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COSCO: Container Orchestration using
Co-Simulation and Gradient Based Optimization

for Fog Computing Environments
Shreshth Tuli, Shivananda Poojara, Satish N. Srirama, Giuliano Casale and Nicholas R. Jennings

Abstract—Intelligent task placement and management of tasks in large-scale fog platforms is challenging due to the highly volatile
nature of modern workload applications and sensitive user requirements of low energy consumption and response time. Container
orchestration platforms have emerged to alleviate this problem with prior art either using heuristics to quickly reach scheduling
decisions or AI driven methods like reinforcement learning and evolutionary approaches to adapt to dynamic scenarios. The former
often fail to quickly adapt in highly dynamic environments, whereas the latter have run-times that are slow enough to negatively impact
response time. Therefore, there is a need for scheduling policies that are both reactive to work efficiently in volatile environments and
have low scheduling overheads. To achieve this, we propose a Gradient Based Optimization Strategy using Back-propagation of
gradients with respect to Input (GOBI). Further, we leverage the accuracy of predictive digital-twin models and simulation capabilities by
developing a Coupled Simulation and Container Orchestration Framework (COSCO). Using this, we create a hybrid simulation driven
decision approach, GOBI*, to optimize Quality of Service (QoS) parameters. Co-simulation and the back-propagation approaches allow
these methods to adapt quickly in volatile environments. Experiments conducted using real-world data on fog applications using the
GOBI and GOBI* methods, show a significant improvement in terms of energy consumption, response time, Service Level Objective
and scheduling time by up to 15, 40, 4, and 82 percent respectively when compared to the state-of-the-art algorithms.

Index Terms—Fog Computing, Coupled Simulation, Container Orchestration, Back-propagation to input, QoS Optimization.
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1 INTRODUCTION

Fog computing is an emerging paradigm in distributed
systems, which encompasses all intermediate devices be-
tween the Internet of Things (IoT) layer (geo-distributed
sensors and actuators) and the cloud layer (remote cloud
platforms). It can reduce latency of compute, network and
storage services by placing them closer to end users lead-
ing to a multitude of benefits. However, fog environments
pose several challenges when integrating with real-world
applications. For instance, many applications, especially in
healthcare, robotics and smart-cities demand ultra low re-
sponse times specifically for applications sensitive to Service
Level Objectives (SLO) [1]. Other applications involving
energy scavenging edge devices and renewable resources
need supreme energy efficiency in task execution [2]. The
challenge of reaching low response times and energy con-
sumption is further complicated by modern-day application
workloads being highly dynamic [3] and host machines
having non-stationary resource capabilities [4].

To provide quick and energy efficient solutions, many
prior works focus on developing intelligent policies to
schedule compute tasks on fog hosts [5], [6], [7]. These
methods have been dominated by heuristic techniques [7],
[8], [9], [10]. Such approaches have low scheduling times
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and work well for general cases, but due to steady-state or
stationarity assumptions, they provide poor performance in
non-stationary heterogeneous environments with dynamic
workloads [9]. To address this, some prior approaches use
more intelligent and adaptive schemes based on evolution-
ary methods and reinforcement learning. These methods
adapt to changing scenarios and offer promising avenues
for dynamic optimization [11]. However, they too are unable
to efficiently manage volatile fog environments because of
their poor modelling accuracies and low scalability [3], [5].
For accurate and scalable modelling of the fog environment,
there have been many works that use deep learning based
local search or learning models with neural networks which
approximate an objective function such as energy consump-
tion or response time [3], [5], [12]. As these neural networks
approximate objective functions of optimization problem,
they are often referred to as “neural approximators” [13],
[14]. Specifically, many recent state-of-the-art techniques
primarily use optimization methods like genetic algorithms
(GA) [12] and policy-gradient learning [3] to optimize QoS
parameters, thanks to their generality. However, gradient-
free methods like GA are slow to converge to optima due
to undirected search schemes [15]. Further, policy-gradient
learning takes time to adapt to sudden changes in the
environment and shares the same problem of high schedul-
ing overheads. Such high scheduling times limit the extent
of the possible improvement of latency and subsequently
SLO violations. This is not suitable for highly volatile en-
vironments where host and workload characteristics may
suddenly and erratically change. Thus, there is a need for
an approach which not only can adapt quickly in volatile
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environments but also have low scheduling overheads to
efficiently handle modern workload demands.

To solve this problem, a natural choice is to use directed
schemes like A* search or gradient-based optimization
strategies. Even though such strategies have been shown to
converge much faster than gradient-free approaches, prior
work does not use them due to the highly non-linear search
spaces in real-world problems which can cause such meth-
ods to get stuck in local optima [16]. Moreover, prior works
fail to leverage recent advances like root-mean-square prop-
agation, and momentum and annealed gradient descent
with restarts that help prevent the local optima problem [17],
[18], [19]. Given this, we believe that by leveraging the
strength of neural networks to accurately approximate QoS
parameters [20], we can apply gradient-based algorithms in
tandem with advances that reduce the likelihood of such
methods getting stuck at local optima. Prior work also
establishes that neural approximators are able to precisely
model the gradients of the objective function with respect
to input using back-propagation allowing us to use them in
gradient-based methods for quick convergence [21]. When
taken together, this suite of approaches should provide a
quick and efficient optimization method. In particular, we
formulate a gradient-based optimization algorithm (GOBI)
which calculates the gradients of neural networks with
respect to input for optimizing QoS parameters using ad-
vanced gradient-based optimization strategies. We establish
by experiments that our approach provides a faster and more
scalable optimization strategy for fog scheduling compared to
the state-of-the-art methods.

However, simply using gradient-based optimization is
not sufficient as data driven neural models can sometimes
saturate [22]. This is when feeding more data to the neural
model does not improve the performance. Further opti-
mization of QoS in such cases is hard and more intelligent
schemes are required. Coupled-simulation (also referred as
co-simulation or symbiotic simulation) and execution of
tasks have been shown to be a promising approach for
quickly obtaining an estimate of QoS parameters in the
near future [23], [24], [25]. Specifically, coupled-simulation
allows us to run a simulator in the background with the
scheduling algorithms to facilitate decision making. How-
ever, prior works use this to aid search methods and not to
generate more data to facilitate decision making of an AI
model. The latter requires development of a new interface
between the scheduler and simulator. Hence, we develop
COSCO: Coupled Simulation and Container Orchestration
Framework to leverage simulated results to yield better
QoS. The COSCO framework is the first to allow a single
or multi-step simulation of container migration decisions in
fog environments. It enables a scheduler to get an estimate
of the QoS parameters at the end of a future interval for
better prediction and subsequently optimum schedules.
Container migration refers to the process of moving an
application between different physical or virtual hosts and
resuming computation on the target host. This allows us
to run the GOBI approach, simulate the schedule (with a
predicted workload model) and provide the objective val-
ues to another neural approximator which can then better
approximate the objective function and lead to improved
performance. We call this novel optimization loop GOBI*

Fig. 1: The GOBI* loop.

(Figure 1). The interactive training dynamic between GOBI
and GOBI* aides the latter to converge quickly and adapt to
volatile environments (more details in Section 7).

In summary, the key contributions of this paper are:
• We present a novel framework, COSCO, which is the first

to allow coupled simulation and container orchestration in fog
environments.

• We propose a gradient based back-propagation approach
(GOBI) for fast and scalable scheduling and show that it
outperforms the state-of-the-art schedulers.

• We also propose an extended approach (GOBI*) that
leverages simulation results from COSCO running GOBI’s
decision, to provide improved predictions and scheduling
decisions with lower scheduling overheads.

Validating both GOBI and GOBI* on physical setups with
real-world benchmark data shows that, GOBI gives lower
performance than GOBI*. However, GOBI is more suitable
for resource constrained fog brokers, because of its low
computational requirements. GOBI*, on the other hand, is
more suitable for setups with critical QoS requirements and
powerful fog brokers.

The rest of the paper is organized as follows. Related
work is overviewed in Section 2. Section 3 provides a
motivating example for the problem. Section 4 describes
the system model and formulates the problem specifica-
tions. Section 5 details GOBI and Section 6 introduces the
COSCO framework. Section 7 presents the GOBI* approach,
integrating GOBI with COSCO’s co-simulation feature. A
performance evaluation of the proposed methods is shown
in Section 8. Finally, Section 9 concludes.

2 RELATED WORK

We now analyze prior work in more detail (see Table 1 for
an overview).

Heuristic methods: Several studies [9], [26], [27] have
shown how heuristic based approaches perform well in
a variety of scenarios for optimization of diverse QoS
parameters. Methods like LR-MMT schedules workloads
dynamically based on local regression (LR) to predict which
hosts might get overloaded in the near future and select
containers/tasks which can be migrated in the minimum
migration time (MMT). Both LR and MMT heuristics are
used for overload detection and task selection, respec-
tively [9], [26]. Similarly, MAD-MC calculates the median-
attribute deviation (MAD) of the CPU utilization of the
hosts and select containers based on the maximum corre-
lation (MC) with other tasks [9]. However, such heuristic
based approaches fail to model stochastic environments
with dynamic workloads [3]. This is corroborated by our
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TABLE 1: Comparison of Related Works with Different Parameters (Xmeans that the corresponding feature is present).

Work Edge Heterogeneous Coupled Stochastic Adaptive Method Optimization Parameters
Cloud Environment Simulation Workload QoS Energy Response Time SLO Violations Fairness Scheduling Time

[9], [26], [27] X Heuristics X X X
[6], [28], [29], [30] X X X GA X X X
[31], [32] X X X MaxWeight X
[5], [33], [34], [35] X X Deep RL X X X
[3], [36] X X X X Policy Gradient X X X X
This work X X X X X GOBI/GOBI* X X X X X

results in Section 8. To overcome this, GOBI and GOBI* are
able to adapt to dynamic scenarios by constantly learning
the mapping of scheduling decisions with objective values.
This makes them both robust to diverse, heterogeneous and
dynamic scenarios.

Evolutionary models: Other prior works have shown
that evolutionary based methods, and generally gradient-
free approaches, perform well in dynamic scenarios [6], [28],
[29], [30]. Evolutionary approaches like genetic algorithms
(GA) lie in the domain of gradient-free optimization meth-
ods. The GA method schedules workloads using a neural
model to approximate the objective value (as in GOBI) and
a genetic-algorithm to reach the optimal decision [6]. How-
ever, gradient-free methods have a number of drawbacks.
They take much longer to converge [16] and are not as
scalable [15] as gradient-based methods. Moreover, non-
local jumps can lead to significant change in the scheduling
decision which can lead to a high number of migrations (as
seen in Figures 8(e)-9(d)).

MaxWeight based schedulers: Over the years,
MaxWeight scheduling has gained popularity for its the-
oretical guarantees and ability to reduce resource con-
tention [31], [32]. However, MaxWeight policies can ex-
hibit poor delay performance, instability in dynamic work-
loads and spatial inefficiency [37], [38], [39]. We use the
pessimistic-optimistic online dispatch approach, POND by
Liu et al. [31] which is a variant of the MaxWeight ap-
proach [40]. POND uses constrained online dispatch with
unknown arrival and reward distributions. It uses virtual
queues for each host to track violation counts and an Upper-
Confidence Bound (UCB) policy [41] to update the expected
rewards of each allocation from the signal O(Pt). The final
decision is made using the MaxWeight approach with the
weights as the expected reward values. To minimize ob-
jective value in our setup, we provide the objective score
as negative reward. Due to the inability of MaxWeight
approaches to adapt to volatile scenarios, their wait times
are high.

Reinforcement Learning models: Recently, reinforce-
ment learning based methods have shown themselves to
be robust and versatile to diverse workload characteristics
and complex edge setups [3], [5], [34], [35]. Such meth-
ods use a Markovian assumption of state which is the
scheduling decision at each interval. Based on new obser-
vations of reward signal (negative objective score in our
setting) they explore or exploit their knowledge of the
state-space to converge to an optimal decision. A recent
method, DQLCM, models the container migration problem
as a multi-dimensional Markov Decision Process (MDP)
and uses a deep-reinforcement learning strategy, namely
Q-Learning to schedule workloads in a heterogeneous fog

LR-MMT GA GA2
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Fig. 2: Motivating example

computing environment [35]. The state-of-the-art method,
A3C, schedules workloads using a policy gradient based
reinforcement learning strategy which tries to optimize an
actor-critic pair of agents [3]. This approach uses Residual
Recurrent Neural Networks to predict the expected reward
for each action i.e., scheduling decision and tries to optimize
the cumulative reward signal. However, such methods are
still slow to adapt to real-world application scenarios as
discussed in Section 8. This leads to higher wait times
and subsequently high response times and SLO violations.
Moreover, these methods do not scale well [42].

Finally, coupled or symbiotic simulation and model
based control have long been used in the modelling and
optimization of distributed systems [25], [43], [44]. Many
prior works have used hybrid simulation models to opti-
mize decision making in dynamic systems. To achieve this,
they monitor, analyze, plan and execute decisions using
previous knowledge-base corpora (MAPE-k) [1]. However,
such works use this to facilitate search methods and not to
generate additional data to aid the decision making of an AI
model. COSCO is developed to leverage a seamless inter-
face between the orchestration framework and simulation
engine to have a interactive dynamic between AI models to
optimize QoS.

For our experiments, we use LR-MMT, MAD-MC,
POND, GA, DQLCM and A3C as baselines to compare
against the proposed GOBI and GOBI* models. We try
to cover the best approach(es) in each category by care-
ful literature review. The different categories have been
selected for their complementary benefits. Heuristic based
approaches are fast but not as accurate as other methods.
Learning methods are adaptive but slow to adapt or output
a scheduling decision.

3 MOTIVATING EXAMPLE

As demonstrated by many prior works [3], [6], [9], for
fog datacenters, the scheduling time increases exponentially
with the number of fog devices. This can have a significant
impact on response time and, correspondingly, on Service
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Level Objectives (SLOs) corresponding to the task response
time. To test this, we perform a series of experiments on
the iFogSim simulator [45]. We test the popular heuristic
based approach LR-MMT [9] and the evolutionary approach
using genetic algorithm (GA) [6] with 50 simulated host
machines (details in Section 8.1). The former represents the
broad range of heuristic based approaches that can quickly
generate a scheduling decision but lack the ability to adapt.
The latter have the ability to quickly adapt but have high
scheduling overheads. As in [6], we provide the GA the
utilization metrics of all hosts and tasks and aim to minimize
the average response time.

We assume a central scheduler which periodically al-
locates new tasks and migrates active tasks if required to
reduce SLO violations. We assume that the container alloca-
tion time is negligible and the total response time of a fog
task is the sum of the scheduling and execution times. We
consider volatile workloads that are generated from traces
of real-world applications running in a fog environment [3]
(using the Bitbrain dataset, details in Section 8). For the
approaches considered, the scheduling time can range from
100 to 150 seconds with SLO violation rate of up to 24%.
However, if we could bring down the scheduling times to
10 seconds with the same decisions as GA (referred to as
GA2), the SLO violation rate goes down to∼2%. This shows
how scheduling time is a key factor that limits the extent to
which SLO can be optimized (Figure 2), thus highlighting
the potential for an approach which can respond quickly in
volatile scenarios and has low scheduling overheads, lever-
aging the fast and scalable execution times of AI methods.

4 SYSTEM MODEL AND PROBLEM FORMULATION

4.1 System Model
We consider a standard distributed and heterogeneous fog
computing environment as shown in Figure 3. We assume a
single fog datacenter with geographically distributed edge
and cloud layers as computational nodes. We consider
network latency effects for interactions between compute
devices in different layers (edge and cloud) and between
compute devices and fog broker. We ignore communica-
tion latencies among devices in the same layer.. Tasks are
container instances with inputs being generated by sensors
and other IoT devices and results received by actuators
which physically manifest the intended actions. These de-
vices constitute the IoT layer and send and receive all data
from the fog gateway devices. All management of tasks and
hosts is done by a Fog Broker in the management layer.
This includes task scheduling, data management, resource
monitoring and container orchestration. The work described
in this paper is concerned with improving the scheduler in
the Fog Broker by providing an interface between the con-
tainer orchestration and resource monitoring services with
a simulator. Our work proposes discrete-time controllers,
that are commonly adopted in the literature [3], [5], [43].
The communication between end-users and the fog broker
is facilitated by gateway devices. The compute nodes in the
fog resource layer, which we refer to as “hosts”, can have
diverse computational capabilities. The hosts at the edge of
the network are resource-constrained and have low com-
munication latency with the broker and gateway devices.

Fig. 3: System model

On the other hand, cloud hosts are several hops from the
users and have much higher communication latency and
are computationally more powerful. We assume that there
are a fixed number of host machines in the fog resource
layer and denote them as H = {h0, h1, . . . , hN−1}. We de-
note the collection of time-series utilization metrics, which
include CPU, RAM, Disk and Network Bandwidth usage of
host hi as U(hti). The collection of maximum capacities of
CPU, RAM, Disk and Network Bandwidth with the average
communication latency of host hi is denoted as C(hi).

4.2 Workload Model
We now present our workload model, as summarized in
Figure 4. We divide a bounded timeline into equal sized
scheduling intervals with equal duration ∆. The t-th inter-
val is denoted by It and starts at s(It), so that s(I0) = 0
and s(It) = s(It−1) + ∆ ∀t > 0. In interval It−1, Nt
new tasks are created by the IoT devices. The gateway
devices then send batches of these new tasks Nt with their
SLO requirements to the Fog Broker. The SLO violations
are measured corresponding to the response time metrics
of task executions as a fraction of them that exceeds the
stipulated deadlines. The set of active tasks in the interval
It is denoted as At = {at0, at1, . . . , at|At|} and consists of |At|
tasks. Here atj represents an identifier for the j-th task in
At. The Fog Broker schedules the new tasks to the compute
nodes and decides which of the active tasks need to be
migrated. At the end of interval It−1, the set of completed
tasks is denoted as Lt, hence the tasks that carry forward to
the next interval is the set At−1\Lt. Thus, the broker takes a
decision Dt = D(Yt), where Yt is the union of the new (Nt),
active (At−1 \Lt) and waiting tasks (Wt−1). This decision is
a set of allocations and migrations in the form of ordered-
pairs of tasks and hosts (assuming no locality constraints).
At the first scheduling interval, as there are no active or
waiting tasks, the model only takes allocation decision for
new tasks (N0). Here, D denotes the scheduler such that
D : Yt 7→ Yt × H . Only if the allocation is feasible, i.e.,
depending on whether the target host can accommodate the
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Fig. 4: Dynamic Task Workload Model

scheduled task or not, is the migration/allocation decision
executed. Initially, the waiting queue and the set of active
and leaving actions are empty. The executed decision is
denoted by D̂ and satisfies the following properties

D̂(At) ⊆ D(Yt),where (1)

∀ (atj , hi) ∈ D̂(At), U(atj) + U(hti) ≤ C(hi). (2)

We use the notation atj ∈ D̂(At) to mean that this task
was allocated/migrated. The set of new and waiting tasks
N̂t ∪ Ŵt−1 ⊆ D̂(At), where N̂t ⊆ Nt and Ŵt−1 ⊆ Wt−1,
denotes those tasks which could be allocated successfully.
The remaining new tasks, i.e. Nt \ N̂t are added to get the
new wait queue Wt. Similarly, active tasks are denoted as
Ât−1 ⊆ At−1. Hence, for every interval It,

At ← N̂t ∪ Ŵt−1 ∪At−1 \ Lt (3)

Wt ← (Wt−1 \ Ŵt−1) ∪ (Nt \ N̂t),where (4)
W−1 = A−1 = L−1 = ∅. (5)

We also denote the utilization metrics of an active task atj ∈
At as U(atj) for the interval It. We denote a simulator as
S : D̂(At) × {U(atj)|∀atj ∈ At} 7→ {U(hti)|∀hi ∈ H} × P ,
which takes scheduling decision and container utilization
characteristics to give host characteristics and values of QoS
parameters. Here Pt ∈ P is a set of QoS parameters such
as energy consumption, response times, SLO violations, etc.
Similarly, execution on a physical fog framework is denoted
by F . Hence, execution of interval It on a physical setup is
denoted as

({U(hti)|∀hi ∈ H}, Pt) ≡ F(D̂(At), {U(atj)|∀atj ∈ At}).
(6)

4.3 Problem Formulation
After execution of tasks At in interval It, the objective value
to minimize is denoted as O(Pt). O(Pt) could be a scalar
value which combines multiple QoS parameters. To find the
optimum schedule, we need to minimize the objective func-
tion O(Pt) over the entire duration of execution. Thus, we
need to find the appropriate and feasible decision function
D such that

∑
tO(Pt) is minimized. This is subject to the

constraints that at each scheduling interval the new tasks
Nt, waiting tasks Wt−1 and active tasks from the previous
interval At−1 \Lt are allocated using this decision function.
The problem can then be concisely formulated as:

minimize
D

T∑
t=0

O(Pt)

subject to ∀ t, Eqs.(1)− (6).

(7)

TABLE 2: Symbol Table

Symbol Meaning

It tth scheduling interval
At Active tasks in It
Wt−1 Waiting tasks at the start of It
Lt Tasks leaving at the end of It
Nt New tasks received at the start of It
H Set of hosts in the Resource Layer
hi ith host in an enumeration of H
atj jth task in an enumeration of At

U(ht
i) Utilization metrics of host hi in It

U(atj) Utilization metrics of task atj in It
Yt = Nt ∪Wt−1 ∪At−1 \ Lt Scheduler input at the start of It
D(Yt) or D Scheduling decision at start of It
D̂ Feasible sub-set of scheduling decision D
D̄ Scheduling decision of GOBI in GOBI* loop
O(Pt) Objective value at the end of It
S Execution of an interval on simulator
F Execution of an interval on physical setup

5 THE GOBI SCHEDULER

As discussed in Section 1, we now present the ap-
proach based on Gradient Based Optimization using back-
propagation to Input (GOBI). These constitute the Scheduler
module of the Fog Broker described in Figure 3. Here,
we consider that we optimize an objective function O(Pt)
at every interval It via taking an optimal action in the
form of scheduling decision D. This D is then used by
the framework/simulator to execute tasks as described in
optimization program (7).

5.1 Objective Function
We will now present how our optimization scheme can be
used for taking appropriate scheduling decisions in a fog
environment. To optimize the QoS parameters, we consider
an objective function that focuses on energy consumption
and response time, two of the most crucial metrics for fog
environments [46], [47]. For interval It,

O(Pt) = α ·AECt + β ·ARTt. (8)

Here AEC and ART (∈ Pt) are defined as follows.
1) Average Energy Consumption (AEC) is defined for any

interval as the energy consumption of the infrastructure
(which includes all edge and cloud hosts) normalized by
the maximum power of the hosts, i.e.,

AECt =

∑
hi∈H

∫ s(It+1)
t=s(It)

Powerhi(t)dt

|At|
∑
hi∈H Power

max
hi
× (ti+1 − ti)

, (9)

where Powerhi
(t) is the power function of host hi at

instant t, and Powermaxh1
is maximum possible power of

hi.
2) Average Response Time (ART)1 is defined for an interval
It as the average response time for all leaving tasks (Lt),
normalized by maximum response time until the current
interval, as shown below

ARTt =

∑
ltj∈Lt

Response T ime(ltj)

|Lt|maxs≤t maxlsj∈Ls
Response T ime(lsj)

.

(10)

1. Both AEC and ART are unit-less metrics and lie between 0 and 1
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5.2 Input Parameters

In concrete implementations, we can assume a finite maxi-
mum number of active tasks, with the upper bound denoted
as M . Thus at any interval, |At| ≤ M . Moreover, we
consider the utilization metrics of Instructions per second
(IPS), RAM, Disk and Bandwidth consumption which form
a feature vector of size F . Then, we express task utilization
metrics {U(at−1

j )|∀j, at−1
j ∈ At−1} as an M × F matrix

denoted as φ(At−1), where the first At−1 rows are the
feature vectors of tasks in At−1 in the order of increasing
creation intervals (breaking ties uniformly at random), and
the rest of the rows are 0. We also form feature vectors of
hosts with IPS, RAM, Disk and Bandwidth utilization with
capacities and communication latency of each host, each of
size F ′. Thus, at each interval It for |H| hosts, we form a
|H| × F ′ matrix φ(Ht−1) using host utilization metrics of
interval It−1.

Finally, as we have Nt,Wt−1, At−1 and Lt at the start
of It, the decision matrix φ(D) is an M × |H| matrix with
the first |Nt ∪Wt−1 ∪At−1 ∪ Lt| rows being one-hot vector
of allocation of tasks to one of the H hosts. The remaining
rows being 0.

5.3 Model Training

We now describe how a neural model can be trained
to approximate O(Pt) using the input parameters
[φ(At−1), φ(Ht−1), φ(D)]. Consider a continuous function
f(x; θ) as a neural approximator of O(Pt) with the θ
vector denoting the underpinning neural network param-
eters and x as a continuous or discrete variable with
a bounded domain. Here, x is the collection of utiliza-
tion metrics of tasks and hosts with a scheduling deci-
sion. The parameters θ are learnt using the dataset Λ =
{[φ(At−1), φ(Ht−1), φ(D)],O(Pt)}t such that a given loss
function L is minimized for this dataset. We form this
dataset by running a random scheduler and saving the
traces generated (more details about the setup in Section 8).
The loss L quantifies the dissimilarity between the predicted
output and the ground truth. We use Mean Square Error
(MSE) as the loss function as done in prior work [3]. Hence,

L(f(x; θ), y) = 1
T

∑T
t=0(y − f(x; θ))2, where(x, y) ∈ Λ.

Thus, for datapoints (x, y) ∈ Λ, where y is the
value of O(Pt) for the corresponding x, we have θ =
arg minθ̂

∑
(x,y)∈Λ[L(f(x; θ̂), y)]. To do this, we calculate the

gradient of the loss function with respect to θ as ∇θL and
use back-propagation to learn the network parameters. By
the universal approximation theorem [20], we can assume
that we already have parameters θ after network train-
ing, such that this neural network approximates a generic
function to an arbitrary degree of precision (considering
a sufficiently large parameter set θ). A key part of this
ability of neural networks rests on randomly initializing a
parameterized function and changing the large number of
parameters based on the loss function.

Now, with this, we need to find the appropriate decision
matrix φ(D), such that f(x; θ) is minimized. We formulate

the resulting optimization problem as

minimize
φ(D)

f(x; θ)

subject to each element of φ(D) is bounded
∀ t, Eqs.(1)− (6).

(11)

This is a reformulation of the program (7) using the
neural approximator of O(Pt) as the objective function.
Note that, because there is a bounded space of inputs, there
must be an optimal solution, i.e., ∃ φ̂(D) such that
f([φ(At−1), φ(Ht−1), φ̂(D)]; θ) ≤

f([φ(At−1), φ(Ht−1), φ(D)]; θ), ∀ feasible φ(D).

We solve this optimization problem using gradient-
based methods, for which we need ∇xf(x; θ). This is
uncommon for neural network training since prior work
normally modifies the weights using input and ground truth
values. Thus the gradients can be calculated without having
to update the weights. Now, for a typical feed-forward
artificial neural network, f(x; θ) is a composition of linear
layers and non-linear activation functions. Just like the back-
propagation approach, we can find gradients with respect
to input x. For simplicity, we consider non-affine functions
like tanh() and softplus() as activations in our models, with
no effect to the generality of the neural approximator. For
instance, gradients for a single linear layer with tanh() non-
linearity is given in Proposition 12.

Proposition 1 (Finding gradients with respect to input). For
a linear layer with tanh() non-linearity that is defined as follows:

f(x;W, b) = tanh(W · x+ b),

the derivative of this layer with respect to x is given as:

∇xf(x;W, b) = WT × (1− tanh2(W · x+ b)).

Proof. It is well known that ∇xtanh(x) = 1 − tanh2(x),
therefore,

∇xf(x;W, b) = ∇xtanh(W · x+ b)

= ∇W ·x+btanh(W · x+ b)×∇x(W · x+ b)

= (1− tanh2(W · x+ b))×∇x(W · x+ b)

= WT × (1− tanh2(W · x+ b))

Using the chain-rule, we can find the derivative of an
arbitrary neural approximator f as f(x; θ) is a composition
of multiple such layers. Once we have the gradients, we can
initialize an arbitrary input x and use gradient descent to
minimize f(x; θ) as

xn+1 ← xn − γ · ∇xf(xn; θ), (12)

where γ is the learning rate and n is the iteration count.
We apply Eq. (12) until convergence. The calculation of
∇xf(xn; θ) in the above equation is carried out in a similar
fashion as back-propagation for model parameters. We can
use momentum based methods like Adam [17] or annealed
schedulers like cosine annealing with warm restarts [19] to
prevent the optimization loop getting stuck in local optima.
As we show in our experiments, the combination of gra-
dient calculation with respect to inputs and advances like

2. Derivations for other activation functions with a single linear layer
are given in Supplementary Section 2.
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Algorithm 1 The GOBI scheduler
Require:

Pre-trained function approximator f(x; θ)
Dataset used for training Λ; Convergence threshold ε
Iteration limit σ; Learning rate γ
Initial random decision D

1: procedure MINIMIZE(D, f , z)
2: Initialize decision matrix φ(D); i = 0
3: do
4: x← [z, φ(D)] . Concatenation
5: δ ← ∇φ(D)f(x; θ) . Partial gradient
6: φ(D)← φ(D)− γ · δ . Decision update
7: i← i+ 1
8: while |δ| > ε and i ≤ σ
9: Convert matrix φ(D) to scheduling decision D∗

10: return D∗
11: end procedure
12: procedure GOBI(scheduling interval It)
13: if (t == 0)
14: Initialize random decision D
15: else
16: D ← D∗ . Output for the previous interval
17: Get φ(At−1), φ(Ht−1)
18: D∗ ← MINIMIZE(D, f, [φ(At−1), φ(Ht−1)])
19: Fine-tune f with loss =
20: MSE(O(Pt−1), f([φ(At−2), φ(Ht−2), φ(Dt−1)]; θ))
21: return D∗

momentum and annealing allow faster optimization avoiding
local minima, giving a more robust and efficient approach.

5.4 Scheduling

After training the model f , at start of each interval It, we
optimize φ(D) by the following rule (γ is the learning rate)
until the absolute value of the gradient is more than the
convergence threshold ε, i.e.,

φ(D)n+1 ← φ(D)n − γ · ∇φ(D)f(xn; θ). (13)

In dynamic scenarios, as the approximated function for
the objective O(Pt) changes with time we continuously
fine-tune the neural approximator as per the loss function
MSE(O(Pt−1), f([φ(At−2), φ(Ht−2), φ(Dt−1)]; θ)) (line 20
in Algorithm 1). Equation 13 then leads to a decision matrix
with a lower objective value (line 6 in Algorithm 1). Hence,
gradient based iteration with continuous fine-tuning of the neural
approximator allows GOBI to adapt quickly in dynamic scenarios.
When the above equation converges to φ(D∗), the rows
represent the likelihood of allocation to each host. We take
the arg max over each row to determine the host to which
each task should be allocated as D∗. This then becomes
the final scheduling decision of the GOBI approach. The
returned scheduling decision is then run on a simulated or
physical platform (as in Eq. (6)) and tasks sets are updated as
per Eqs. (3)-(5). To find the executed decision D̂, we sort all
tasks inD∗ in descending order of their wait times (breaking
ties uniformly at random) and then try to allocate them to
the intended host in D∗. If the allocation is not possible due
to utilization constraints, we ignore such migrations and do
not add them to D̂. At run-time, we fine tune the trained

Fig. 5: COSCO architecture

neural model f , by newly generated data for the model to
adapt to new settings.

6 THE COSCO FRAMEWORK

Motivated from prior coupled-simulators [44], we now
present the COSCO framework as introduced in Section 1. A
basic architecture is shown in Figure 5. Implementation de-
tails of the COSCO framework are given in Supplementary
Section 1. The hosts might correspond to simulated hosts
or physical compute nodes with Instructions per second
(IPS), RAM, Disk and Bandwidth capacities with power
consumption models with CPU utilization. The workloads
are either time-series models of IPS, RAM, Disk, Bandwidth
requirements in the case of simulation or are actual applica-
tion programs in the case of physical experiments. At the
beginning of each scheduling interval, Nt workloads are
created. The framework also maintains a waiting queue for
workloads that cannot be allocated in the previous interval
(Wt−1).

6.1 Simulator
The Simulator uses a Scheduler (GOBI for instance), which
uses the utilization metrics and QoS parameters to take
an allocation decision for new workloads or migration de-
cisions for active workloads. At the start of a scheduling
interval It, the simulator destroys workloads completed in
It−1, denoted as Lt. It also gets workloads Nt ∪ Wt−1.
The Scheduler decides which host to allocate these tasks to
and whether to migrate active tasks from At−1 \ Lt. The
Simulator object considers all Nt ∪Wt−1 tasks in the order
of the interval at which they were created. If the target host
is unable to accommodate a task, it is added to the wait
queue. This is done for each utilization metric of active
task atj in U(atj). As for new tasks, the utilization metrics
are unknown, u = 0∀u ∈ U(ntj)∀ntj ∈ Nt. To prevent
overflow of host resources, we compare for each new task
ntj the sum of the maximum possible utilization metrics of
the corresponding application and target host against the
host’s maximum capacity (more details in Supplementary
Section 1). Hence, at each interval, Eq. (5) holds. Instead of
running the tasks on physical machines, we use trace driven
discrete-event simulation.

6.2 Framework
The Framework instantiates the tasks as Docker contain-
ers. Docker is a container management platform as a ser-
vice used to build, ship and run containers on physical
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or virtual environments. Moreover, the hosts are physical
computational nodes in the same Virtual Local Area Net-
work (VLAN) as the server machine on which the Sched-
uler program runs. The server communicates with each
host via HTTP REST APIs [43]. At every host machine,
a DockerClient service runs with a Flask HTTP web-
service [48]. Flask is a web application REST client which
allows interfacing between hosts and the server. To migrate
a container, we use the Checkpoint/Restore In Userspace
(CRIU) [49] tool. For each migration decision (atj , hi) ∈
D̂(At), a checkpoint of atj is created which is equivalent to a
snapshot of the container. Then, this snapshot is transferred
(migrated) to the target host hi, where the container is re-
sumed (restored). The allocation and migrations are done in
a non-blocking fashion, i.e. the execution of active containers
is not halted when some tasks are being migrated.

6.3 Model Interface

We now discuss the novelty of the COSCO framework.
As all scheduling algorithms and simulations are run on
a central fog broker [43], it can be easily run in fog environ-
ments which follow a master-slave topology. As discussed
in Section 4, a simulator can execute tasks on simulated host
machines to return QoS parameters P . To execute an interval
It, the simulator needs utilization metrics U(atj),∀atj ∈ At,
and a scheduling decision D̄t to be executed on the sim-
ulator. Thus, at the beginning of the interval It, we have
Lt, Nt,Wt−1 and At−1. After checking for the possibility
of allocation/migration, we get ˆ̄D(At), N̂t and Ŵt−1. Now,
using Eq. (3), we find At. Using given utilization metrics
U(atj) and ˆ̄D(At), we execute At tasks on the simulator to

get S( ˆ̄D(At), {U(atj)|∀atj ∈ At}) = {U(hti)|∀hi ∈ H}, P̄t.
This means that at the beginning of interval It, the COSCO
framework allows simulation of the next scheduling interval
(with an action of interest D̄ and predicted utilization met-
rics) to predict the values of the QoS parameters in the next
interval P̄t. This single step look-ahead simulation allows us
to take better scheduling decisions in the GOBI* algorithm,
as shown in the next section.

7 EXTENDING GOBI TO GOBI*
Now that we have a scheduling approach based on back-
propagation of gradients, we extend it to incorporate simu-
lated results as described in Section 1. To do this, we use the
following components.
1) GOBI Scheduler: We assume that we have the GOBI

scheduler which can give us a preferred action of interest
D̄. Thus, at the start of a scheduling interval It, we get
D̄ = GOBI(It) (line 8 in Algorithm 2). D now denotes
the decision of GOBI*.

2) Utilization prediction models: We train a utilization metric
prediction model, such that using previous utilization
metrics of the tasks, we get a predicted utilization metric
set for the next interval. As is common in prior work [50],
we use a Long-Short-Term-Memory (LSTM) neural net-
work for this and train it using the same Λ dataset
that we used for training the GOBI neural approximator.
Thus, at the start of interval It, using D̄ from GOBI

Algorithm 2 The GOBI* scheduler
Require:

Pre-trained function approximator f∗(x; θ∗)
Pre-trained LSTM model LSTM({U(at

′

j )∀t′ < t})
Dataset used for training Λ∗; Convergence threshold ε
Learning rate γ; Initial random decision D

1: procedure GOBI∗(scheduling interval It)
2: if (t == 0)
3: Initialize random decision D
4: else
5: D ← D∗ . Output for the previous interval
6: Get φ(At−1), φ(Ht−1)
7: Ū(atj)∀atj ∈ At ← LSTM({U(at

′

j )∀t′ < t})
8: D̄ ← GOBI(It)
9: {U(hti)|∀hi ∈ H}, ¯AECt, ¯ART t ←

10: S( ˆ̄D(At), {Ū(atj)∀atj ∈ At})
11: O(P̄t)← α · ¯AECt + β · ¯ART t
12: D∗ ← MINIMIZE(D, f, [φ(At−1), φ(Ht−1),O(P̄t)])
13: Fine-tune f∗ with loss =
14: MSE(O(Pt−1), f([φ(At−2), φ(Ht−2), φ(Dt−1)]; θ))+

1(O(P̄t−1) < O(Pt−1))×MSE(D̄t−1,Dt−1)
15: return D∗

Fig. 6: Iteration of GOBI* approach at the start of interval It

and checking allocation possibility, we get N̂t and Ŵt−1.
Using (3), we get At. Then, we predict Ū(atj),∀atj ∈ At,
using the LSTM model (line 7 in Algorithm 2). Hence, we
get the φ(At−1), φ(Ht−1) matrices.

3) Simulator: Now that we have an action D̄ and predicted
utilization metrics Ū(atj),∀atj ∈ At, we can use the
simulator to predict the QoS parameters at the end of It
as described in Section 6.3 (lines 9 and 10 in Algorithm 2).
Since at the start of the interval It, we do not have utiliza-

tion models of all containers and subsequently hosts for It,
our GOBI model is forced to predict QoS metrics at the end
of It using only utilization metrics of the previous interval,
i.e., It−1. This can make GOBI’s predictions inaccurate in
some cases. However, if we can predict with reasonable
accuracy the utilization metrics in It using the utilization
values of the previous intervals, we can simulate and get
an improved estimate of the QoS parameters during the
next period It. Adding these as inputs to another neural
approximator for O(Pt) denoted as f∗(x, θ∗), we now have
x = [φ(At−1), φ(Ht−1),O(P̄t), φ(D)].

Again, using a random scheduler and pre-trained GOBI
model, we generate a dataset Λ∗ to train this new neural
approximator f∗. At execution time, we freeze the neural
model f of GOBI and fine tune f∗ with the loss function.
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This loss function is the MSE of objective values. We add
the MSE between the predicted action D by GOBI* and D̄
by GOBI in case the estimated objective value of GOBI is
lower than that of GOBI*. Thus,

L = MSE(O(Pt−1), f∗([φ(At−2), φ(Ht−2), φ(Dt−1)]; θ∗))

+ 1(O(P̄t−1) < O(Pt−1))×MSE(D̄t−1,Dt−1). (14)

Using this trained model, we can now provide schedules as
shown in Algorithm 2 and Figure 6. At interval It, the previ-
ous output of GOBI*, i.e.,Dt−1 is given to the GOBI model as
the initial decision. The GOBI model uses utilization metrics
to output the action D̂. Using a single-step simulation, we
obtain an estimate of the objective function for this decision.
Then, GOBI* uses this estimate to predict the next action
D. Based on whether GOBI*’s decision is better than GOBI
or not, GOBI* is driven to the decision which has lower
objective value. This interactive dynamic should allow GOBI*
to make a more informed prediction of QoS metrics for It and
hence perform better than GOBI.

7.1 Convergence of GOBI and GOBI*

We outline two scenarios of an ideal and a more realistic
case to describe the interactive dynamic between GOBI and
GOBI* and how the latter optimizes the objective scores.

Ideal Case: Consider the case when the neural approx-
imator of GOBI, f can perfectly predict the objective value
of the next interval It as O(Pt). In this case, the predicted
action D̄ is optimal. In such a setting, we expect GOBI*
to converge such that it predicts the same action as D̄.
Assuming an ideal simulator which exactly mimics the real-
world,O(P̄t) = O(Pt). Thus, any action other than D̄ is sub-
optimal. Hence, to minimize the loss metric, GOBI* would
directly forward D̄ and ignore all other information and
converge to GOBI (which is optimal).

Real Case: While the limited explainability of neural
networks prevent us from giving formal convergence prop-
erties, we supply of number of technical observations that
justify the convergence we have seen in practice when
applying the methods to real systems. Thus, considering
the real-case, time-bound training only gives a sub-optimal
approximator f for GOBI. Hence, in general the predicted
decision D is not always optimal. Assuming GOBI* predicts
a decision other than GOBI, GOBI* will sometimes get a sub-
optimal action D such that O(P̄t) < O(Pt) and other times
O(P̄t) > O(Pt). The former is the case when the action
predicted by GOBI, D̄, is better and the latter is the case
when the GOBI* action, D, has a lower objective score. (1)
In the case of D being better than D̄ (having lower objective
score), in an attempt to minimize the first part of the loss,

L1 = MSE(O(Pt−1), f∗([φ(At−2), φ(Ht−2), φ(Dt−1)]; θ∗)),
(15)

GOBI* would converge to avoid D̄ (considering the ideal
simulator that returns exact answers). Furthermore, the
predicted action D has a lower objective score, hence the
optimization loop would tend to converge to this or better
scheduling decisions. (2) In the case of D̄ being better than
D, which means that O(P̄t−1) < O(Pt−1), GOBI* is given

(a) Components of GOBI* loss. (b) Comparison without L2

Fig. 7: Convergence plots for GOBI*.

an incentive to predict D̄. This is because the latter part of
the loss makes the model converge such that it minimizes

L2 = MSE(D̄t−1,Dt−1). (16)

This, with the former part of the loss, creates an interactive
dynamic such that the GOBI* model can find scheduling
decisions even better than the one predicted by the GOBI
model. However, in cases when GOBI*’s prediction is worse,
the GOBI’s prediction aids the model to quickly converge
to a better decision (that of GOBI’s). Thus, in both cases,
each model update based on the loss in Eq. (14), yields a
scheduling decision with objective score same or lower than
that given by GOBI. Assuming a sufficiently long training
time, GOBI* would eventually converge to predict D such
that the objective value when the decision is D is never
greater than when it is D̄. We observe in our experiments
that in the real-case GOBI* always performs better than
GOBI in terms of objective scores. The interactive training
with simulations allows GOBI* to converge quickly and
adapt to volatile environments.

The convergence plots for GOBI* are shown in Figure 7.
It demonstrates that as the model gets trained, the probabil-
ity of the GOBI*’s actions being better than GOBI increases.
This means that initially L2 has a high contribution to
the loss for model training which aids GOBI* to quickly
converge to GOBI’s performance. This can be seen by the
sudden drop in L1 in Figure 7(a). This is also shown by
Figure 7(b) that GOBI*’s loss converges faster with the
additional L2 component.

8 PERFORMANCE EVALUATION

8.1 Experimental Setup
To test the efficacy of the proposed approaches and compare
against the baseline methods, we perform experiments on
both simulated and physical platforms. As COSCO has
the same underlying models of task migration, workload
generation and utilization metric values for both simulation
and physical test-bench, we can test all models on both
environments with the same underlying assumptions. As
in prior work [51], we use α = β = 0.5 in (8) for our
experiments. Moreover, we consider all tasks, to be allocated
and migrated, in batches with each batch having feature
vectors corresponding to up to M = |H|2 tasks. If number
of tasks is less than M , we pad the input matrix with zero
vectors. This style of inference strategy is in line with prior
work [3]. This is due to the limitation of non-recurrent
neural networks to take a fixed size input for a single
forward pass, hence requiring action inference for tasks
being executed in batches.
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Physical Environment: We use the Microsoft Azure
cloud provisioning platform to create a test-bed of 10 VMs
located in two geographically distant locations. The gateway
devices are considered to be in the same LAN of the server
which was hosted in London, United Kingdom. Of the 10
VMs, 6 were hosted in London and 4 in Virginia, United
States. The host capacities C(hi)∀hi ∈ H are shown in
Table 3 and Supplementary Table 1. All machines use Intel
Haswell 2.4 GHz E5-2673 v3 processor cores. The cost per
hour (in US Dollar) is calculated based on the costs of similar
configuration machines offered by Microsoft Azure at the
datacenter in the South UK region3. The power consumption
models are taken from the SPEC benchmarks repository4.
We run all experiments for 100 scheduling intervals, with
each interval being 300 seconds long, giving a total ex-
periment time of 8 hours 20 minutes. We average over 5
runs and use diverse workload types to ensure statistical
significance.

Simulation Environment: We consider 50 hosts ma-
chines as a scaled up version of the 10 machines from the
last subsection. Here, each category has 5 times the instance
count to give a total of 50 machines in a comparatively
larger-scale fog environment as considered in prior art [5],
[52]. As we cannot place simulated nodes in geographically
distant locations, we model the latency and networking
characteristics of these nodes in our simulator as per Table 3.

8.2 Model Training and Assumptions
For the GOBI and GOBI* algorithms we use standard feed-
forward neural models with the following characteristics
adapted from [3]. We use non-affine activation functions for
our neural approximators to be differentiable for all input
values.
• Input layer of size M × F + |H| × F ′ +M ×N for GOBI

and M ×F + |H| ×F ′ +M ×N + 1 for GOBI*. The non-
linearity used here is softplus5 as in [3]. Note, |H| may
vary from 10 in tests in the physical environment to 50 in
the simulator.

• Fully connected layer of size 128 with softplus activation.
• Fully connected layer of size 64 with tanhshrink activation.
• Fully connected layer of size 1 with sigmoid activation.

To implement the proposed approach, we use PyTorch
Autograd package [53] to calculate the gradients of the
network output with respect to input keeping model pa-
rameters constant. We generate training data for the GOBI
model f by running a random scheduler for 2000 intervals
on the simulator. We then run the random scheduler on
the framework for 300 intervals and fine-tune the GOBI
model on this new dataset. For GOBI*, we use a random
scheduler and predictions of the GOBI model f to generate
data of the form described in Section 5 of size 2000 on
simulator and fine-tune it on data corresponding to 300
intervals on the framework. The dataset was used to create
the matrices [φ(At−1), φ(Ht−1), φ(D)], where each column
of φ(At−1), φ(Ht−1) is normalized by the maximum and

3. Microsoft Azure pricing calculator for South UK
https://azure.microsoft.com/en-gb/pricing/calculator/

4. More details in Supplementary Section 4
5. The definitions of these activation functions can be seen at the Py-

Torch web-page: https://pytorch.org/docs/stable/nn.html

minimum utilization values, and φ(D)’s rows are one-hot
decision vectors. To train a model, we use the AdamW
optimizer [54] with learning rate 10−5 and randomly sample
80% of data to get the training set and the rest as the cross-
validation set6. The convergence criterium used for model
training is the loss of consecutive epochs summed over
the last 10 epochs is less than 10−2. For GOBI*, we also
train predictors for utilization metrics. Specifically, we use
a LSTM neural network [55] with a single LSTM cell to
achieve this and train it using the same dataset used to train
the GOBI model.

8.3 Workloads
To generate workloads for training the GOBI and GOBI*
models and testing them against baseline methods, we use
two workload characteristics Bitbrain traces and DeFog appli-
cations. These were chosen because of their non-stationarity,
their highly volatile workloads and their similarity with
many real-world applications.
1) BitBrain traces. The dynamic workload is generated for

cloudlets based on the real-world, open-source Bitbrain
dataset [56]7. This dataset consists of real traces of re-
source utilization metrics from 1750 VMs running on
BitBrain distributed datacenter. The workloads running
on these servers are from a variety of industry applica-
tions including computational analytical programs used
by major banks, credit operators and insurers [56] and are
commonly used for benchmarking fog-cloud models [3],
[57], [58]. The dataset consists of workload information
for each time-stamp (separated by 5 minutes) includ-
ing the number of requested CPU cores, CPU usage in
terms of Million Instructions per Second (MIPS), RAM
requested with Network (receive/transmit) and Disk
(read/write) bandwidth characteristics. These different
categories of workload data constitute the feature values
of φ(At−1) and φ(Ht−1). As these workload traces corre-
spond to applications running on real infrastructure, we
use these to run our simulations and generate training
data. At the start of each interval It, the size of the
new tasks Nt set follows a discrete Poisson distribution8

Poisson(λ), as per prior works [3], [59]. Here, λ = 1.2
jobs for |H| = 10 and λ = 5 jobs for |H| = 50.

2) DeFog applications. DeFog [60] is a fog computing bench-
mark which consists of six real-time heterogeneous work-
loads such as Yolo, Pocketspinx, Aeneas, FogLamp and
iPokeMon. We use three specific heterogeneous applica-
tions of DeFog: Yolo (Memory, Bandwidth and Compute
Intensive benchmark), PockeSphinx (Compute Intensive)
and Aeneas (Bandwidth Intensive). Yolo runs with 1500
user requests and each request uploads a unique image
with different density and can run upto three intervals.
PochetSpinhx runs with 320 user requests and Aneases

6. All model training and experiments were performed on a system
with configuration: Intel i7-10700K CPU, 64GB RAM, Nvidia GTX 1060
and Windows 10 Pro OS.

7. The BitBrain dataset can be downloaded from:
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains

8. The Poisson distribution models the number of independent ar-
rivals that occur in a period, so it is apt to model for a batch size if the
batch is formed by arrivals in a time window (scheduling interval in
our case).
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TABLE 3: Host characteristics of Azure fog environment.

Name Quantity Core MIPS RAM RAM Ping Network Disk Cost Location
count Bandwidth time Bandwidth Bandwidth Model

Edge Layer

Azure B2s server 4 2 4029 4295 MB 372 MB/s 3 ms 1000 MB/s 13.4 MB/s 0.0472 $/hr London, UK
Azure B4ms server 2 4 8102 17180 MB 360 MB/s 3 ms 1000 MB/s 10.3 MB/s 0.1890 $/hr London, UK

Cloud Layer

Azure B4ms server 2 4 8102 17180 MB 360 MB/s 76 ms 1000 MB/s 10.3 MB/s 0.166 $/hr Virginia, USA
Azure B8ms server 2 8 2000 34360 MB 376 MB/s 76 ms 2500 MB/s 11.64 MB/s 0.333 $/hr Virginia, USA

with 1500. Here too, at the start of each interval It, the
size of the new tasksNt set follows a Poisson distribution
Poisson(λ) with λ = 1.2 jobs. Out of the Nt tasks, the
distribution of selection of Yolo/Pocketsphinx/Aeneas
follows the probabilities of (py, pp, pa) for a run. For
our final comparison experiments we run using py =
pp = pa = 0.33. However, to test diverse workload
characteristics, we also run using any one as 0.80 and
other two as 0.10. We call these workload dominant
runs. We perform all our experiments to compare with
baselines using the DeFog benchmarks.

8.4 Baseline Models
We evaluate the performance of the proposed algorithms
and compare them against the state-of-the-art scheduling
approaches. The reasons for comparing against these base-
lines are described in Section 2. We consider two light-
weight heuristic based schedulers LR-MMT and MAD-
MC that have low scheduling times, but higher energy
consumption, response times and SLO violations. We also
consider a deep-learning based gradient-free optimization
method GA, and two reinforcement-learning based sched-
ulers DQLCM and A3C. Finally, we compare against a one
max-weight based allocation method POND.

8.5 Evaluation Metrics
We use the following evaluation metrics to test the GOBI
and GOBI* models as motivated from prior works [1], [3],
[5], [9], [43]. We also use AEC and ART as in Section 5.
1) SLO Violations which is given as∑

t

∑
ltj∈Lt

1(Response T ime(ltj) ≤ ψ(ltj))∑
t |Lt|

,

where ψ(ltj) is the 95th percentile response time for this
application type (Yolo/PocketSphinx/Aeneas for DeFog
and random/sequential for Bitbrain) on the state of the
art baseline A3C. This definition of percentile-based SLO
is defined for the response time metrics of completed
tasks and is inspired from [61].

2) Fairness which is given as the Jain’s Fairness Index

(
∑
t

∑
ltj∈Lt

Response T ime(ltj))
2

(
∑
t |Lt|)× (

∑
t

∑
ltj∈Lt

Response T ime(ltj)
2)
.

3) Average Migration Time which is the average time for the
migration of tasks over all intervals in the run∑

t

∑
(atj ,hi)∈D̂(At)

Migration T ime(atj , hi)∑
t |D̂(At)|

.

4) Scheduling Time which is the average time to reach the
scheduling decision over all intervals in the run.

5) Average Wait Time which is the average time for a con-
tainer in the wait queue before it starts execution.

8.6 Results
In this section we provide comparative results, showing
how GOBI and GOBI* perform against other baselines as
described in Section 8.4. We compare the proposed ap-
proaches with respect to the evaluation metrics described in
Section 8.5. Additional results are given in Supplementary
Section 5. The graphs in Figure 8 show the results for
runs with length of 100 scheduling intervals viz 8 hours 20
minutes using the DeFog workloads on 10 physical Azure
machines. Figure 9 shows similar trends in the result for 50
hosts in a simulated environment.

Figure 8(a) shows the energy consumption of Azure host
machines for each scheduling policy. Among the baseline
approaches, A3C consumes the least average interval energy
of 221.63 KW-hr. Running the GOBI approach on the Azure
platform consumes 193.11 KW-hr, 12.86% lower than A3C.
Further, GOBI* consumes the least energy 188.26 KW-hr
(15.05% lower than that of A3C). The major reason for this
is the low response time of each application, which leads
to more tasks being completed within the same duration of
100 intervals. Thus, even with similar energy consumption
across all policies, GOBI and GOBI* have a much higher task
completion rate of 112-115 tasks in 100 intervals compared
with only 107 tasks. Similarly, when we consider 50 host
machines in a simulated platform (Figure 9(a)), GOBI* still
consumes 9.39% lower than A3C. The energy consumption
with GOBI is very close to A3C.

Figure 8(b) shows the average response time for each
policy. Here, response time is the time between the cre-
ation of a task from an IoT sensor and up to the gateway
receiving the response. Among the baselines models, POND
has the lowest average response time of 266.53 seconds.
Here, GOBI and GOBI* have 226.04 and 156.09 seconds
(15.19% − 41.43% better than POND). For the three ap-
plications, the average response time for each policy is
shown in Figure 8(f). Clearly, among the DeFog benchmark
applications, Yolo takes the maximum time. The highest
response time for Yolo among all policies is for GA as it
prefers scheduling shorter jobs first i.e. Pocketsphinx and
Aeneas to reduce response time. This is verified by the re-
sults which show that Aeneas has the lowest response time
when the GA policy is used. Another disadvantage of this
preference is that it leads to high wait times when running
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Fig. 8: Comparison of GOBI and GOBI* against baselines on framework with 10 hosts

the GA policy. However, in larger scale experiments on 50
hosts in simulation (Figure 9(b)), GA has much lower wait
times leading to the best response times among the baseline
algorithms. Here, compared to GA, GOBI and GOBI* have
17.98%−20.87% lower average response times, respectively.

Figure 8(k) shows the average waiting time (in intervals)
for tasks running on the Azure framework with each policy.
As prior works have established that RL approaches are
slow to adapt in highly volatile environments [3], [62], the
A3C and DQLCM approaches are unable to adapt when
a host is running at capacity. This means that for a large
number of scheduling intervals (47.72%), they predict an
overloaded host. Hence, the task cannot be assigned in the
same interval and has to wait until either it is assigned to
another host, or the resources of this host are released. This
is also reflected in the wait time per application (Figure 8(g)).
As established in prior work, reinforcement-learning ap-
proaches scale poorly and hence this waiting time gets
more pronounced when running with 50 hosts (Figure 9(h)).
However, as GOBI and GOBI* are able to adapt quickly to
the environment, because of the neural model update in

each iteration, they do not face such problems even on larger
scale experiments.

As seen in Figure 8(d), due to the high response times
of the baseline approaches, they have a high SLO violation
rate. For the experiments of physical hosts, as POND has
the lowest response time, the SLO violation rate is also the
lowest among the baselines (2.75%). GOBI has only 0.9%
SLO violations and GOBI* has none. This is due to the back-
propagation approach which minimizes the response time,
as well as avoiding local optima using the adaptive moment
estimation approach (Adam optimizer). For GOBI, the SLO
violations are only for Yolo tasks (4.5%). In the simulation
environment, due to the high wait and response times of the
A3C, DQLCM and POND schedulers, their SLO violation
rates are highest among all methods. Here, GOBI has only
1.1% SLO violations. Due to the high response times of A3C
and DQLCM for 50 hosts, the SLO itself is much higher
giving the GA approach with low response times only 0.2%
SLO violations. GOBI* has no SLO violations in this case as
well.

The main reason for low response times in GOBI and
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Fig. 9: Comparison of GOBI and GOBI* against baselines on simulator with 50 hosts

GOBI* is their low scheduling time. Even with single-
step simulation, the back-propagation based optimization
strategy with the AdamW optimizer converges faster than the
gradient-free optimization methods like A3C, DQLCM GA and
POND. This is apparent from the scheduling times seen in
Figures 8(j) and 8(i) (shaded region shows the 95% confi-
dence interval). Here, MAD-MC has the lowest scheduling
time, with GOBI next at 2.65 seconds and GOBI* at 5.88
seconds. Even with 50 hosts (Figure 9(g)), GOBI and GOBI*
have one of the lowest scheduling times across all policies
(except MAD-MC).

Figure 8(e) shows the average migration times for all
polices. Here, GA has the highest migration time due to
the largest number of migrations. This is as expected due
to the non-local jumps in the GA approach which lead to
a high number of migrations. Approaches like the back-
propagation method (GOBI and GOBI*) and RL based ap-
proaches (A3C and DQLCM) have comparatively low migra-
tion times. A similar trend is also apparent with 50 hosts as
seen in Figure 9(d). Due to convergence to better optima, the
execution times itself for iterative optimization approaches
including GOBI, GOBI* and GA are the lowest among all
approaches (Figures 8(c) and 9(c)). Finally, Figures 8(l) and
9(e) show that GOBI and GOBI* are the most fair schedulers.

8.7 Comparing GOBI and GOBI*

Now that GOBI and GOBI* have been shown to out-perform
prior works, we directly compare the two approaches. Ta-
ble 4 shows GOBI* has a lower objective value (16.4%)
and prediction error of objective value (14.2%) for the next
interval. This clearly shows that GOBI* can optimize the
objective value better than GOBI. This is because GOBI
predicts the objective value for the interval It using only
the utilization metrics of interval It−1. However, GOBI* has

TABLE 4: Comparison between GOBI and GOBI*

Algorithm Scheduling Time Objective Value MSE

GOBI 2.65±0.019 s 0.5673 2.31±0.15×10−3

GOBI* 5.88±0.015 s 0.4744 1.98±0.22×10−3

more information as the LSTM models predict utilization
metrics for It and the GOBI model gives a tentative action,
which is then used to simulate It and get a reasonable
estimate of the objective value for It. This estimate with the
utilization metrics of It−1 aid GOBI* to have much closer
predictions and hence better scheduling decisions. How-
ever, the scheduling time of GOBI* is more than twice that
of GOBI. This makes the GOBI approach more appropriate
for environments with resource constrained servers.

9 CONCLUSIONS AND FUTURE WORK

We have presented a coupled-simulation approach to lever-
age simulators to predict the QoS parameters and make
better decisions in a heterogeneous fog setup. The presented
COSCO framework allows deployment of a holistic plat-
form that provides an easy to use interface for schedul-
ing policies to access simulation capabilities. Moreover, we
have presented two scheduling policies based on back-
propagation of gradients with respect to input, namely
GOBI and GOBI*. These approaches use neural approxima-
tors to model objective scores for the scheduling decisions.
GOBI* uses GOBI, predictors of utilization characteristics
and an underlying simulator to better predict the objective
values leading to better decisions. Comparing GOBI and
GOBI* against state-of-the-art schedulers using real-world
fog applications, we see that our methods are able to re-
duce energy consumption, response time, SLO violations
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and scheduling time. Between GOBI and GOBI*, GOBI*
gives better QoS values however GOBI is more suitable for
resource constrained servers.

For the future, we propose to extend the COSCO frame-
work to allow workflow models for serverless computing.
Extending to serverless would allow us to perform fine-
grained auto-scaling, increase productivity and improve
flexibility and logistics [63]. For the back-propagation ap-
proach, we wish to extend our methods to consider layer
types and activations like recurrent, convolution or residual
with Rectified Linear Units (ReLU). This is because such
non-differentiable functions are increasingly being used to
approximate diverse objective functions. More advanced
layer types would also allow us to model temporal and
spatial characteristics of the environment.

SOFTWARE AVAILABILITY
The code is available at https://github.com/imperial-qore/COSCO.
The Docker images are available at
https://hub.docker.com/u/shreshthtuli. The dataset
will be made available on Zenodo once the manuscript is published.
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