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Abstract—Over the past years, organizations have been moving
their enterprise applications to the cloud with the aim of reducing
infrastructure ownership and maintenance costs, and to take
advantage of the elasticity and heterogeneity of the cloud. This
paper joined the approaches of multi-cloud deployment using
CloudML and identifying the ideal resource provisioning and
deployment configuration using an optimization model, in order
to dynamically scale an enterprise application across multiple
clouds, without any user intervention. The approaches are dis-
cussed in detail along with the introduced extensions. Benchmark
experiments were conducted on Amazon cloud infrastructure,
based on one system with a single scalable component and two
other systems with the basic workflow control structures, parallel
and exclusive. The results of the experiments suggest that the
approach is plausible for dynamic deployment and auto-scaling
any web/services based enterprise workflow/application on the
cloud.

Index Terms—Cloud computing; dynamic deployment; auto-
scaling; enterprise applications; optimal resource provisioning;

I. INTRODUCTION

Cloud computing [1] has gained significant popularity over
past few years. Employing service-oriented architecture (SOA)
and resource virtualization technology, public clouds provide
the highest level of scalability for enterprise applications with
highly dynamic load. While, cloud, with its intrinsic features
such as elasticity and utility computing is interesting, for mi-
grating enterprise applications to the cloud, one should worry
about the ideal deployment configuration of the applications
and auto-scaling them on the cloud.

It is obvious that all major players in cloud solutions in-
dustry have their own tools and frameworks designed to make
deployment of applications in the cloud easier. For example;
Amazon has a number of solutions for dynamic deployment
of applications such as AWS Elastic Beanstalk and AWS
CloudFormation [2]. Similarly, Google Cloud Deployment
Manager [3], allows to declare, deploy and manage enterprise
applications using the concept of templates. However, since
different cloud providers have different deployment mecha-
nisms, it is difficult to span a system across multiple clouds.

Several projects have studied the interoperability across
multiple clouds and as part of EU FP7 REMICS project [4]
we have developed the CloudML [5], [6], a domain specific
language, using which one can model the provisioning and
deployment of multi-cloud systems. We also have developed
a models@run-time execution engine which ensures the en-
actment of the specified model on the respective clouds.

CloudML is actively being developed further in projects such
as PaaSage!, CloudScale? and ModaClouds®.

Once an application is migrated, it should be auto-scaled
properly on the cloud to take advantage of cloud’s elasticity. In
N-tier enterprise applications or workflows, generally, different
components will have different scaling requirements and find-
ing an ideal configuration and having it to scale up and down,
dynamically, based on the incoming requests is a difficult
task. To be precise, since each deployment component or web
service of an enterprise application, or task of a workflow
requires different processing power to perform its operation,
at the time of load variation it must scale in a manner fulfilling
its specific requirements the most.

A number of auto-scaling policies have been proposed so
far. Some of these methods try to predict next incoming loads,
while others tend to react to the incoming load at its arrival
time and change the resource setup based on the real load rate
rather than predicted one [7], [8]. However, in both methods
there is a need for an optimal resource provisioning policy
that determines how many servers of a particular type (taking
advantage of the cloud heterogeneity) must be added to or
removed from the system, in order to fulfill the load, while
minimizing the cost.

Another key challenge here arises from the fact that cloud
providers generally charge the resource usage for fixed time
periods (e.g. hourly). Current methods of auto-scaling take
into account a range of related parameters such as, incoming
workload, CPU usage of servers, network bandwidth, response
time, processing power and cost of the servers [9], [10].
However, none of them incorporates the life duration of a
running server and current deployment configuration.

To address the above challenges in auto-scaling enterprise
applications, we designed and developed an ILP (Integer
Linear Programming) model that takes into account all major
factors involved in scaling including periodic cost, configura-
tion cost and processing power of each instance type, instance
count limit of clouds, and life duration of each instance
with customizable level of precision, and outputs an optimal
combination of possible instance types suiting each component
of an enterprise application the most [11].

Thttp://www.paasage.eu/
Zhttp://www.cloudscale-project.eu/
3http://www.modaclouds.eu/



This paper tried to join both the approaches of multi-
cloud deployment using CloudML and identifying the ideal
resource provisioning and deployment configuration using
the optimization model, in order to dynamically scale an
enterprise application across multiple clouds, without any user
intervention. Extensions were introduced to CloudML features
to incorporate the scale up components and load balancers,
and a framework was built to identify the changes in the
model automatically, and ensure the changes as and when they
appeared, using the models@run-time engine.

We created a simulation tool based on the proposed model
and conducted real-time benchmark experiments on Amazon
cloud. The benchmarks are based on one system with a single
scalable component and two other systems based on Parallel
(AND) and Exclusive (XOR) workflow control structures. The
results of the experiments suggest that the approach is plausi-
ble for dynamic deployment and auto-scaling any web/services
based enterprise workflow/application on the cloud.

The paper is organized as follows: Section II discusses the
dynamic deployment of multi-cloud systems with CloudML.
Section III summarizes the optimization model. Section IV
discusses the combination of the approaches and Section V
provides a detailed evaluation of the combined approach.
Section VI later discusses the related work, while section VII
concludes the paper with future research directions.

II. DYNAMIC DEPLOYMENT OF MULTI-CLOUD SYSTEMS
wWITH CLOUDML

In recent years, there has emerged dynamically adaptive
systems (DAS) that will ease the development, adaption and
continuous design of complex software systems. Usually,
these systems are focused on the application and not the
core platform and infrastructure. Due to the lack of software
engineering approaches and methods widely accepted across
multiple cloud computing providers, a model-based framework
called CloudMF [12], was developed and is being managed as
part of several European Commission projects.

CloudMF primarily enables multi cloud-based DAS and is
made up of two primary components: 1) cloud modelling
language, CloudML and 2) models@run-time environment.
The first one is used to describe and create the model of
the system. This includes information about the instances, set-
up, deployment, etc., while the models@run-time is used to
execute the provisioning itself and is the main architecture,
which reflects the changes in the running system to the current
model associated to it.

CloudML’s main aim is to provide the users with a frame-
work, which could be run on multiple cloud platforms and
infrastructures, so that the user is free to migrate their appli-
cations to other vendors, as and when needed. To be able to
describe the model of the system, CloudML allows the user
to do it using JavaScript Object Notation (JSON), Ecore/XMI
file or Java APIL.

Listing 1 shows how different nodes and artefacts are
defined using CloudML. Nodes are self-explanatory, with
information such as OS, memory and CPU requirements etc.

Artefacts are used for defining dependencies on the instances
and to install the required components, such as scripts, bi-
naries, etc. and execute them, while bindings define how
artefacts are dependent on each other. Several systems have
been deployed with CloudML and the engine was shown to
be efficient [6].

Listing 1: Example snippet of a CloudML JSON file

“nodeTypes” : [ {

id” : "myApp”,
“os” : "Debian”,
“provider”: Taws—ec2”,
“compute” : [2, 4],
“memory” : [1024, 2048],
“storage” : [20480],
"location” : “us—east —17,
“sshKey” : "sshkey™,
"securityGroup™ : “ports_open”,
“privateKey” : "KEY",
1.

“artefactTypes” : [ {
7id”: "mediaWiki”,
“retrieval 7: “wget http ://../m_wiki.sh”,
“deployment”: “sudo m_wiki.sh”,

“requires”: [ {
7id”: "MySQLCapability”
1

H1

III. OPTIMAL RESOURCE PROVISIONING FOR
AUTO-SCALING ENTERPRISE APPLICATIONS

While CloudML addresses the deployment issues, designing
an auto-scaling model for entire enterprise application/work-
flow is a complex task. In these applications, generally, each
component will have its own specific requirements to scale.
Moreover, in every public cloud there are a range of instance
types, each one having a different power/price rate. Whereas a
large instance might be more beneficial for one task, a medium
might have a better performance for another one, so we shall
allocate different instance types to different tasks in order to
reduce the total cost. Sometimes the optimal allocation for a
task can be a composition of multiple types of instances. In
addition, due to SLA (service-level agreement) of applications,
some of the tasks may even have to run on completely different
clouds, to support customers from different regions.

We studied the problem in detail and came up with a LP
model based solution [11]. Input to the model includes incom-
ing workload of each task, processing power, periodic cost and
configuration time of instance types, maximum instance count
limit of the cloud, and age of each running instance. The model
provides the optimal number of instances from each type
that must be added to or removed from cluster of each task,
resulting in handling the workload and minimizing the cost.
In summary, we created the notion of fime bags, by dividing
an instance’s paid life period (e.g. hour in case of Amazon
EC2) into equal time periods. Thus, all the instances in the
enterprise system, at any given time, will be in one of these
time bags. This provides us a means to calculate the value of a
running instance to the complete system, considering its age.
The enterprise application is divided into component/tasks,
each of them, running in a specific region.

The intuition for considering different parameters, the per-
formance efficiency of the model, its implementation and
comparison with solutions such as Amazon AutoScale, are



thoroughly addressed in [11]. The model is summarized here
to make the current writing a consolidated one.

A. Description of the optimization model

Parameters of the model are listed below:
-C,;: Cost of a time period of instance type t running in
region r.
-CTB,;: Cost of a time bag from instance type t running in
region r. This cost is calculated by dividing the cost of a
period of instance type t by total number of time bags.
-CT,;: Configuration time of instance type t running in
region r. This value must be specified by time bag metric.
For example in our experiments, we considered first 3 time
bags as configuration time, a number approximated by the
time taken by instances from Amazon EC2 to start up and
customize the configuration.
-KC,;: Killing Cost of time bag tb from instance type t
running in region r.
-RC,;»: Retaining Cost of time bag tb from instance type t
running in region r.
-X,..»: The number of instances in time bag tb from instance
type t running in region r.
-P,,: Processing power of instance type t running in region r.
-CCT,;: Capacity constraint (or instance count limit) of
instance type t running in region r.
-W,: Workload of region r. This is the current incoming
workload to the system and must be provided by the same
metric as P;;. meaning that if P, is calculated by requests
per second, W, must be provided as requests per second too.
-CC,: Capacity constraint (or instance count limit) of region
r. The number varies per cloud, e.g. a private cloud with
limited capacity. Even in Amazon, by default, customer can
launch only up to 20 instances.

The model has 2 variables:

-N,;: The number of new instances from instance type t
running in region r that must be added to the system.

-Sy.: The number of instances of time bag tb from instance
type t in region r that must be shut down.

The objective function of the model is as follows:

(Nr'iytj * Cy + N"i»tj * (CTTiatj * CTB?“i,tj))
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The objective function comprises sum of all costs attached
to changing the arrangement of resources at any point of
time. The cost function, sums cost of new instances and their
configuration, killing cost of each instance that must be shut
down and retaining cost of each instance that will continue
living. For each region the model outputs the number of new
instances of each instance type that must be added and number

of instances of each time bag from each instance type that must
be terminated so that the cost becomes minimal and all these
following constraints are fulfilled.

-The workload constraint V regions r € R:

m

q
> (Nr,tj +(> Xr,tj,tbk - Sr,tj.,tbk)) * Pr,tj > W,
k=1

j=1
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-The cloud capacity constraint V regions r € R:
m q
> Nty + (30 Xoty v — Srayn)) < CCr (3)
j=1 k=1

-Instance type capacity constraint V instance types t € T;:

q
Nt + (D0 Xiby — St,t0,,) < CCTy, 4
k=1
-Shutdown constraint V time bags tb € TB,;:
S, < Xtb,., (3)
-And:
Nr,t Z Oa Sr,t Z 0 (6)

Killing cost and retaining cost actually specify how valuable
a running instance is still for us. The more the instance lives
in its current time period, the retaining cost becomes higher
and the killing cost become lower, and thus the instance
becomes less valuable. This guarantees that during scale-down
the instances from the last time bags will have higher chance
to be terminated. However, adding a new instance is bound to
a new configuration process that triggers redundant cost which
might make the addition of the new instance unprofitable. This
is avoided by adding configuration cost to objective function.

The constraint (2) is defined to ensure that the new setup
will fulfill the incoming workload in each region. Furthermore,
the total number of instances in each region must not exceed
its capacity; this is fulfilled using the constraint (3). The
constraint (4) checks that the number of instances of each
instance type in each region does not surpass its limit. Finally,
constraint (5) makes sure that from each time bag the model
does not shut down more instances than it contains.

The model is implemented in OptimJ [13] and using one of
its free solvers, GLPK (GNU Linear Programming Kit) [14].
The cost and efficiency of the model are shown to be compa-
rable to Amazon AutoScale in [11].

IV. JOINING AUTO-SCALING & DYNAMIC DEPLOYMENT

To introduce our optimization model for load balancing into
the CloudML, we added following new components.

o LoadBalancerEntity - A wrapper containing several
CloudML internal components such as Componentln-
stance, VMInstance, etc. This added component with the
help of DNS rerouting (explained later), will allow the
load to be redirected between multiple instances.

o ScalableComponent - This is an entirely new component
added to the CloudML core, which allows the user to
create flexible and scalable components in their model.



Scalable component can instantiate new virtual machines
or a LoadBalancerEntity. During a scale up, the compo-
nent will automatically add a load balancer to the scalable
component and redirects the incoming traffic between
available instances.

o DirectCommand - A component that will allow to run
commands in the virtual machine after the execution and
it can be added to the model at any given time.

In order to utilize the full prospects of scalability, we
made every scalable component to have the ability to scale
separately. To support this we added two algorithms: scaling
up and scaling down. For practical use they were combined
to a single module, that will take a configuration, which is
a simple array and is produced using our LP model, and
determines which instances to kill or create. For example, if
the incoming, configuration is [1,0,2] and the instance types
defined for the scalable component are [M1.micro, M1.small,
M3.medium], the ideal deployment at that particular moment
would be one M1.micro and two M3.medium instances. Also,
to accommodate the traffic rerouting, we used a Domain Name
System (DNS) caching resolver called DNS Unbound [15].
This allows us to redirect every communication through the
load balancer, when the component is scaled up. DNS Un-
bound adds one additional step to the operating system before
checking the DNS servers for an IP address - it checks whether
the Unbound configuration file has a rule for that specific DNS
name and if there is a match, the rule will be used.

The extended version of the CloudML and the optimization
model are combined into a simple RESTful web-service appli-
cation using Spring, which allows us to deploy any model and
start the auto-scaling of the system with ease. For example,
when submitting the initial JSON of the model to the URL
/initial, the model will be deployed to the specified platform,
and when visiting /initial/start, the automatic scaling of the
system will start.

V. EVALUATION OF THE APPROACH

We conducted three experiments to show that the pro-
posed solution can be used for the dynamic deployment and
auto-scaling a vast range of applications in the cloud. First
experiment is similar to usual enterprise applications such
as WikiPedia. The set up includes one scalable component,
the application server, which has connection to an external
database. The next two experiments were designed to show the
parallel and exclusive workflow scalability with our approach.

A. Setup

For the test environment, we chose Amazon EC2, the most
popular of cloud platforms. All instances were running Ubuntu
14.04 OS. We used three types of EC2 instances for all tests
- Ml.small, M3.medium and M3.large.

To simulate load in all tests, we used Tsung [16], an
open-source multi-protocol distributed load testing tool, which
allows to simulate load with various rates. Tsung later provides
statistics such as system average response time, total number
of requests and CPU load. To make the tests as realistic as

possible, an archive of HTTP requests to ClarkNet’'s WWW
server was used and the number of requests per second are
scaled to the ranges (~600), using Python scripts.
Considering that our LP model heavily relies on the max-
imum number of concurrent requests per second supported
by each instance type (P,;), we measured this parameter as
accurately as possible, by restricting the average CPU usage
to ~80% and the average response time to be under 500ms.

B. Scaling of a single component application

In this experiment we used MediaWiki [17], an open source
Wikipedia replica, as a test application for the deployment.
The database was populated with logs from publicly available
WikiPedia database files. For each request, we requested a
random page from MediaWiki, to simulate a real workload.

[/ Scalable Component \ [/ Scalable Component \
VM1
VM1
Load Load || toad MediaWiki
R oad
MediaWiki MySql DB | Balancer MySql DB
VM2 |, |
: MediaWiki
VMn
\ > Mediawiki|

Fig. 1: The setup of the system before and after scale up
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Fig. 2: Workload and system capacity during single scalable
component experiment

After bombarding the scalable component with requests
generated by Tsung, the modified configuration scaled up
properly. Figure 2 shows the system’s capacity and the work-
load for 24 hours. Figure 3 shows the number of different
types of instances provisioned to the scalable component
(M3.large was highly preferred). The experiment’s results are
summarized in table I, showing that the load was handled well.

C. Scaling of parallel and exclusive workflows

The goal of the second and third experiments is to show
the possibility of building applications with multiple scaling
components, that use parallel (AND) or exclusive (XOR)
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Fig. 3: Number of instances of each type during single scalable
component experiment

Total number of requests
Average response time (sec)
Requests lost

Successful requests

11,417,146

0.26

201,036 (1.7%)
11,216,110 (98.3%)

TABLE I: Request success and failure count.

workflows. For these tests we used the system with three
scalable components. In a parallel workflow, after component
1, components 2 and 3 are executed simultaneously, as op-
posed to exclusive workflows, where one of the components
is executed based on specified constraints.

For the experiments, we chose to build a custom application
to simplify deployment configuration and have more control
over the system. The application consists of three different
elements, that were developed using JavaScript and Express
framework to support the requested model and for the server,
we used NGINX. In order to consume a lot of CPU and
memory, so that we can test the scale up easily, the application
calculates Fibonacci numbers and returns them to the client.
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Fig. 4: Workload and system capacity during parallel workflow
experiment (second component)

Figure 4 shows the system’s capacity and Figure 5 shows
the combination of instance types during the execution of the
parallel workflow experiment, for the second component. From
the results we observed that the system was able to provide
the needed performance over 96% for the first component,
which for the second and third component was 98%. We also

mbes
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Fig. 5: No of instances of each type during parallel workflow
experiment (second component)

calculated how slow the system became as the users increased.
Average response time for Ml.small instance in the initial
state was 0.49 seconds and after the experiment, the average
response time increased to ~0.54 seconds.

For the third experiment, which considers exclusive work-
flows, the custom application had to be changed a bit - instead
of simultaneously running the Fibonacci computations on all
nodes, it was distributed between two components using a
round-robin scheme.
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Fig. 6: Workload and system capacity during exclusive work-
flow experiment (third component)

Similar to the previous experiment, we noticed that the
system was able to support the incoming workload in 96%
for the first component and about 99% for the second and
third component. Figure 6 shows the system’s capacity during
the execution of the exclusive workflow experiment, for the
third component.

VI. RELATED WORK

Deployment and monitoring of distributed systems have
been extensively studied over the past few years. Server
management solutions, such as IBM Tivoli [18] can pro-
duce consistent and reproducible deployment configuration,
even though not specifically targeted at cloud. Libraries such
as jclouds*, Simple Cloud’, or DeltaCloud® have recently

“http://www.jclouds.org
Shttp://simplecloud.org/
Shttp://deltacloud.apache.org/



emerged to deploy and maintain cloud-based systems, how-
ever, they remain code-level tools. Similarly, frameworks such
as Cloudify’, Chef® and Puppet’ provide language-dependent
solutions, with capabilities for the automatic provisioning,
deployment and monitoring of cloud based systems.

Regarding auto-scaling strategies, having been used by
many auto-scaling services such as Amazon AutoScale [9],
RightScale [10], threshold-based policies are very popular
among users due to their simplicity. However, these methods
require expert knowledge of load and cloud computing to set
up an optimal service.

Regarding optimal resource provisioning policies, apart
from LP several other technologies can also be used. Dutreilh
et al. [19] used Reinforcement Learning and tried to improve
the approach with better initialization and faster convergence
to optimal policy. Urgaonkar et al. [20], using Queuing theory,
experimented a network of queues in a multi-tier application.
Harold et al. [21], using Control Theory, proposed a simple
controller that produces the output based on average CPU
usage. Xu et al. [22] utilized a fuzzy model to estimate CPU
capacity needed for handling the incoming workload. We also
have tried other models and in [8], we combined heuristics
and queuing models with a reactive model for auto-scaling
MediaWiki application.

LP was also used in other works such as by Mao et al. [23],
where they proposed an LP model to find optimal combination
of different instance types to handle the workload comprising
of multiple class jobs within a variable deadline, assuming
sequential running of jobs on an instance. In contrary, in our
model we maximize resource usage with assigning a specific
class of jobs to a cluster of multi-type instances.

VII. CONCLUSIONS AND FUTURE WORK

The paper showed how we can join multi-cloud deployment
using CloudML and identifying the ideal resource provisioning
and deployment configuration using an optimization model, in
order to auto-scale an enterprise application across multiple
clouds. Currently, we are interested in adapting/remodelling
enterprise applications for cloud migration. We propose re-
modelling and scheduling the applications, in a way that
increases the intra-instance communication while reducing
inter-instance communication, so that the applications will
fit nicely to the cloud networks. The applications can be
monitored for their performance and later partitioned with
graph partitioning approaches. We studied the approach in
migrating scientific workflows to the cloud [24]. Following
the approach and joining the CloudML and optimal resource
provisioning policy, we would like to achieve a framework to
which any enterprise application can be provided, which would
be studied, remodelled, migrated to, performance monitored
and auto-scaled on the cloud, seamlessly.

"http://www.cloudifysource.org/
8http://www.opscode.com/chef/
9https://puppetlabs.com/
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