model up to 100000 iterations,
where the best set of hyper-parameters is considered for
performance improvement. We consider four popular neu-
ral network optimizer such as Adam, RMSprop, SGD, and
Adamax for reward calculation. Moreover, The policy is
taken as BoltzmannQPolicy, sequential memory limit in
50000, error metric as Mean Absolute Error (MAE), and total

10 20 30 40 50

30

60

90

120

150

Executable data from IIoT devices

S
ys

te
m

pe
rf

or
m

an
ce

(J
)

Local execution
Cloud execution
DPTO approach
EETO approach
Proposed DRL

(a)

10 20 30 40

30

60

90

120

150

Server frequency QMEC
j × 10−9

S
ys

te
m

pe
rf

or
m

an
ce

(J
)

Local execution
Cloud execution
DPTO approach
EETO approach
Proposed DRL

(b)

Fig. 8. Overall system performance, (a) Varying the number of IIoT devices
M. (b) Varying the computation frequency on the edge server Sj .

trainable parameters are 11,744. Further, we generate training
samples through a random process. Fig. 9(a) shows the system
reward on the industrial edge environment using random action
strategy, and Fig. 9(b) illustrates the overall system reward
of the DRL-based method with various networks optimiza-
tion techniques. From Fig. 9(b) we can observe that the
performance of the Adam optimizer is comparatively better
than other optimization techniques. Besides that, Adam joins
the most valuable features of the RMSProp and AdaGrad
algorithms to handle sparse gradients in a noisy environment.
The analysis also confirms that the proposed DRL technique
obtains high reward values compared with the random service
deployment strategy.

0 20000 40000 60000 80000100000
Iteration

30
20
10

0
10
20
30

Re
wa

rd

(a)

0 20000 40000 60000 80000100000
Iteration

20
0

20
40
60
80

100

Re
wa

rd

(b)

Fig. 9. Performance analysis for calculating reward, (a) Using random action
strategy. (b) Using proposed DRL-based strategy.

The preceding experimental analysis confirms that the pro-
posed service deployment technique on the edge environment
indeed determines the responsibilities and difficulties of the
existing edge server and industrial networks with the DRL
technique. It operates efficiently under the massive service load
and reduces the overall energy consumption (Etotal) and delay
(Ttotal) while maximizing task execution rate.

VI. CONCLUSION

This paper investigates the service deployment and task
execution problem for all the IIoT-generated tasks in the
edge-enabled industrial networks intending to optimize the
weighted energy and delay. Despite its nature of being a mixed
binary nonlinear programming, we first sketch a heuristic-
based task execution strategy for choosing IIoT executable
tasks and then proposed a DRL-based service deployment
framework, which considers both the IIoT service requests and

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING , VOL. X, NO. X, SEPTEMBER 2020 10

available computing resources in the industrial environment.
Moreover, the proposed approach is intelligent in delivering
close-to-optimal solutions while achieving several deadline
constraints. Extensive simulation on various industrial and
network-level parameters guarantees that the proposed strategy
has the advantage of utilizing maximum computation resources
compared with baseline techniques. As a part of future work,
we will extend the proposed service deployment strategy for
healthcare applications and optimize objective function for
delay-restricted real-time applications.

VII. ACKNOWLEDGEMENT

This work is supported by DST (SERB), Government of In-
dia, under Grant EEQ/2018/000888 and UoH-IoE by MHRD,
India (F11/9/2019-U3(A)).

REFERENCES

[1] M. J. Piran, S. Verma, V. G. Menon, and D. Y. Suh, “Energy-Efficient
Transmission Range Optimization Model for WSN-Based Internet of
Things,” Computers, Materials and Continua, vol. 67, no. 3, pp. 2989–
3007, 2021.

[2] X. Xu, B. Shen, X. Yin, M. R. Khosravi, H. Wu, L. Qi, and S. Wan,
“Edge Server Quantification and Placement for Offloading Social Media
Services in Industrial Cognitive IoV,” IEEE Transactions on Industrial
Informatics, vol. 17, no. 4, pp. 2910–2918, 2021.

[3] G. Han, J. Wu, H. Wang, M. Guizani, J. A. Ansere, and W. Zhang, “A
Multicharger Cooperative Energy Provision Algorithm Based on Density
Clustering in the Industrial Internet of Things,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 9165–9174, 2019.

[4] P. Goswami, A. Mukherjee, M. Maiti, S. K. S. Tyagi, and L. Yang, “A
Neural Network Based Optimal Resource Allocation Method for Secure
IIoT Network,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[5] X. Xu, Q. Huang, X. Yin, M. Abbasi, M. R. Khosravi, and L. Qi,
“Intelligent Offloading for Collaborative Smart City Services in Edge
Computing,” IEEE Internet of Things Journal, vol. 7, no. 9, pp. 7919–
7927, 2020.

[6] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Stackelberg
Game for Service Deployment of IoT-Enabled Applications in 6G-aware
Fog Networks,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[7] Y. Ren, Y. Sun, and M. Peng, “Deep Reinforcement Learning Based
Computation Offloading in Fog Enabled Industrial Internet of Things,”
IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 4978–
4987, 2021.

[8] X. Xu, B. Shen, S. Ding, G. Srivastava, M. Bilal, M. R. Khosravi,
V. G. Menon, M. A. Jan, and W. Maoli, “Service Offloading with Deep
Q-Network for Digital Twinning Empowered Internet of Vehicles in
Edge Computing,” IEEE Transactions on Industrial Informatics, pp. 1–
1, 2020.

[9] P. Goswami, A. Mukherjee, P. Chaterjee, and L. Yang, “An Optimal
Resource Allocation Method for IIoT Network,” in Adjunct Proceedings
of the 2021 International Conference on Distributed Computing and
Networking, ser. ICDCN ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 31–36. [Online]. Available:
https://doi.org/10.1145/3427477.3429988

[10] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep Reinforce-
ment Learning-Based Adaptive Computation Offloading for MEC in
Heterogeneous Vehicular Networks,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 7, pp. 7916–7929, 2020.

[11] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf, “A Deep
Learning Approach for Energy Efficient Computational Offloading in
Mobile Edge Computing,” IEEE Access, vol. 7, pp. 149 623–149 633,
2019.

[12] M. Mukherjee, S. Kumar, C. X. Mavromoustakis, G. Mastorakis,
R. Matam, V. Kumar, and Q. Zhang, “Latency-Driven Parallel Task Data
Offloading in Fog Computing Networks for Industrial Applications,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6050–
6058, 2020.

[13] A. Hazra, M. Adhikari, T. Amgoth, and S. Srirama, “Joint Computation
Offloading and Scheduling Optimization of IoT Applications in Fog
Networks,” IEEE Transactions on Network Science and Engineering,
pp. 1–1, 2020.

[14] S. Iqbal, R. M. Noor, A. W. Malik, and A. U. Rahman, “Blockchain-
enabled adaptive learning-based resource sharing framework for IIoT
environment,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[15] S. Misra, S. P. Rachuri, P. K. Deb, and A. Mukherjee, “Multi-Armed
Bandit-based Decentralized Computation Offloading in Fog-Enabled
IoT,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[16] S. Chen, Y. Zheng, W. Lu, V. Varadarajan, and K. Wang, “Energy-
Optimal Dynamic Computation Offloading for Industrial IoT in Fog
Computing,” IEEE Transactions on Green Communications and Net-
working, vol. 4, no. 2, pp. 566–576, 2020.

[17] L. Ale, N. Zhang, X. Fang, X. Chen, S. Wu, and L. Li, “Delay-aware and
Energy-Efficient Computation Offloading in Mobile Edge Computing
Using Deep Reinforcement Learning,” IEEE Transactions on Cognitive
Communications and Networking, pp. 1–1, 2021.

[18] X. Chen and G. Liu, “Energy-Efficient Task Offloading and Resource
Allocation via Deep Reinforcement Learning for Augmented Reality
in Mobile Edge Networks,” IEEE Internet of Things Journal, pp. 1–1,
2021.

[19] W. Sun, J. Liu, and Y. Yue, “Ai-Enhanced Offloading in Edge Com-
puting: When Machine Learning Meets Industrial IoT,” IEEE Network,
vol. 33, no. 5, pp. 68–74, 2019.

[20] Z. Cao, P. Zhou, R. Li, S. Huang, and D. Wu, “Multiagent Deep Rein-
forcement Learning for Joint Multichannel Access and Task Offloading
of Mobile-Edge Computing in Industry 4.0,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 6201–6213, 2020.

[21] M. Adhikari, M. Mukherjee, and S. N. Srirama, “DPTO: A Deadline
and Priority-Aware Task Offloading in Fog Computing Framework
Leveraging Multilevel Feedback Queueing,” IEEE Internet of Things
Journal, vol. 7, no. 7, pp. 5773–5782, 2020.

[22] J. Li, A. Wu, S. Chu, T. Liu, and F. Shu, “Mobile Edge Computing
for Task Offloading in Small-Cell Networks via Belief Propagation,” in
2018 IEEE International Conference on Communications (ICC). IEEE,
2018, pp. 1–6.

[23] M. Sheng, Y. Wang, X. Wang, and J. Li, “Energy-efficient multiuser
partial computation offloading with collaboration of terminals, radio ac-
cess network, and edge server,” IEEE Transactions on Communications,
vol. 68, no. 3, pp. 1524–1537, 2020.

[24] S. Nath, Y. Li, J. Wu, and P. Fan, “Multi-user Multi-channel Computa-
tion Offloading and Resource Allocation for Mobile Edge Computing,”
in ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), 2020, pp. 1–6.

[25] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “Collaborative
AI-enabled Intelligent Partial Service Provisioning in Green Industrial
Fog Networks,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[26] D. Van Le and C. Tham, “A deep reinforcement learning based of-
floading scheme in ad-hoc mobile clouds,” in IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2018, pp. 760–765.

[27] H. Wu, Q. Wang, and K. Wolter, “Tradeoff between performance
improvement and energy saving in mobile cloud offloading systems,”
in 2013 IEEE International Conference on Communications Workshops
(ICC), 2013, pp. 728–732.

[28] W. Zhang, J. Wang, G. Han, S. Huang, Y. Feng, and L. Shu, “A Data Set
Accuracy Weighted Random Forest Algorithm for IoT Fault Detection
Based on Edge Computing and Blockchain,” IEEE Internet of Things
Journal, vol. 8, no. 4, pp. 2354–2363, 2021.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2021.3122178

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

