
Rheinisch-Westfälische Technische Hochschule Aachen

Lehrstuhl für Informatik V
Prof. Dr. Matthias Jarke

Scalability of P2P Based Mobile Web Services Discovery

 Diploma Thesis

Hongyan Zhu
Matriculation number: 232341

Jan 15, 2008

Supervisors: Prof. Dr. Matthias Jarke
 Prof. Dr. Wolfgang Prinz

Advisor: M.Sc. Satish Narayana Srirama

Declaration

Hereby with my signature, I assure that I have written this master thesis on my own,
and all references cited in the thesis are stated veritably and completely, and any
citation is referenced to its source truly.

--------------------------- --------------------------

Hongyan Zhu Date

Erklärung

Hiermit versichere ich, dass die vorliegende Masterarbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate
kenntlich gemacht wurden.

--------------------------- ---------------------------
Hongyan Zhu Date

Acknowledgements

At first, I would express my appreciation to Prof. Dr. Matthias Jarke and

Prof. Dr. Wolfgang Prinz who provide me the opportunity to do my thesis

in their department.

I owe many thanks to my advisor M.Sc. Satish Narayana Srirama for

several reasons. At first for his decision to give me the chance to do this

thesis in his project, then for his effort and support during the whole

period of my work and at last for his belief that I could fulfil the task

with success when I am sometimes even sceptical with myself. Without

his help and encouragement it is not possible for me to accomplish such

work in width and depth.

Many friends and classmates generously provide their advice to improve

my work and/or to help solve encountered problems during the process of

my work. I often feel grateful and fortunate that I have such kind friends

and classmates. Among them are Jing Da, ShuJie Hu, Liang Huang,

Edmund Julius, Feng Luo, YanHuai Peng, Qian Yang, Ting Zhang, if I

am allowed to mention just a few names.

In the end, no words or language could express the deepest gratitude and

love I have to my dear parents and brother for their continuous support

and encouragement during the past years of my study in Germany. Their

supports give me enormous strength to overcome difficulties on the way

to my goal and steadfast confidence in what I pursue in my life.

 1

Abstract

An efficient discovery mechanism is the prerequisite for Web Service

requestor to deploy a Web Service with success. UDDI registry is widely

used for this purpose. However, this approach on the basis of central

registry does not suit the highly dynamic and flexible behaviour of mobile

peers. In the quest for a most appropriate mechanism for mobile Web

Service discovery various approaches are studied. Among them the P2P

technology provides a superb alternative that enables Web Services to

discover each other dynamically independent of any centralized registries.

JXTA technology is a set of open protocols that enable any connected

device on the network, from cell phones to PCs and servers, to

communicate and collaborate in a P2P manner. Since each peer joining

the JXTA virtual network is identified with a unique peer ID, the

interoperable communication between peers is even less bounded and

independent of firewalls and network address translations (NATs).

On the basis of the past study of mobile Web Service discovery, this

diploma thesis intends to design and implement a more efficient discovery

mechanism by borrowing some good characteristics of UDDI such as

categorization. With the reference of some popular industry categorization

standards a categorization hierarchy is built up. It starts with the root

group mobile Web Service Group and consists of peer groups of further

three levels hierarchically. The built group structure is a first draft to

realize the idea of categorization. To construct a complete categorization

hierarchy for all possible mobile Web Services is neither realizable for the

present stand of this research nor meaningful for the need of the project

now. With the categorization structure it is intended to find out whether

the critical and core functionality of the P2P solution – discovery could be

improved with efficiency and scalability. Based on the available resources

the evaluation and scalability test is conducted and come out with the

results that mobile Web Service discovery mechanism with categorization

reduces the time cost in fact and is scalable with a small scale of peers.

 2

Table of contents

1 INTRODUCTION ... 10

1.1 MOTIVATION ... 10
1.2 THESIS OBJECTIVES ... 11
1.3 THESIS TOPICS ... 12

1.3.1 Web service .. 12
1.3.2 Peer-to-Peer Systems for mobile devices... 12

1.4 THESIS STRUCTURE ... 13

2 STATE OF THE ART .. 14

2.1 SERVICE ORIENTED ARCHITECTURE (SOA) ... 14
2.1.1 Introduction to SOA ... 14
2.1.2 SOA and Web Service .. 15

2.2 WEB SERVICE .. 16
2.2.1 Overview .. 16
2.2.1.1 Web Service Architecture.. 16
2.2.1.2 Web Service Operations.. 17
2.2.2 Web Services Standards... 18
2.2.2.1 XML .. 18
2.2.2.2 UDDI .. 18
2.2.2.3 SOAP .. 19
2.2.2.4 WSDL .. 20

2.3 PEER-TO-PEER SYSTEMS .. 21
2.3.1 Introduction to P2P Systems .. 21
2.3.2 Development of P2P Systems .. 22
2.3.2.1 First Generation: Hybrid P2P .. 22
2.3.2.2 Second Generation: Pure P2P .. 24
2.3.2.3 Third Generation: Mixed P2P .. 25
2.3.2.4 P2P Systems for Mobile Environment .. 26

2.4 PROJECT JXTA/JXME ... 26
2.4.1 JXTA Architecture ... 27
2.4.2 JXTA Concept .. 28
2.4.2.1 Peers and Peer Groups ... 29
2.4.2.2 IDs .. 29
2.4.2.3 Pipes ... 30
2.4.2.4 Modules .. 30
2.4.2.5 Advertisement ... 31
2.4.3 JXTA Protocols .. 32
2.4.4 JXTA Peer Category .. 33

2.5 RELATED PROJECTS ... 34
2.5.1 Related Projects about P2P-based Web Service discovery ... 34
2.5.1.1 WS-Talk .. 34
2.5.1.2 Service Discovery in Peer-to-Peer Networks .. 36
2.5.2 Related Projects about JXTA Framework Scalability Test .. 37
2.5.2.1 JXTA Benchmarking Project .. 38
2.5.2.2 The Cost of Using JXTA.. 39
2.5.2.3 Performance Scalability of the JXTA P2P Framework .. 40

2.6 PREVIOUS WORK ... 41
2.6.1 Mobile Web Service Provisioning ... 41
2.6.2 Mobile Web Services Discovery in JXTA/JXME ... 42

2.7 SUMMARY.. 43

3 CONCEPTUAL DESIGN .. 44

3.1 MOBILE WEB SERVICES DISCOVERY ... 44
3.1.1 Web Services Discovery Process ... 44
3.1.2 Web Services Discovery Viewpoints: Registry, Index, dynamic or Peer-to-Peer? 45

 3

3.1.3 The Registry Approach .. 45
3.1.4 The Index Approach .. 46
3.1.5 Dynamic Approach .. 47
3.1.5.1 E-speak ... 47
3.1.5.2 Salutation .. 48
3.1.5.3 Jini .. 49
3.1.5.4 VISR .. 50
3.1.5.5 Konark service discovery protocol ... 50
3.1.5.6 UpnP ... 51
3.1.6 P2P-based Web Service Discovery – the chosen Mechanism for mobile Web Service

Discovery ... 51
3.2 ADAPTING CATEGORIZATION TO P2P-BASED DISCOVERY ... 52

3.2.1 Categorization in UDDI Business Registry ... 52
3.2.1.1 Simple categories .. 53
3.2.1.2 Grouping categories ... 53
3.2.2 How to Deploy Categorization in P2P based Discovery ... 54
3.2.2.1 Design of implementation of categorization in JXTA/JXME network 54
3.2.2.2 Categorization structure of mobile Web Services ... 55

3.3 WEB SERVICES INVOCATION ... 58
3.4 SUMMARY.. 59

4 IMPLEMENTATION .. 60

4.1 IMPLEMENTATION ENVIRONMENT AND TOOLS .. 60
4.1.1 Java 2 Platform and J2ME .. 60
4.1.1.1 CLDC 1.0 .. 61
4.1.1.2 MIDP 2.0 and MIDlet ... 61
4.1.2 Eclipse SDK 3.2 ... 62
4.1.3 Sun wireless Toolkit and Sony Ericsson SDK .. 62
4.1.4 NetBeans IDE and NetBeans Mobility Pack.. 62
4.1.4.1 NetBeans Platform and NetBeans IDE 6.0 ... 63
4.1.4.2 NetBeans Mobility Pack.. 63
4.1.5 JXTA and JXTA Java Micro Edition (JXME) .. 63

4.2 OVERALL PUBLISHING AND DISCOVERY IMPLEMENTATION .. 64
4.3 SERVICE PROVIDER IMPLEMENTATION ... 66

4.3.1 To Start JXTA .. 67
4.3.1.1 To Start a JXTA shell .. 67
4.3.1.2 To Configurate a JXTA shell .. 68
4.3.2 Categorization implementation ... 69
4.3.2.1 To Create Peer Group .. 69
4.3.2.2 Web Service publishing implementation ... 70
4.3.3 Shell command Implementation ... 73

4.4 JXME MOBILE CLIENT IMPLEMENTATION .. 74
4.4.1 JXME Client Application ... 74
4.4.2 Search in Group Request implementation ... 74

4.5 JXTA PROXY/RELAY IMPLEMENTATION ... 76
4.5.1 Processing message ... 76
4.5.2 Searching Web Service in Group implementation ... 76
4.5.2.1 Searching peer group ... 76
4.5.2.2 Searching MCA(s) in peer group .. 77
4.5.2.3 Searching MSA(s) by MCA ... 78

4.6 SUMMARY.. 80

5 EVALUATION ... 81

5.1 WHAT IS SCALABILITY? ... 81
5.2 GOALS OF THE SCALABILITY TEST OF DISCOVERY MECHANISM ... 82
5.3 METHODOLOGY FOR SCALABILITY PERFORMANCE ... 83

5.3.1 Performance Model ... 83
5.3.2 Benchmark Suite .. 85

5.4 PERFORMANCE RESULTS AND ANALYSIS ... 88

 4

5.4.1 Testing Environment .. 88
5.4.2 Pre-discovery stage Performance Results and analysis .. 89
5.4.3 Discovery stage Performance Results and Analysis .. 89
5.4.3.1 Single Peer Topology – Results and Analysis ... 89
5.4.3.2 Topology with One-RDV – Results and Analysis .. 92
5.4.3.3 Topology With Two-RDV and Three-RDV – Results and Analysis 94
5.4.3.4 Comparison between Difference Topologies .. 95

5.5 SUMMARY.. 96

6 CONCLUSION AND FUTURE WORK .. 97

6.1 CONCLUSION ... 97
6.2 FUTURE WORK .. 98

APPENDIX A. CATEGORY IN UDDI ... 99

APPENDIX B. MODULES IN JXTA .. 101

APPENDIX C. SCREENSHOTS OF MOBILE WEB SERVICE REQUESTOR 102

APPENDIX D. SCREENSHOTS OF JXTA CONFIGURATOR ... 104

LIST OF REFERENCES ... 105

 5

List of Figures

FIGURE 2-1: A SERVICE ORIENTED STRUCTURE [ORT05] .. 14
FIGURE 2-2: WEB SERVICE ARCHITECTURE STACK [HALL06] .. 16
FIGURE 2-3: WEB SERVICES PROCESS [BHMN04] .. 17
FIGURE 2-4 CONCEPTUAL SOAP MESSAGE STRUCTURE [ORT05].. 20
FIGURE 2-5 DIFFERENT NETWORK TOPOLOGIES ... 22
FIGURE 2-6 NAPSTER ARCHITECTURE [WEHR06] .. 23
FIGURE 2-7 GNUTELLA ARCHITECTURE [WEHR06] ... 24
FIGURE 2-8 MIXED P2P AND OPERATING PRINCIPLE OF JXTA [HYAR04] 25
FIGURE 2-9 JXTA ARCHITECTURE [JXTA07] ... 28
FIGURE 2-10 JXTA PIPES [JXTA07] ... 30
FIGURE 2-11 JXTA MODULE ... 31
FIGURE 2-12 JXTA PROTOCOLS [MANN04] .. 33
FIGURE 2-13 HOW TO USE MODULE SPECIFICATION ADVERTISEMENT [ELEN03] 37
FIGURE 2-14 DISCOVERY SCENARIOS .. 39
FIGURE 2-15 TYPICAL JXTA PEER OPERATIONS [HADE03] ... 39
FIGURE 2-16 BASIC ARCHITECTURAL SETUP OF MOBILE HOST [SRJP06A 42
FIGURE 2-17 TO MAP JXTA MODULES WITH WEB SERVICES [SRJP06A] 43

FIGURE 3-1 WEB SERVICES DISCOVERY PROCESS [BHMN04] ... 45
FIGURE 3-2 E-SPEAK LOOKUP PROCESS [GKLS00] .. 48
FIGURE 3-3 SALUTATION ARCHITECTURE [YUAG03] ... 49
FIGURE 3-4 VISR’S WEB SERVICE REGISTRY PARADIGIM [DUTR06] 50
FIGURE 3-5 TO ADAPT CATEGORIZATION TO JXTA MODULE [ELEN03] 54
FIGURE 3-6 TO PUBLISH CATEGORY INFORMATION INTO JXTA ... 55
FIGURE 3-7 MOBILE WEB SERVICES CATEGORY HIERARCHY ... 57
FIGURE 3-8 PORT FORWARDING MODEL [TOPR06] ... 58

FIGURE 4-1 CLDC WIRELESS PLATFORM .. 61
FIGURE 4-2 PUBLISHING AND DISCOVER OF MOBILE WEB SERVICE [SRIR06] 65
FIGURE 4-3 JXTA CONFIGURATOR .. 68
FIGURE 4-4 SERVICE PROVIDER CLASS DIAGRAM ... 71
FIGURE 4-5 TO ATTATCH A PIPE AD TO MSA ... 72
FIGURE 4-6 SHELL COMMAND CATEGORY SCREENSHOT .. 73
FIGURE 4-7 JXME MIDLET CLASS DIAGRAM .. 75
FIGURE 4-8 JXME PROXY CLASS DIAGRAM .. 77
FIGURE 4-9 SEARCHING WEB SERVICES IN PEER GROUP OVERVIEW 78
FIGURE 4-10 SEARCHING WEB SERVICES IN PEER GROUP FLOWCHART 79

FIGURE 5-1 NON-CATEGORIZATION DISCOVERY MECHANISM OPERATIONS 84

FIGURE 5-2 CATEGORIZATION DISCOVERY MECHANISM OPERATIONS................................. 85
FIGURE 5-3 SCALABILITY TEST TOPOLOGIES ... 87
FIGURE 5-4 SINGLE PEER TOPOLOGY – COMPARISON ... 90
FIGURE 5-5 SINGLE PEER – NON-CATEGORIZATION DISCOVERY ... 91
FIGURE 5-6: SINGLE PEER TOPOLOGY – CATEGORIZATION DISCOVERY 92
FIGURE 5-7 TOPOLOGY WITH 1-RDV – COMPARISON .. 93
FIGURE 5-8 TOPOLOGY WITH 1-RDV – NON-CATEGORIZATON DISCOVERY 93
FIGURE 5-9 TOPOLOGY WITH 1-RDV –CATEGORIZATON DISCOVERY 94
FIGURE 5-10 TOPOLOGY WITH TWO-RDV – COMPARISON .. 95
FIGURE 5-11 TOPOLOGY WITH THREE-RDV – COMPARISON ... 95
FIGURE 5-12 PERFORMANCE ANALYSIS OF ALL FOUR TOPOLOGIES....................................... 96

 6

List of Tables

TABLE 5-1 CONFIGURATION OF JXTA TEST PEERS ... 88
TABLE 5-2 STARTUP LATENCY (MILLISECONDS) ... 89

 7

List of Acronyms

ACK: ACKNOWLEDGEMENT
API: APPLICATION PROGRAMMING INTERFACE
AJAX: ASYNCHRONOUS JAVASCRIPT AND XML
BPEL: BUSINESS PROCESS EXECUTION LANGUAGE
CDC: CONNECTED DEVICE CONFIGURATION
CLDC: CONNECTED LIMITED DEVICE CONFIGURATION
DAML: DARPA AGENT MARKUP LANGUAGE
DAML-S: DARPA AGENT MARKUP LANGUAGE FOR SERVICE
DARPA: DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
DNS: DOMAIN NAME SYSTEM
EDGE: ENHANCED DATA RATES FOR GSM EVOLUTION
EJB: ENTERPRISE JAVA BEAN
ERP: ENTERPRISE RESOURCE PLANNING
ESB: ENTERPRISE SERVICE BUS
GPRS: GENERAL PACKET RADIO SERVICE
HTTP: HYPERTEXT TRANSFER PROTOCOL
IDE INTERGRADED DEVELOPMENT ENVIRONMENT
ISO: INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
JXME: JXTA JAVA MICRO EDITION
JXTA: JUXTAPOSE
J2ME: JAVA 2 PLATFORM MICRO EDITON
MCA: MODULE CLASS ADVERTISEMENT
MIA: MODULE IMPLEMENTATION ADVERTISEMENT
MSA: MODULE SPECIFICATION ADVERTISEMENT
MWSMF: MOBILE WEB SERVICE MEDIATION FRAMEWORK
NAICS NORTH AMERICAN INDUSTRY CLASSIFICATION SYSTEM
NAT: NETWORK ADDRESS TRANSLATION
OASIS: THE ORGANIZATION FOR THE ADVANCEMENT OF STRUCTURED

INFORMATION STANDARDS

OWL: WEB ONTOLOGY LANGUAGE
PBP: PIPE BINDING PROTOCOL
PDA PERSONAL DIGITAL ASSISTANT
PDP: PEER DISCOVERY PROTOCOL
PIP: PEER INFORMATION PROTOCOL
PRP: PEER RESOLVER PROTOCOL
P2P: PEER TO PEER
RCP RICH CLIENT PLATFORM
RDF: RESOURCE DESCRIPTION FRAMEWORK
RDV: RENDEZVOUS
RPC: REMOTE PROCEDURE CALL
RTT ROUND TRIP TIME
RVP: RENDEZVOUS PROTOCOL
SOA: SERVICE ORIENTED ARCHITECTURE
SOAP: SMALL OBJECT ACCESS PROTOCOL
SMTP: SIMPLE MAIL TRANSFER PROTOCOL
TCP/IP: TRANSMISSION CONTROL PROTOCOL/INTERNET PROTOCOL
TTL: TIME TO LIVE

 8

UBR: UDDI BUSINESS REGISTRY
UDDI: UNIVERSAL DESCRIPTION, DISCOVERY AND INTEGRATION
ULD: UNIT LOAD DEVICE
UMTS: UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEM
UNSPSC: UNITED NATIONS STANDARD PRODUCTS AND SERVICES CODES
URI: UNIFORM RESOURCE IDENTIFIER
URL: UNIVERSAL RESOURCE LOCATOR
URN: UNIFORM RESOURCE NAME
UUCP: UNIX TO UNIX COPY
W3C: WORLD WIDE WEB CONSORTIUM
WS: WEB SERVICE
WSDL: WEB SERVICES DISCOVERY LANGUAGE
XML: EXTENSIBLE MARKUP LANGUAGE

 9

 1 Introduction

 10

1 Introduction

By 2008 the number of global wireless subscribers should reach 2 billion [Gros04] and
the trend keeps growing rapidly. At the same time the development of mobile
technology enables mobile devices such as PDAs and smart phones to fulfil tasks
almost like a personal computer. Web Service is a software system designed to
support interoperatable machine to machine interaction over a network. With Web
Services applications could communicate with each other directly so as to exchange
data or fulfil a task. The broad range of Web Services and the gigantic user base of
mobile devices make the combination of Web Services on mobile devices rather
attractive due to the new opportunities for mobile operators, wireless equipment
vendors, third-party application developers as well as end users.

1.1 Motivation

There are basically two parties engaged in the Web Services deployment scenario:
Web Services requester entity and Web Services provider entity. A Web Service
requester entity is an entity, i.e. an end user or an application, who needs some Web
Services for its own purpose and wish to deploy it to satisfy this objective. Web
Services provider entity is an entity, i.e. a software vendor or an application, who
provides some Web Services to those who need them against payment or for free.

A requester entity with the wish to deploy some Web Services stays in, generally
speaking, two possible cases about the source (i.e. Web Services provider entity) of
Web Services to be needed: with enough knowledge, or without enough knowledge.
Enough knowledge about provider entity enables a requester entity perform the
deployment completely and with success. However, because of the spontaneous
characteristics of Web Services production and publishing in reality, a requester entity
seldom already gets enough information about how to deploy some Web Services
prior to deployment. It is usually the case that although a requester entity knows what
he needs, he does not know where to get what he needs and how to get it. In this
case a vital stage prior to deployment comes on the stage: Web Services Discovery.

For those requester entities who need Web Services but possesses no much idea
about it yet, Web Services discovery is not only an absolutely necessary but crucial
step to help a requester entity to get the information about the Web Services provider
and then further the Web Services itself. A variety of technologies are emerging with
the attempt to perform the Web Services discovery today. Among them are E-speak,
UDDI, Salutation, Jini and UpnP, not to mention a very often used approach – search
engine such as Google, baidu and yahoo!. Since the application scope under study in
this project is mobile field. What interests us is then the performance of mobile Web
Services discovery.

So which approach best fits the objectives of Web Services requester in mobile
application scenario, an environment where nodes life cycle and prerequisites differs
significantly from traditional network with static connection and strong storage and
processing capacity? What are pros and cons to choose one approach for Web
Services discovery and not the other? Are there particular critical benchmarks to
measure mobile Web Service discovery performance? If yes, what are they and how
to measure the performance of mobile Web Service discovery according to some

 1 Introduction

 11

appropriate benchmarks? These are questions which arouse much curiosity and are
expected to be answered satisfactorily in this thesis.

At present there are three leading viewpoints of how a discovery service should be
conceived: as a registry, as an index or as a peer-to-peer system. UDDI e.g. acts as a
central service registry and keeps information about Web Services from WS provider
in form of WSDL files in a centralized server. However, the centralized UDDI registry is
mainly designed for static networks and therefore could not work as an ideal discovery
service for mobile networks. In mobile network nodes may join or leave the network at
any time, there may be significant latency between the time a Web Service is updated
and the reflection of the update in the central registry. By way of peer-to-peer system
the problem could be better handled because nodes are designed to communicate
with each other more directly without the need of the existence of a central server.

Recent research shows the feasibility of a mobile web service provider for smart
phones (Mobile Host) [SrJP06b]. Thus a smart phone is technically able to act both as
Web Services requester and provider in P2P networks. Due to the limitations of
centralized registry UDDI can not scale well to serve the large number of services that
will be provided by the Mobile Host. An alternative for the service discovery is to
publish the information about Web Services in form of WSDL documents to the P2P
network by using the JXTA/JXME network [Srir06].

1.2 Thesis Objectives

In the previous work of Mobile Web Services Provisioning Project a model is designed
and implemented by combining Web Services and JXTA together to make WS
discovery more dynamic, flexible and efficient. However, it is not quite clear whether
this peer-to-peer model could actually serve the need of mobile web services better or
not in comparison with the traditional UDDI registry way. Thus, to study the features
of different approaches for Web Service discovery so as to find a most
appropriate alternative for mobile Web Service discovery is the first objective of
this thesis.

Despite the limitations of UDDI discovery for the application in mobile Web Services, it
has its advantageous features such as categorization function to enable a more
speedy and efficient Web Services discovery. The second objective of this thesis is to
adapt some of the best features of UDDI to P2P approach so as to improve the
model suggested in the previous work of mobile Web Services project. Some
paradigms will be provided to borrow the best features of UDDI into P2P approach.

After the first objective is reached it is presented a complete picture of the advantages
and disadvantages of the different approaches of discovery in the application of
mobile Web Services. With the knowledge resulted from the comparison the
advantages of UDDI are used to make P2P approach work better. However, whether
the updated P2P approach is really well scalable for mobile Web Services is still to be
studied. And to check the scalability of the P2P approach with P2P performance
analysis is the third objective of this thesis.

 1 Introduction

 12

1.3 Thesis Topics

1.3.1 Web Service

In recent years, Web Service, an advanced Web technology has been deployed
broadly because it helps enhance communication and collaboration interoperability.
Web Services enable business to quickly connect applications with each other
independent of hardware, operating systems, or programming environments. Software
components from different companies, which may probably reside on different
infrastructures, can communicate with each other by way of SOAP and HTTP.

As a specifically distributed service Web Service uses XML to code and decode the
data and SOAP to transfer it. XML stands for Extensible Mark-up Language.
Although XML is much like HTML, it differs from HTML on employment purposes.
HTML focuses on how data looks while XML mainly cares about what data is. HTML is
designed to display data while XML is made to describe data. SOAP is a simple
protocol based on XML for accessing a Web Service over HTTP. It is platform and
language independent and allows getting around firewalls on the Internet. To specify
the location of Web Service and the operations that the Web Service expose the
WSDL file is used. A WSDL file is just a simple XML document and contains the
necessary elements to describe a Web Service.

1.3.2 Peer-to-Peer Systems for mobile devices

Since the foundation and popularity of Napster, Peer-to-Peer technology, which is
growing toward distributed systems and getting away from monolithic systems, has
become a trend over the last decade from the perspective of software engineering, A
peer-to-peer (or P2P) computer network relies primarily on the computing power and
bandwidth of the participants in the network rather than concentrating on a relatively
low number of servers. P2P networks are typically used for connecting nodes via
largely ad hoc connections [Wiki07]. Each party has the same capabilities and either
party can initiate a communication session in P2P communications model. A pure
peer-to-peer network does not have the notion of clients or servers, but only equal
peer nodes that simultaneously function as both “clients” and “servers” to the other
nodes on the network. This model of network arrangement differs from the
client-server model where communication is usually to and from a central server. The
development of P2P systems has generally experienced three stages: centralized
P2P, decentralized P2P and the combination of centralized and decentralized P2P. In
the third-generation P2P architecture according to their different functions peers are
categorized as super-peers and edge-peers. Super-peers act as gateway for
edge-peers to P2P network and are also used for NAT and firewall traversal.

In our project the open-source JXTA/JXME development framework is used as P2P
platform for mobile Web Service. JXTA belongs to the third generation P2P and is
independent of the software and hardware platform because it uses XML messages. A
JXTA network consists of peers (edge-peers) and super-peers (rendezvous peers and
relay peers). As soon as a peer joins the JXTA platform it is embodied a unique logical,
network independent ID and finds its closest rendezvous peer. JXTA for J2ME (JXME)
is a light version of JXTA for mobile devices and works currently only in Java
Environment.

 1 Introduction

 13

1.4 Thesis Structure

Chapter 2 presents the concept, technology and current achievements related to the
thesis. It includes Service-based Architecture (SOA), the architecture and operations
of Web Service, as well as standards employed in Web Service such as XML, UDDI,
SOAP and WSDL. Then P2P Technology, its development and P2P systems for
mobile Web Service are introduced. Finally some projects with some similar research
interests to our project as well as regarding scalability test of JXTA protocols are
discussed and the previous work about mobile Web Service discovery in our project is
reviewed.

Chapter 3 discusses about the concept to map JXTA to UDDI and Web Services and
search mechanisms for Web Services. Various mechanisms of Web Service discovery
are introduced from different viewpoints: registry, index, dynamic or P2P. Dynamic
and P2P approaches are paid special attention since they are much referenced to
design the discovery mechanism for mobile Web Services in our project. Then it is
about the designing scenario to adapt categorization in UDDI to P2P based mobile
web services discovery. After that the idea to invoke Web Services through JXTA
pipes is also presented.

Chapter 4 elaborates the implementation of the P2P based mobile Web Service
discovery. It reviews the technology and tools used for the implementation stage
briefly such as Java Platform, Eclipse SDK, NetBeans IDE and JXTA/JXME.
According to the publishing and discovery sequence the implementation is presented
from the aspect of the WS provider, JXME MIDlet and JXME proxy.

Chapter 5 works out the scalability evaluation of P2P based mobile Web Service
discovery mechanism. The definition of scalability is firstly studied and then the goals
of scalability test and methodology for scalability performance are set and built up.
With the benchmark suite the scalability test is conducted in the network with different
topologies. Then by analyzing the performance results from the test and comparing
them with each other it is intended to get satisfactory answers to the questions raised
in goals of scalability test.

Chapter 6 makes a summary of the thesis work and discusses the future work.

 2 State of the Art

 14

2 State of the Art

2.1 Service Oriented Architecture (SOA)

2.1.1 Introduction to SOA

Service-Oriented Architecture is one of many popular technologies in the software
world on which people can not agree for a widely acknowledged definition. Service
Orientation, from the literal interpretation, describes the fundamental design principle
for an architecture which inter-relates an application’s different functional units, which
are called services, through well-defined interfaces and contracts. Services could be
accessed independent of underlying platform implementation. The OASIS defines
SOA as the following [OASI06]:

A paradigm for organizing and utilizing distributed capabilities that may be under the
control of different ownership domains. It provides a uniform means to offer, discover,
interact with and use capabilities to produce desired effects consistent with
measurable preconditions and expectations.
.

 FIGURE 2-1: A SERVICE ORIENTED STRUCTURE [ORT05]

The key characteristic that distinguishes SOA from other technologies lies in loose
coupling. Loose coupling means that the client of a service is essentially independent

of the service as in FIGURE 2-1 [Ort05]. A main obstacle in reusing the existing

business applications is the uniqueness of specific applications and systems, since
the applications are usually coded in different languages, run in different operating
framework and deploy different interfaces. It would be rather time-consuming to
analyze those different underlying implementations in order to communicate with the
existing applications and deploy them for your own use. With SOA the client just
needs to communication with the service by a well-defined interface. Neither needs a
client know the implementation nor does he care the possible changes since all these
odds are just under the control of service provider. To use Google Search Engine on
your own homepage, for example, you need little knowledge about its implementation.
So long as the search interface remains the same, the search function will work as
usual no matter the search engine is under revision or not. In this way, the clients and

 2 State of the Art

 15

loosely-coupled services interact and communicate with each other widespread and
with great flexibility.

2.1.2 SOA and Web Service

Many IT professionals foresee the strong trend of SOA, especially Web Service-based
SOA, in speeding up the application development process. With SOA IT becomes
more agile in responding to the changing business needs. SOA is clearly more a wave
of future than just a hot topic. Gartner1 reports “By 2008, SOA will be a prevailing
software engineering practice, ending the 40-year domination of monolithic software
architecture.” And that “Through 2008, SOA and Web Services will be implemented
together in more than 75 percent of new SOA or Web Service projects.”

A Web Service is a service that communicates through predefined and commonly
acknowledged standard protocols and technologies. All the major software vendors
develop their products conforming to these standards so as to keep the
communication between clients and services consistent despite the wide spectrum of
different platforms and operating environments. When we are considering the reasons
that made Web Service the most prevalent approach to implementing an SOA, some
of them must be [Ort05]:

• Reusability. The functions of an application or a system can be dramatically
easier to access as a service in an SOA than in some other architecture. So
integrating applications and systems can be much simpler.

• Interoperability. The maturing set of protocols and technologies are not only
platform, system and language independent, but also work across firewalls, which
makes it possible for business partners to share vital services.

• Scalability. Applications that use services in a loosely-coupled SOA tend to scale
easily than in a tightly-coupled environment because there are few dependencies
between the requesting application and the services it uses. In comparison with a
tightly-coupled service in some other architecture, which takes numeric value or
java objects as input, the service in a web-service based SOA is loosely-coupled
and accepts a document as input. The very limited interaction required for a client
to communicate with a SOA service allows applications using the service to scale
without putting a heavy communication load on the network.

• Flexibility. The coarse-grained, document-oriented and asynchronous nature of
services in SOA make it easier to evolve with changing requirements than in a
fine-grained 2 architecture where different components of an architecture are
bound to each other.

1
 Gartner Inc. is an information and technology research and advisory firm in USA. See
http://www.gartner.com
2
 Fine-grained and coarse-grained architecture mean tightly-coupled and loosely-coupled
architecture respectively.

 2 State of the Art

 16

2.2 Web Service

2.2.1 Overview

In this section a very general introduction of Web Service architecture and operations
is given. Section 2.2.1.1 includes widespread acknowledged standards of Web
Service. And Section 2.2.1.2 tells about the parties and operations involved in Web
Service process.

2.2.1.1 Web Service Architecture

Web Service is briefly introduced in section 2.1 as a frequently used approach to

implement SOA. As FIGURE 2-2 shows us the Web Service approach is based on a
maturing set of standards that are widely accepted and used. These widespread
accepted standards make it possible for clients and services to communicate and
understand each other across a wide variety of platforms and across language
boundaries. Among them the standards such as Extensible Mark-up Language
(XML), Small Object Access Protocol (SOAP), Universal Description, Discovery
and Integration (UDDI) and Web Services Description Language (WSDL) address
the basics of interoperable services. They ensure that a client could find the service he
needs and make a request in the way that the service provider understands
independent of the languages in which the client and the service are coded or in which
platform they reside. In this section, the basic standards XML, SOAP, UDDI and
WSDL will be introduced in detail. Other high-level standards in the area of web
service security and web service management also need to be adapted in order to
make Web Services into mainstream IT practice. The standards organizations such as
World Wide Web Consortium (W3C) have also drafted standards in the areas such as
WS-Security and WS-BPEL. However, the security and management issues are not
the focus of the thesis and thus will not be discussed further in detail.

HTTP,SMTP,FTP,BEEP

XML-RPC,SOAP,REST

WSDL,UDDI

Security

WS-Security

Reliability

WS-RM

Transaction

WS-Tansaction

Business Process Languages

BPEL,WSFL

Transport

Messaging

Discovery &

Description

Quality of

Service

Integration

Standards Categories

 FIGURE 2-2: WEB SERVICE ARCHITECTURE STACK [HALL06]

 2 State of the Art

 17

2.2.1.2 Web Service Operations

The purpose of a Web service is to provide some functionality on behalf of its owner
such as a business or an individual. A provider entity is the person or organization
that provides an appropriate agent to implement a particular service. A requester
entity is a person or organization that wishes to make use of a provider entity’s Web
service. It will use a requester agent to exchange messages with the provider entity’s
provider agent.

 FIGURE 2-3: WEB SERVICES PROCESS [BHMN04]

The process engaging in a web service usually includes the following four stages:

1. The requester and provider entities “become known to each other”, in the sense
that whichever party initiates the interaction must become aware of the other party.
There are two cases accordingly: either the provider or requester agent plays the role
of the initiator. The former case that the provider agent somehow has already obtained
the address of the requester agent is practically less common and this case is not
much of our interest for research either. The typical case is that the requester agent
will be the initiator with no idea of the address of the requester agent before. A
discovery service is then necessary for the requester to locate a suitable service
description which contains the provider agent’s invocation address. The detailed
process of service discovery will be fully described in Section 3.1.

2. The requester entity and provider entity agree on the service description (a WSDL
document) and semantics that will govern the interaction between the requester agent
and the provider agent. This does not necessarily mean that the requester and
provider entities must communicate or negotiate with each other. It simply means that
both parties must have the same understandings of the service description and
semantics, and intend to uphold them. There are many ways this can be achieved.

The provider entity may publish and offer both the service description and semantics
as take-it-or-leave-it “contracts” that the requester entity must accept unmodified as

 2 State of the Art

 18

conditions of use. The service description and semantics may be defined as a
standard by an industry organization, and used by many requester and provider
entities [BHMN04].
3. The information in the service description and semantics must either be input to,
or implemented in, the requester and provider agents. There are many ways this can
be achieved. Whatever the approach is, it must be achieved before the two agents can
interact.

4. The requester agent and provider agent exchange SOAP messages on behalf of
their owners.

2.2.2 Web Services Standards

Some of the very often used Web Services standards in this project are presented in
this section with some details. They include XML, UDDI, SOAP and WSDL.

2.2.2.1 XML

XML stands for Extensible Mark-up Language and has become the standard to
describe data to be exchanged on the web. Unlike HTML, which was designed to
display data and focuses on how data looks, XML was designed to describe data and
focuses on what data is. And XML describes the content of a document by using tags
to “mark up” the content. A tag identifies the information of a document as well as the
structure of the information. The grammatical rules of XML are in form of XML
Schema. XML Schema specifies e.g. what types of tags are allowed, what type of
data is expected in a tag. Because of these strictly formulated rules XML documents
are well-formed and easy to be processed.

2.2.2.2 UDDI

As mentioned in section 2.2.1.2, when the parties engaged in web services are
unknown to each other, web service discovery is usually needed for the requester
entity to find the related information about the service he is searching for. Universal
Description, Discovery, and Integration (UDDI) Registry provides a standardized
method and is one of the paradigms for publishing and discovering information about
Web Services. UDDI is an industry initiative that attempts to create a
platform-independent, open framework for describing services, discovering
businesses, and integrating business services [Wals02]. UDDI involves four core data
models: businessEntity, businessService, bindingTemplate and tModel.

• businessEntity is the top level UDDI element and it contains the name,
description, identifiers and classifications for an organisation entity. Each
businessEntity may publish one or more businessService definitions. These
definitions are abstract so they just say what the service does but not how it does it.

• Each businessService is linked to one or more bindingTemplates that specify
where the service is located (URL) and how to invoke it. The same service might have
many binding templates if it can be accessed by way of several different protocols.

• Each bindingTemplate contains a set of keys that link the binding template to
more detailed technical specifications (“tModels”) such as WSDL files, XML schema,
or protocol definitions. The tModels can be regarded as “reference standards” and
may be re-used by several different business entities. For example, a tModel that

 2 State of the Art

 19

defined the http transport protocol is likely to be referenced by many
bindingTemplates [Rior06].

Conceptually, a business can register three types of information into a UDDI registry
and they are named in the art of phone registry.

White pages: Basic contact information and identifiers about a company, including
business name, address, contact information and unique identifiers. This information
allows others to discover your Web Services based upon your business identification.

Yellow pages: Information that describes a Web Services using different
categorizations (taxonomies). This information allows others to discover your Web
Services based upon its categorization.

Green pages: Technical information that describes the behaviours and supported
functions of a Web Services hosted by your business. This information includes
pointers to the grouping information of Web Services and where the Web Services are
located.

2.2.2.3 SOAP

The structure and meaning of XML tags provides an efficient way to exchange data.
However, it is not enough to exchange data over the Web. Some agreed-upon
protocols are still needed to format XML document so that the requester has some
idea about which part of the document is of main importance and which part is
additional.

Small Object Access Protocol (SOAP) is such an XML-based protocol to transport
data to and from the web server. It provides a way to communicate between
applications running on different operating systems with different technologies and
programming languages. The basic item of transmission in SOAP is a SOAP message,
which consists of a mandatory SOAP Envelope, and optional SOAP Header, and a

mandatory SOAP Body (see FIGURE 2-4). The Envelope identifies the XML as being

a SOAP message and must be the root element of the message. The Body element
contains the message payload. The Header element provides an extension hook that
allows SOAP to be extended in arbitrary ways [Sour04].

Envelope is the root element of SOAP. It specifies two things: an XML namespace
and an encoding style. The XML namespace is designed to avoid name clashes by
specifying the names that can be used in the SOAP message. The encoding style
identifies the data types recognized by the SOAP message.

Header serves as a container for extensions to SOAP. No extensions are defined by
the specification, but user-defined extension services such as transaction support,
locale information, authentication, digital signatures etc. could all be implemented by
placing some information inside the Header element. The Header element is typically
used to convey security-related information to be processed by runtime components.
Children of the Header element may be annotated with the mustUnderstand and/or
actor attributes.

 2 State of the Art

 20

 FIGURE 2-4 CONCEPTUAL SOAP MESSAGE STRUCTURE [ORT05]

Body contains the main part of the SOAP message, that is, the payload intended for
the final recipient of the SOAP message. In the case of a request message the
payload of the message is processed by the receiver of the message and is typically a
request to perform some service and sometimes to return some results. In the case of
a response message the payload is typically the results of some previous request or a
fault. The optional SOAP Fault element is used to hold error and status information for
a SOAP message and only appears in response messages.

2.2.2.4 WSDL

WSDL stands for Web Services Description Language and is an XML grammar for
describing a Web Services as a collection of access endpoints capable of exchanging
messages in a procedure- or document-oriented fashion [Wals02]. It specifies the
location of the service and the operations (or methods) the service exposes. A WSDL
document describes a web service as a collection of abstract items called “ports” or
“endpoints” and use these major elements:

• definitions The definitions element must be the root element of all WSDL
documents. It defines the name of the web service, declares multiple namespaces
used throughout the remainder of the document, and contains all the service
elements in the document.

• types The types element describes all the data types used between the client
and server. WSDL is not tied exclusively to a specific typing system, but it uses the
W3C XML Schema specification as its default choice. If the service uses only XML
Schema built-in simple types, such as strings and integers, the types element is
not required.

• message The message element describes a one-way message, which is either a
single message request or a single message response. It defines the name of the

 2 State of the Art

 21

message and contains zero or more message part elements, which can refer to
message parameters or message return values.

• portType The portType element combines multiple message elements to form a
complete one-way or round-trip operation. For example, a portType can combine
one request and one response message into a single request/response operation,
most commonly used in SOAP services.

• binding The binding element describes the concrete specifics of how the service
will be implemented on the wire. WSDL includes built-in extensions for defining
SOAP services, and SOAP-specific information therefore goes here.

• service The service element defines the address for invoking the specified
service. Most commonly, this includes a URL for invoking the SOAP service
[Cera02].

2.3 Peer-to-Peer Systems

2.3.1 Introduction to P2P Systems

A peer-to-peer (or P2P) computer network relies primarily on the computing power
and bandwidth of the participants in the network rather than concentrating it in a
relatively low number of servers. P2P networks are typically used for connecting
nodes via largely ad hoc connections [Wiki07]. P2P is a communications model in
which each party has the same capabilities and either party can initiate a
communication session. Since the foundation and popularity of Napster, P2P has
become a trend over the last decade from the perspective of software engineering,
which is growing toward distributed systems and getting away from monolithic
systems.

A pure peer-to-peer network does not have the notion of clients or servers, but only
equal peer nodes that simultaneously function as both “clients” and “servers” to the
other nodes on the network. This model of network arrangement differs from the
client-server model where communication is usually to and from a central server. A
typical example for a non peer-to-peer file transfer is an FTP server where the client
and server programs are quite distinct, and the clients initiate the download/uploads
and the servers react to and satisfy these requests.

A more technical definition of P2P was put together by Dave Winer of UserLand
Software. According to him a P2P system should have the following seven
characteristics [BMCM04]:

• User interfaces load outside of a web browser.

• User computers can act as both clients and servers.

• The overall system is easy to use and well integrated.

• The system includes tools to support users wanting to create content or add
functionality.

• The system provides connections with other users.

• The system does something new or exciting.

• The system supports “cross-network” protocols like SOAP or XML-RPC.

 2 State of the Art

 22

2.3.2 Development of P2P Systems

The earliest peer to-peer network in widespread use was the Usenet news server
system, in which peers communicated with each other to propagate Usenet news
articles over the entire Usenet network. Particularly in the earlier days of Usenet,
UUCP3 was used to extend even beyond the Internet. However, the news server
system also acted in a client-server form when individual users accessed a local news
server to read and post articles. The same consideration applies to SMTP4 email in
the sense that the core email relaying network of Mail transfer agents is a peer-to-peer
network while the periphery of Mail user agents and their direct connections is client
server.

Some networks and channels such as Napster (See Figure 2-8), OpenNAP and IRC
server channels use a client-server structure for some tasks such as searching and a
peer-to-peer structure for others. Networks such as Gnutella (See Figure 2-9) or
Freenet use a peer-to-peer structure for all purposes, and are therefore referred to as
pure peer-to-peer networks, although Gnutella is greatly facilitated by directory
servers that inform peers of the network addresses of other peers [Grad05].

 FIGURE 2-5 DIFFERENT NETWORK TOPOLOGIES

2.3.2.1 First Generation: Hybrid P2P

The Internet was originally built as a peer-to-peer system in the late 1960s to share
computing resources within the US. The first hosts on ARPANET were connected
together as equal peers rather than as client-server. The main users at the beginning
were computing researchers who did not need protection against each other, and
security break-ins were practically non-existent, making the Internet much less
partitioned than it is today. Many peer-to-peer systems were widely used and still in
existence today such as Usenet and DNS. However, since 1994 the structure of the
Internet changed dramatically with millions of people flocking to the Net. Modem
connection protocols were widely used and applications were then targeting slow
speed analogue modems. Applications such as web browsers were based on a
client-server protocol. The Structure of the Internet made a switch from peer-to-peer to

3
 UUCP stands for Unix to Unix CoPy. The term generally refers to a suite of computer
programs and protocols allowing remote execution of commands and transfer of files, email
and net news between computers.

4
 Simple Mail Transfer Protocol (SMTP) is the de facto standard for e-mail transmissions
across the Internet.

 2 State of the Art

 23

the client-server model (see FIGURE 2-5). A Client-Server system is one in which there

is a dominant computer (the Server), that is connected to several other computers with
less control (the Clients). Clients can communicate with other clients only through the
Server.

Compared with Client-Server model, each peer on the network may act as both a
client and server in a peer-to-peer system. Clients in a P2P network can interact freely
with other clients without the intervention of a server although sometimes there is the
presence of a directory server for look up purposes. Among the applications which are
still using peer-to-peer model Napster was one of the most successful. It started with
the idea to find a easier way for music listener to share their recordings with each
other. Before Napster there were online recordings on the Internet and by using MP3
compression format music tracks could be transferred onto disk files and then
published on a website for users to download them by way of FTP. However, one
major problem was that up-to-date MP3 files were difficult to find. To solve this
problem Napster provided a constant up-to-date central database with index of all

shared files (see FIGURE 2-6). Users could register with the searchable Napster
network name space and find files easily through Napster servers, which had
information on registered hosts and MP3 data. The servers dealt with the transfer of
files between clients but didn’t actually store any of the music themselves. Napster’s
network protocol created direct peer-to-peer access between clients. Thanks to its
simplicity of use by way of peer-to-peer model Napster got a huge success.

If we analyse the hybrid P2P architecture for mobile Web Services discovery, two
main shortcomings can not be neglected: single point of failure and lack of scalability.
The whole system collapses when server does not work well. The architecture does
not fit for the mobile environment where each node may join or leave the network any
time. On the other hand centralized systems produce giant communication traffic and
storage on server and the system is not well scalable.

 FIGURE 2-6 NAPSTER ARCHITECTURE [WEHR06]

 2 State of the Art

 24

2.3.2.2 Second Generation: Pure P2P

After Napster was involved into legal issues due to copyright problem, the designers of
Gnutella learnt from the weakness of Napster P2P model and deploy no central server
to store the names and locations of all the available files. Instead, there are many
different client applications available to access the Gnutella network. By deploying an
extremely simple and clever way Gnutella software distributes a query to thousands of

machines very quickly. It works as follows (see FIGURE 2-7):

 FIGURE 2-7 GNUTELLA ARCHITECTURE [WEHR06]

A requester types the name of song he is looking for. Then his machine knows of at
least one other Gnutella machine somewhere on the network. The user’s machine
sends the song name he typed in to the Gnutella machine(s) it knows about. These
machines search to see if the requested file is on the local hard disk. If so, they send
back the file name (and machine IP address) to the requester. At the same time, all of
these machines send out the same request to the machines they are connected to,
and the process repeats. A request has a TTL (time to live) limit placed on it. A request
might go out six or seven levels deep before it stops propagating. If each machine on
the Gnutella network knows of just four others, that means that a request might reach
8,000 or so other machines on the Gnutella network if it propagates seven levels
deep.

The principal advantage of pure P2P architecture like Gnutella is its being totally
decentralized and each node acts as a servent, i.e. both a server and a client. But
there are also some drawbacks with the protocol:

• Bottlenecks due to different connection Speeds of Users. Despite their
different connection speed of single servents, users on the system act as gateways
to other users to find the data they need. When the users on slower bandwidth

 2 State of the Art

 25

machines are acting as connections to those on higher bandwidth, it leads to
bottlenecks.

• The search may not discover the entire network. It is possible that even though
a certain resource is available on the network, it may not be visible to the requester
if it is too many nodes away. By way of standard TTL of advertisement and search
each client only holds connections to four other clients and a search/init packet is
only forwarded five times, which means, only about 4,000 peers are reachable.

2.3.2.3 Third Generation: Mixed P2P

The next generation peer-to-peer applications such as BitTorrent and eDonkey
combines the features of the first two generations peer-to-peer systems and tries to
solve the problems appeared in the first two generations. By the hierarchical and
structured architecture with the concept super-peer and edge-peer, mixed
peer-to-peer architecture makes enhancement to improve the ability to deal with large

number of users (see FIGURE 2-8). Super peers function as relays for edge peers and
other super peers. Super peers are also used as the gateway to the network by edge
peers and for NAT and firewall transversal.

 FIGURE 2-8 MIXED P2P AND OPERATING PRINCIPLE OF JXTA [HYAR04]

Open-source JXTA development framework belongs to the third generation peer to
peer systems. Originally conceived by Sun Microsystems Inc. in 2001, the
development of JXTA is still going on. By establishing a virtual network on top of the IP

or non-IP networks, JXTA hides the underlying protocols. As in FIGURE 2-8, each
Peer is given a unique, network independent logical ID when it joins JXTA platform,
finds the closest rendezvous peer and use it as a gateway to peer-to-peer network.
The rendezvous peer maintains a list of its edge peers and their shared resources.
Rendezvous peers organize themselves into a loosely coupled network, delivering
queries and peer information between each other. JXTA introduces also the relay
peers that can route JXTA messages and data between peers that have no direct
connection between each other. Relay peers are used also in spooling messages for

 2 State of the Art

 26

unreachable or temporarily unavailable peers. With the functions mentioned above,
JXTA in practice allows any peer to reach any other JXTA peer independently.

In FIGURE 2-8 a peer (e.g. peer A) is requesting for some resource, which is in this

case in another peer located in the network behind NAT. When querying a resource,
peer A sends a query to its rendezvous peer (e.g. RP1) (1.). RP1’s index does not
contain the requested resource, so it relays the query to its own rendezvous peer RP3
(2.). RP3’s index contains the requested resource with the information that the
resource is available on some of in RP4’s edge peers (3.), so RP3 relays the query to
RP4 (4.). RP4 knows the resource is in its edge peer B, so it relays the query to peer B
(5.). Because B is in a network using NAT, it sends the response to peer A via its relay
(and rendezvous) peer RP4 (6.). Then, the data is transferred between peer A and B
using RP4 as a relay (7.) [HYAR04].

2.3.2.4 P2P Systems for Mobile Environment

The current third generation P2P architectures have matured to the point where they
work rather well and the overhead inflicted to the network has decreased from the
earlier generation architectures. However, this applies only for desktop and laptop
environments with wideband Internet connections, and high processing and memory
capacity. All the currently available P2P protocols have been designed with a desktop
environment in mind, and thus there is no any well known third-generation protocol
designed especially for mobile devices.

The principle of third generation architectures as such is suitable for mobile use.
Despite the advantages of using third generation protocols in a mobile environment,
current third-generation protocols, like JXTA, are too heavy for effective mobile use.
As a response to this problem, the JXTA community has developed a light version of
JXTA for mobile devices, called JXME (JXTA Java Micro Edition). It works in all MIDP
devices.

JXME has two versions: proxyless and proxy-based. JXME proxy-based version uses
a proxy and a relay that forward the messages coming from the JXTA network to the
mobile device and vice versa. In addition to that, they filter out any unessential
messages to save the mobile peer’s network and processing resources. Combining
small size and a rich set of features seems an impossible scenario for any one P2P
platform, so one with many protocols and a possibility for relaying more constrained
peer’s messages with a more powerful one would look viable. Therefore proxy-based
version seems promising. However, communication is not possible in the absence of
knowledge where a proxy might exist in the network topology. For more powerful
mobile devices the proxyless version is encouraged to be further developed. In the
following Section 2.4 Project JXTA/JXME will be discussed in very detail.

2.4 Project JXTA/JXME

Project JXTA started as a research project incubated at Sun Microsystems. Its goal is
to explore a vision of distributed network computing using peer-to-peer topology, and
to develop basic building blocks and services that would enable innovative

 2 State of the Art

 27

applications for peer groups. JXTA is short for Juxtapose, which means side by side. It
is a recognition that peer to peer is juxtapose to client server or Web based computing
— what is considered today’s traditional computing model. The juxtaposed entities
are any connected computing device on the network to communicate, including PC
workstations and servers, cell phones and PDAs and groups of computers. Project
JXTA is developed to make it easier to establish temporary associations between
systems and groups and conform to three core principles:

• to use familiar technology and standards where possible,

• to seek the input of industry experts,

• to encourage open development.

JXTA works on the basis of protocols instead of API. Therefore JXTA is independent
of operating systems, hardware or language. Some basic functions of peer-to-peer
networking are creating, finding, joining, leaving and monitoring groups, talking to
other groups and peers, and sharing content and services. The functions are
performed by exchanging XML advertisements and messages between peers.
Furthermore, JXTA enables interoperable P2P applications with a wide range of
capabilities, including:

• establishing peer groups among users of various devices that can communicate
easily across firewalls;

• the ability to find peers on the networks – even across firewalls;

• simplified file sharing;

• automatically detecting new Web site content;

• remote monitoring of peer activities;

• accessing deep Web data

• providing secure communication[JXTA04b].

2.4.1 JXTA Architecture

In FIGURE 2-9 we have an overview about JXTA architecture. The simple structure
indicates the design concept behind it: the whole structure should be as thin as
possible so as to be provided as much interoperability as possible to encourage the
innovation from developers and contributors. The JXTA software architecture consists
of three layers:

Core Layer:

• Security
In order to support different levels of resource access, JXTA peers operate in a
role-based trust model, in which an individual peer acts under the authority granted to
it by another trusted peer to perform a particular task.

• Peer groups, Peer pipes, Peer monitoring
JXTA core is also called platform layer and encapsulates the minimal and essential
primitives that are common to P2P networking. The functions for the peer group
contain mechanisms for joining peers to groups or removing from them. The functions
for the peer pipe contain communication mechanisms among other peers for
transferring data, content and code independent of protocol. The functions for the peer
monitoring contain mechanisms to control behaviour and activities for each peer
[JXTA05].

 2 State of the Art

 28

Services Layer
The services layer includes network services that may not be absolutely necessary for
a P2P network to operate, but are common or desirable in the P2P environment. By
using the primitive functions from core layer, this layer provides higher-level
functionality e.g. searching and indexing, directory, storage systems, file sharing,
distributed file systems, resource aggregation and renting, protocol translation,
authentication, and PKI (Public Key Infrastructure) services. For the specific purpose
the developer could also create his own services by implementing the abstract
component.

Applications Layer
The applications layer includes implementation of integrated applications, such as
P2P instant messaging, document and resource sharing, entertainment content
management and delivery, P2P Email systems, distributed auction systems, and
many others [JXTA05]. In this layer, both JXTA service and JXTA core layer
components are used to implement P2P applications. Since the entire system is
modular-like, the developer can create variety of applications by implementing the
abstract component for his need.

 FIGURE 2-9 JXTA ARCHITECTURE [JXTA07]

2.4.2 JXTA Concept

JXTA technology is a set of simple, open peer-to-peer protocols that enable any
device on the network to communicate, collaborate, and share resources. JXTA peers
create a virtual, ad hoc network on top of existing networks, hiding their underlying
complexity. In the JXTA virtual network, any peer can interact with other peers,

 2 State of the Art

 29

regardless of location, type of device, or operating environment — even when some
peers and resources are located behind firewalls or are on different network transports.
Thus, access to the resources of the network is not limited by platform incompatibilities
or the constraints of hierarchical client-server architecture. JXTA technology espouses
the core technology objectives of ubiquity, platform independence, interoperability,
and security. JXTA technology runs on any device, including cell phones, PDAs,
two-way pagers, electronic sensors, desktop computers, and servers. Based on
proven technologies and standards such as HTTP, TCP/IP and XML, JXTA
technology is not dependent on any particular programming language, networking
platform, or system platform and can work with any combination of these.

2.4.2.1 Peers and Peer Groups

Any device with a digital heartbeat that implements one or more of the JXTA protocols
could be a peer. Each peer is uniquely identified by a Peer ID and operates
independently and asynchronously from other peers. In order to set up point-to-point
connections, the network interface is published by the peer as the peer Endpoint.
However, the direct connection between two peers is not obligatory and intermediary
peers serve the purpose to route messages for peers which are separated due to
physical network connection or network configuration.

Each peer belongs to Net Peer Group by default. Peers could self-organize into peer
groups. The motivations to establish a peer group are e.g. to create a secure
encodings and/or monitoring environment. The peers within a peer group agree upon
a common set of services. Not all services within a peer group must be implemented
by each peer. A peer just needs to implement services which are useful for him and
use the implementation of the uncritical services provided by the default net peer
group. JXTA provides a core set of peer group services such as:

• Membership Service, which is used by the peer in the current peer group to
accept or reject the application from a new group.

• Access Service, which is for one peer to validate requests from another peer
within a peer group.

• Discovery Service, which serves peer members to search for peer group
resources.

• Pipe Service, which is used to create and manage pipe connections between the
peer group members [JXTA04].

2.4.2.2 IDs

Peers, peer groups, pipes and other JXTA resources need to be uniquely identifiable.
Unique IDs are generated randomly by the JXTA J2SE platform binding. A JXTA ID
uniquely identifies an entity and serves as a canonical way of referring to that entity.
Currently, there are six types of JXTA entities which have JXTA ID types defined:
peers, peer group, pipes, contents, module classes, and module specifications. URNs
are used to express JXTA IDs. URNs are a form of URI that are intended to serve as

 2 State of the Art

 30

persistent, location- independent, resource identifiers. Like other forms of URI, JXTA
IDs are presented as text.

An example JXTA peer ID is:
urn:jxta:uuid-59616261646162614A78746150325033F3BC76FF13C2414CB
C0AB663666DA53903

An example JXTA pipe ID is:
urn:jxta:uuid-59616261646162614E504720503250338E3E786229EA460DA
DC1A176B69B731504

2.4.2.3 Pipes

Pipes are virtual communication channels that are used to send messages by JXTA
peers. They support the transfer of any object such as binary code, data strings, and
Java based objects. The pipe endpoints are referred to as the input pipe and the
output pipe. Two basic modes of communication, point to point and propagate, are

offered by JXTA pipes as in FIGURE 2-10.

 FIGURE 2-10 JXTA PIPES [JXTA07]

2.4.2.4 Modules

JXTA Modules are an abstraction used to represent any piece of “code” used to
implement behaviour. The module does not specify what the “code” is and leaves the
implementation of the behaviour to module implementations. With the generic
abstraction form modules allow a peer to instantiate a new behaviour independent of
platform or languages. The ability to describe and publish platform-independent
behaviour is essential to support peer groups which are composed of heterogeneous
peer. The module abstraction includes a module class, module specification, and

module implementation (see FIGURE 2-11) [JXTA04a]:

• Module Class

The module class is primarily used to advertise the existence of a behaviour. The
class definition represents an expected behaviour and an expected binding to support
the module. Each module class is identified by a unique ID, the ModuleClassID.

 2 State of the Art

 31

• Module Specification

The module specification is primarily used to access a module. It contains all the
information necessary to access or invoke the module. For instance, in the case of a
service, the module specification may contain a pipe advertisement to be used to
communicate with the service. A module specification is one approach to provide the
functionality that a module class implies. There can be multiple module specifications
for a given module class. Each module specification is identified by a unique ID, the
ModuleSpecID. The ModuleSpecID contains the Module Class ID, indicating the
associated module class. A module specification implies network compatibility. All
implementations of a given module specification must use the same protocols and are
compatible, although they may be written in a different language.

• Module Implementation

The module implementation is the implementation of a given module specification.
There may be multiple module implementations for a given module specification. Each
module implementation contains the ModuleSpecID of the associated specification it
implements. Modules are used by peer group services, and can also be used by
stand-alone services. JXTA services can use the module abstraction to identify the
existence of the service (its Module Class), the specification of the service (its
Module Specification), or an implementation of the service (a Module
Implementation). Each of these components has an associated advertisement, which
can be published and discovered by other JXTA peers.

 FIGURE 2-11 JXTA MODULE

2.4.2.5 Advertisement

Advertisements are language-neutral metadata structures resource descriptors in
form of XML documents to represent network resources in JXTA network. With
advertisements, the problem of finding peers and all their different types of resources
can be reduced to a problem of finding advertisements describing those resources.

 2 State of the Art

 32

As the basic unit of data exchanged between peers to provide information on available
services, peers, peer groups, pipes, and endpoints, advertisements can be used to
virtually describe anything: source code, script, binary, classes, compiled JIT code,
Java objects, EJB, J2EE containers. Project JXTA standardizes advertisements for
the following core JXTA resource: peer, peer group, pipe, service, metering, route,
content, rendezvous-peer, endpoint, transport.

On the basis of these advertisements developers can add unlimited amount of
additional information for their own purpose. By way of related advertisements peers
cache, publish and exchange advertisements to discover and find available network
resources.

2.4.3 JXTA Protocols

JXTA defines a series of XML message formats, or protocols, for communication
between peers. Peers use these protocols to discover each other, advertise and
discover network resources, and communication and route messages.

As in FIGURE 2-12 there are six JXTA protocols [JXTA04]:

• Peer Discovery Protocol (PDP) is used by peers to advertise their own resources
and discover resources from other peers. Each peer resource is described and
published using an advertisement. PDP is the default discovery protocol for all user
defined peer groups and the default net peer group. The current Project JXTA
J2SE platform binding uses a combination of IP multicast to the local subnet and
the use of rendezvous peers, a technique based on network- crawling.

• Peer Information Protocol (PIP) is used by peers to obtain status information
such as uptime, state, recent traffic, etc. from other peers once the location of a
peers are clear. This information is useful for commercial or internal deployment of
JXTA applications. The PIP ping message is sent to a peer to check if the peer is
alive and to get information about the peer. The ping message specifies whether a
full response (peer advertisement) or a simple acknowledgment (alive and uptime)
should be returned.

• Peer Resolver Protocol (PRP) enables peers to send a generic query to one or
more peers and receive a response or multiple responses to the query. Queries
can be directed to all peers in a peer group or to specific peers within the group.
Unlike PDP and PIP, which are used to query specific pre- defined information, this
protocol allows peer services to define and exchange any arbitrary information
they need.

• Pipe Binding Protocol (PBP) is used by peers to establish a virtual
communication channel, or pipe, between one or more peers and to bind two or
more ends of the connection.

• Endpoint Routing Protocol (ERP) is used by peers to find routes to destination
ports on other peers. Route information includes an ordered sequence of relay
peer IDs that can be used to send a message to the destination.

 2 State of the Art

 33

• Rendezvous Protocol (RVP) is a mechanism by which peers can subscribe or be
a subscriber to a propagation service. Within a peer group, peers can be
rendezvous peers or peers that are listening to rendezvous peers. RVP allows a
peer to send messages to all listening instances of the service. The RVP is used
by the Peer Resolver Protocol and the Pipe Binding Protocol to propagate
messages.

Endpoint Routing

Protocol

Peer Discovery

Protocol

Peer Resolver

Protocol

Peer Rendevous

Protocol

Core Protocols

Pipe Binding

Protocol

Peer Information

Protocol

---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- --- ---- ---- ---- ---- ---- ------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----

Micro Peer

 Peer

Super Peer

Peer Information

Protocol

Pipe Binding

Protocol

Endpoint Routing

Protocol
Endpoint Routing

Protocol

Peer Resolver

Protocol
Peer Resolver

Protocol

JXTA

Protocols

Extended Protocols

 FIGURE 2-12 JXTA PROTOCOLS [MANN04]

2.4.4 JXTA Peer Category

According to the function and feature the peers in JXTA network are divided into
following four categories:

• Minimal edge peer. A minimal edge peer can send and receive messages, but
does not cache advertisements or route messages for other peers. Peers on
devices with limited resources (e.g., a PDA or cell phone) would likely be minimal
edge peers.

• Full-featured edge peer. A full-featured peer can send and receive messages,
and will typically cache advertisements. A simple peer replies to discovery
requests with information found in its cached advertisements, but does not forward
any discovery requests. Most peers are likely to be edge peers.

 2 State of the Art

 34

• Rendezvous peer. A rendezvous peer is like any other peer, and maintains a
cache of advertisements. However, rendezvous peers also forward discovery
requests to help other peers discover resources. When a peer joins a peer group, it
automatically seeks a rendezvous peer. If no rendezvous peer is found, it
dynamically becomes a rendezvous peer for that peer group. Each rendezvous
peer maintains a list of other known rendezvous peers and also the peers that are
using it as a rendezvous. Each peer group maintains its own set of rendezvous
peers, and may have as many rendezvous peers as needed. Only rendezvous
peers that are a member of a peer group will see peer group specific search
requests. Edge peers send search and discovery requests to rendezvous peers,
which in turn forward requests they cannot answer to other known rendezvous
peers. The discovery process continues until one peer has the answer or the
request dies. Messages have a default time-to-live (TTL) of seven hops.
Loopbacks are prevented by maintaining the list of peers along the message path
[JXTA04].

• Relay peer. A relay peer maintains information about the routes to other peers
and routes messages to peers. A peer first looks in its local cache for route
information. If it isn’t found, the peer sends queries to relay peers asking for route
information. Relay peers also forward messages on the behalf of peers that cannot
directly address another peer (e.g., NAT environments), bridging different physical
and/or logical networks Any peer can implement the services required to be a relay
or rendezvous peer. The relay and rendezvous services can be implemented as a
pair on the same peer.

2.5 Related Projects

2.5.1 Related Projects about P2P-based Web Service discovery

Two related projects are introduced to have some idea about the research in
P2P-based Web Service discovery. It is interesting that project WS-Talk integrates
Web Services and semantic Web standards in JXTA P2P environment. And the
project in Section 2.5.1.2 intends to develop a service discovery system for ubiquitous
peer-to-peer networks which is (programming) language and network independent
and flexible as well.

2.5.1.1 WS-Talk

The WS-Talk project consortium consists of both industrial and academic initiatives.
The Web Service (WS)-Talk interface Layer is a structured natural language interface
for the inter-service communication that extends service virtualisation to strengthen
consumer self-service. While providers will concentrate more on the technical levels of
activation and communication within a service network, the users, i.e. the service
consumers, will form ad-hoc collaborations between services at the semantic level that
suit their own specific needs. Web Service (WS)-Talk layer is presented as a
structured-language interface for Web services. This “open building block” can be
implemented by both the service designers who as providers are more concerned with

 2 State of the Art

 35

the architecture of the underlying service model and the service consumers who as
users will seek to specify Web services as solutions to specific problems [CZM05].

What mainly interests us in WS-Talk project is the integration of Web Services and
semantic Web standards in JXTA peer-to-peer environment. Several reasons are
mentioned for the use of JXTA technology:

• Their previous work for Web Service and JXTA coexistence and cooperation
clearly shows how the JXTA native-mode XML description can function seamlessly
with SOAP and WSDL as used by Web Services.

• Search and resource discovery functionality for Web Services is supported,
through self-description of the Web Services in XML, and by implication of SOAP
and WSDL.

• Through XML self-description, free text – hence natural language – querying is
supported.

• JXTA is based on open source, Java code, and has a large developer community.

• In line with some other peer-to-peer systems JXTA supports and favours stable
ontology. (Cf. P2P systems for music delivery and the ontology used in such
areas.)

• JXTA supports decentralized peers and thus is flexible and robust [CZM05].

The objective is to merge (i) Web Services for description, (ii) semantic web for search
and support of ontology, and through ontology, natural language, and (iii) peer-to-peer
networking because it provides a convenient transport layer. Therefore the protocols
used will be WSDL for Web Service description; DAML which has now become OWL
for ontology description; SOAP, for access and transfer; all based on JXTA using
pipes or sockets as a transport layer.

Since they are looking for a way to combine different workflows, Business Process
Execution Language (BPEL), which is used to model the behaviour of both
executable and abstract process, becomes a natural choice. BPEL for Web services
is an XML-based language designed to enable task-sharing for a distributed
computing or grid computing environment – even across multiple organizations –
using a combination of Web services [BPEL05]. And BPEL serves the need of the
project well to support the “open building block”. However, with the progress of their
research, it is not sure whether BPEL without P2P works better (or worse). One
reason is that it is found that the searching capabilities of JXTA did not well suit their
purposes because of the asynchronous way in which the queries were replied (i.e. two
equal queries give as response two different answer). What is sure is that a pure P2P
is not needed. And the further research and implementation in respect to P2P ceased
to be executed then.

 2 State of the Art

 36

2.5.1.2 Service Discovery in Peer-to-Peer Networks

The goal of this work is to develop a service discovery system for ubiquitous
peer-to-peer networks that is:

• Programming language independent. It should be possible to write peers in
different languages.

• Network independent. No assumptions should be made about network topologies
or protocols, since these factors are likely to be highly variable in real life ubicomp
situations.

• Flexible. It should be possible to use any sort of device or service with our system.

The approach deployed in the research allows platform-independent interaction
between devices represented by JXTA peers, and the ability to describe services with
rich semantic information to enable advanced service discovery. It shows how the
JXTA peer-to-peer framework can be enhanced with semantic service descriptions

written in DAML-S and WSDL (see FIGURE 2-13). This allows any kind of device to be
represented as a JXTA peer. Furthermore, Java support classes are created for
reasoning about these DAML-S descriptions using JTP [Elen03]. It is also shown how
platform-independent communication between JXTA peers (and thus devices
represented as JXTA peers) can be done, using SOAP over JXTA. By writing a
number of sample devices and providing a simple graphical user interface to their
service discovery framework. What this amounts to is a service discovery system for
ubiquitous peer-to-peer networks that is platform independent and highly flexible.

JXTA has proved to be very flexible due to its use of open XML messages and
advertisements, and non-commitment to any particular standard for remote
communication. This made it easy to integrate other technologies with it (namely
DAML-S, WSDL, SOAP, and JTP). Also, the combination of technologies and
languages which is chosen to use, Java, DAML-S, WSDL, SOAP, JTP works very well.
Reasoning using an inference engine and semantic device descriptions allows
powerful service discovery. However, the whole web services concept is rather
heavy-weight. The implementation requires jar files weighing in at over 12 MB in all,
and most of these are due to using SOAP and WSDL. Even if some of this could be
reduced, (optimized) using text-based XML messages will always incur an overhead
as compared to binary messages [Elen03].

The related research about P2P-based Web Services discovery is discussed. In the
next section 2.5.2, some research of scalability test of JXTA protocol is to be reviewed
so as to get some reference and determine the most appropriate type(s) for scalability
test in this thesis.

 2 State of the Art

 37

 FIGURE 2-13 HOW TO USE MODULE SPECIFICATION ADVERTISEMENT [ELEN03]

2.5.2 Related Projects about JXTA Framework Scalability Test

Three projects regarding the performance research of JXTA framework are discussed
in this section. The broadest research to measure the scalability capability of JXTA is
conducted by the JXTA Benchmarking project of JXTA developer community
[DoYP02]. The goal of the project is to construct a test harness which can be set up by
people relatively unfamiliar with JXTA, operated more or less automatically (scripted),
which reports on network performance measures of interest to the JXTA community.
The second reference project [HaDe03] intends to complement the JXTA
Benchmarking project by focusing on the performance evaluation of typical peer
operations and consequences for the peer network, the user and the developer. It
covers the trade-off between peer startup latency and the maintenance of the local
cache, the throughput limits of pipes, the measurement of the core JXTA
communication concept in a LAN environment. The third project is initiated by trying to
answer a common and unanswered question on the JXTA mailing lists: How many
rendezvous peers are supported by JXTA in a given group? With the focus on a de
facto standard of P2P programming – JXTA specifications, a detailed, large-scale,
multi-site experiment is conducted by using the nine clusters of the French Grid’5000
test bed [CCDD05]. Because our intention is to build a suitable benchmark suit for
scalability test of P2P based mobile Web Service discovery, we are interested in the
effect which is brought both by peer operations and by the scale of the network. The
study of these two projects gives us a rational reference on these aspects.

 2 State of the Art

 38

2.5.2.1 JXTA Benchmarking Project

JXTA Benchmarking project is conducted at Sun Microsystem, Inc’s Wireless
Engineering Laboratory. Two types of testing: vertical and horizontal, are performed.
Vertical test measures performance of JXTA core and JXTA services on a given
standalone peer. Horizontal changes are major fundamental changes in design and
topology to get broad performance and scalability improvements of at least an order of
magnitude as defined in the scalability design under platform. In the order of priorities
JXTA Benchmarking efforts can be broadly classified into the following categories:

1. Discovery & Resolver
2. Load/Stress Tests
3. Round trip Timings for messages
4. Single peer stand alone performance test
5. A real life application

Among the categories we could see discovery is the core functionality of any p2p
solutions and no exception for JXTA. It stands with the highest priority in the row
because the performance and scalability of discovery services determines the
performance and scalability of JXTA platform to a large extent. Since discovery
process mainly consists of parsing the local cache of advertisements, checking the
indices, propagation of discovery messages/query and resolving responses, the

project proposes the following scenarios to conduct discovery test as in FIGURE 2-14:

• Single Peer:

P1<->P1

On a given peer, it measures the time it takes to discover an advertisement. The
test is repeated by varying the number of advertisements in its local cache.

• Two Peers on same subnet:

P1<->P2

On a given peer, it measures the time it takes to discover an advertisement by
propagating queries to other peers in a subnet. The test needs to be repeated by
varying number of advertisements in a subnet. Queries are generated from P1 and
advertisements are to be found on P2.

• Discovery through one Rendezvous:

P1<->R1

On a given peer, it measures the time it takes to discover an advertisement by
propagating queries to a rendezvous peer. The number of advertisements is also
needs to be varied on R1.

• Discovery through chain of two or more Rendezvous:

P1<->R1<->R2…

 2 State of the Art

 39

In this scenario, P1 generates queries to R1. But the advertisements to be found
are not cached on R1. Instead, they are cached on other rendezvous, R2 or R3.
So queries are further propagated amongst Rendezvous.

 FIGURE 2-14 DISCOVERY SCENARIOS

The Benchmarking project aims to define the JXTA benchmarks and collect
performance and scalability measurements as the platform development progresses.
The next project [HaDe03] we will present intends to extend the existing work of JXTA
Benchmarking project by studying typical peer operations and consequences.

2.5.2.2 The Cost of Using JXTA

The proposed performance model of JXTA in [HaDe03] consists of the following
components and metrics:

1. Latency of typical peer operations
2. message round-trip time (RTT)
3. message and data throughput
4. Rendezvous query throughput
5. Relay message throughput

For our interest the first two components in the performance model are most related to

our discovery scalability test. Typical peer operations shown in FIGURE 2-15 are
based on the review of two JXTA applications: a P2P forum system5 and MyJXTA
[JuWR99].

 FIGURE 2-15 TYPICAL JXTA PEER OPERATIONS [HADE03]

5
 http://www.gnutella.com/.

 2 State of the Art

 40

Most of the high-level JXTA peer operations are actually sets of distinct basic steps,

as shown in FIGURE 2-15. From the performance perspective, the developers and
users should be interested in the cost of these operations due to the following reasons:
high cost of the basic steps involved to complete an operation, frequency of steps or
operations performed during the peer’s lifetime in the network. To simplify the
evaluation, only the costs of the typical high-level operations are measured in
[HaDe03], and the typical high-level operations in the relative order a peer performs
them upon startup include:

• Start the JXTA platform, to initialize the environment for running JXTA protocols
and services.

• Join a peer group, to enjoy a more secure and efficient environment according to
user preferences or common peer services,.

• Publish own advertisements, to make peers aware of the presence and
available resources.

• Open an input pipe, to receive messages from peers.

• Learn about other peers, who participate in the same group and share common
resources.

• Obtain pipe advertisements, to discover available communication channels of
other peers.

• Open output pipe, to send messages to other peer(s).

Two types of benchmarks are set and studied while analyzing peer’s typical
operations. They are startup benchmark and Round-trip time benchmark. Since
these two types of benchmarks provide a suitable way to describe the different
performances of discovery process with or without categorization mechanism, they will
be taken into our benchmark suit in the scalability test of this thesis

2.5.2.3 Performance Scalability of the JXTA P2P Framework

In another study [ACDJ06] JXTA peerview and discovery protocol is evaluated by
detailed, large-scale, multi-site experiments using the nine clusters of the French
Grid’5000 test bed [CCDD05] with various JXTA-C overlay configurations. The
peerview protocol is used by RDV peers to organize them by synchronizing their views
of each other. The goal of discovery protocol is to find resources within the group.

With the number of test RDV peers up to 200, the test of discovery protocol shows that
adding up to 50 RDV peers does not significantly increase the discovery time. From 50
to 200 RDV peers, the discovery time grows linearly. The result is explained by the
result of peerview protocol test. The property for stabilization of the peerview can not
be satisfied when a large number of RDV peers are used, which causes a linear cost
with respect to the number of RDV peers. The impact of “noise” on the discovery time
is also studied by a total of 5000 fake advertisements published by 50 edge noisiers,
i.e. 50 edge peers. The maximum overhead is measured when the number of RDV
peers r is 5. Then for values of r up to 150, the overhead slightly decreases. For values

 2 State of the Art

 41

of r between 150 and 200, publishing fake advertisements does not have any more
effect on the discovery time.

The available test environment of our project is limited to a small number of RDV
peers. And the performance analysis of [ACDJ06] provides us a practical and valuable
reference about the scalability JXTA discovery protocol. Together with the other two
projects reviewed in the Section 2.5.2.1 and 2.5.2.2 it sets the basis for the design
and build-up of benchmark suit of scalability test in this thesis.

2.6 Previous Work

The previous work in our project is reviewed in this section. At first it is about the
feasibility of mobile Web Service provisioning from mobile Host. Then a model is
designed to merge Web services and P2P technology on mobile and other resource
constrained devices.

2.6.1 Mobile Web Service Provisioning

The introduction of Third and Interim Generation mobile communication technologies
in the cellular domain like UMTS, GPRS/EDGE increased the speed of wireless data
transmission significantly. The drastic increase of processing power and device
capabilities enables better applications and usage of mobile devices in different
application domains. From the aspect of technical development, time is mature to
enable mobile devices to act not only as Web Services requestor but also as Web
Services provider. In the previous research in Mobile Web Services Provisioning
Project, feasibility of mobile Web Service provider for the Smart Phones is analysed.

The basic architecture of the mobile terminal as Web Service provider can be
established with the Web Service provider (”Mobile Host”) being implemented on the
smart phone. The Mobile Host has been developed as a Web Service handler built on
top of a normal Web server. The Web Service requests sent by HTTP tunnelling are
diverted and handled by the Web Service handler. Even though the Web Service
provider is implemented on the Smart Phone, the standard WSDL can be used to
describe the services, and the standard UDDI registry can be used for publishing and
un-publishing the services [SrJP06a].

From the introduction of Web Services in Section 2.2, we know the basic architecture
for Web Services is built upon Service Requestor (Client), Service Provider and
Service Registry. The basic structure of mobile Web Services host is similar (see

FIGURE 2-16). The Mobile service provider publishes its Web Services with the

service registry. The service requestor later searches (”Find”) the UDDI registry for the
services, and the UDDI compatible service registry refers the respective WSDL for the
service. The service requestor accesses the described Web Service, using SOAP.

In the research, the prototype of Mobile Host was set up and it was extensively tested
considering performance aspects in different real-time working
environments/conditions. The evaluation clearly showed that service delivery as well
as service administration can be done with reasonable ergonomic quality by normal

 2 State of the Art

 42

mobile phone users. As the most important result, it turns out that the total WS
processing time at the Mobile Host is only a small fraction of the total
request-response time (<10%) and rest all being transmission delay [SrJP06b].

 FIGURE 2-16 BASIC ARCHITECTURAL SETUP OF MOBILE HOST [SRJP06A]

2.6.2 Mobile Web Services Discovery in JXTA/JXME

As introduced in Section 2.3, the mobile Web Services discovery paradigm by way of
centralized UDDI registry has many drawbacks and does not really suit the need of
Web Services discovery process in mobile environment. By introducing mobile web
service provider and consumers into the Web Services market, the amount of Web
Services will increase. The increasing number of Web Services will lead to difficulties
on discovering of exact services, up to date services, and quick response. Moreover,
centralized registries are performance bottlenecks and may result in single points of
failure.

This stage of research intended to find a better solution for the Web Services
discovery on mobile and normal hosts. It provided a solution to merge Web services
and P2P technology on mobile and other resource constrained devices. Furthermore,
a proposal to establish a mobile network among web services providers and
requestors via P2P technology are presented. The aim of this network is to develop a
distributed service discovery mechanism. JXTA’s P2P provides perfect solution for
service discovery and communication among mobile users as “peers”.

By mapping JXTA modules to WSDL and UDDI illustrated in FIGURE 2-17, WSDL can

be represented with three modules of JXTA, which are Module Class, Module
Specification and Module Implementation, and advertisement of these modules
represents UDDI behaviour.

To invocate the Web Services, JXTA-SOAP model, Proxy model and Port forwarding
model are studied. After comparison Port forwarding model is chosen to be the most
appropriate one to suit the research need. More about this Web Services invocation
will be introduced in Section 3.3.

 2 State of the Art

 43

 FIGURE 2-17 TO MAP JXTA MODULES WITH WEB SERVICES [SRJP06A]

2.7 Summary

SOA is more a wave of future than just a hot topic. With SOA IT becomes more agile
in responding to the changing business needs. The features such as reusability,
interoperability, scalability and flexibility of web services make it the most prevalent
approach to implementing an SOA. P2P system is one approach for mobile Web
Service discovery and has evolved through three generations: Hybrid P2P, pure P2P
and mixed P2P. The third generation mixed P2P is nowadays used for mobile
environment. JXTA technology could be used to create P2P based applications based
on Java technology. It is designed with a simple structure so as to be provided as
much interoperability as possible to encourage the innovation from developers. In the
previous work of our project the feasibility of mobile Web Service provisioning is
proved and in the search for a distributed service discovery mechanism. JXTA
provides superb solution for service discovery and communication among mobile
users as “peers”.

 3 Conceptual Design

 44

3 Conceptual Design

3.1 Mobile Web Services Discovery

While introducing web services operations in Section 2.2.1.2 on the first stage we
take it for granted that the requester entity and provider entity have known each other.
In reality it is usually not the case. It often happens that a requester entity needs to
initiate a service but has no idea about the provider agent it wishes to engage, a
requester entity may then need to discover a candidate. Discovery is “the act of
locating a machine-processable description of a Web service that may have been
previously unknown and that meets certain functional criteria” [BHMN04]. A discovery
service is a service that facilitates the process of performing discovery. It is a logical
role, and could be performed by either the requester agent, the provider agent or
some other agent.

While networked applications follow the static install model, mobile applications follow
the discover, lease, deploy and discard model. To deploy application is the purpose,
but to discover applications which meet certain functional criteria is the first and a very
crucial stage of the whole process. Without effective discovery mechanism every
single stage after discovery would be impossible to implement. Without efficient
discovery mechanism the efficiency of the whole process is in question.

Web Services Discovery takes place in the first stage of the whole web services
process, when it is necessary. Discovery is the prerequisite for a functional web
service process and is the key focus of our project research at present. In Section
2.2.1.2 all the four stages are illustrated. Now the first stage of web services discovery
will be studied in detail. We will do further analyse at first about the process of
discovery service in Section 3.1.1 and then conceive discovery service from different
viewpoints in Section 3.1.2 so as to find the suitable discovery approach for the
mobile web service discovery research in our project.

3.1.1 Web Services Discovery Process

Let’s read the FIGURE 3-1 about the web service process again but focus just on the
first stage to see how a requester entity and a provider entity could know each other.

a. The discovery service somehow obtains both the Web service description (“WSD”

in FIGURE 3-1) and an associated functional description (“FD”) of the service. The
functional description is a machine-processable description of the functionality (or
partial semantics) of the service that the provider entity is offering. It could be as
simple as a few words of meta data or a URI, or it may be more complex, such as a
Tmodel in UDDI or a collection of RDF, DAML-S or OWL-S statements.

This architecture does not specify how the discovery service obtains the service
description or functional description. Various possible paradigms will be introduced in
the following Section 3.1.2. If the discovery service is implemented as a registry such
as UDDI, then the provider entity may need to actively publish the service description
and functional description directly to the discovery service. If the discovery service is
implemented as a search engine, then it might crawl the Web and collect service
descriptions wherever it finds them, while the provider entity have no idea about it.

 3 Conceptual Design

 45

b. The requester entity supplies criteria to the discovery service to select a Web
service description based on its associated functional description, capabilities and
potentially other characteristics. One might locate a service having certain desired
functionality or semantics; however, it may be possible to specify “non-functional”
criteria related to the provider agent, such as the name of the provider entity,
performance or reliability criteria, or criteria related to the provider entity, such as the
provider entity’s vendor rating [BHMN04].

c. The discovery service returns one or more Web service descriptions (or references
to them) that meet the specified criteria. If multiple service descriptions are returned,
the requester entity selects one, perhaps using additional criteria.

 FIGURE 3-1 WEB SERVICES DISCOVERY PROCESS [BHMN04]

3.1.2 Web Services Discovery Viewpoints: Registry, Index, dynamic or
Peer-to-Peer?

At present, there are three leading viewpoints on how a discovery service should be
conceived: as a registry, as an index, or as a peer-to-peer system. By analyzing
characteristics of each of them, we would like to find out which paradigm suits our
need to the most extent.

3.1.3 The Registry Approach

A registry is an authoritative, centrally controlled store of information. Publishing a
service description requires an active step by the provider entity: it must explicitly
place the information into the registry before that information is available to others.
The registry owner decides who has authority to place information into, or update, the
registry and what information is placed in the registry. Others cannot independently

 3 Conceptual Design

 46

augment that information. UDDI is often seen as an example of the registry approach,
but it can also be used as an index [BHMN04].

Centralized registries may be more appropriate in more static or controlled
environments where information does not change frequently. And the usual
mechanism to publish Web Services with a UDDI registry is far from an ideal
alternative for mobile environment on which we are concentrating. The possible great
amount of Web Services to publish by Mobile Hosts would easily lead to bottlenecks
and become single points of failure. The dynamic nature of mobile network throws a
second doubt on deploying UDDI registry for the mobile nodes which can join or leave
at any time and switch from one operator to another. In order to keep the binding
information up-to-date the Mobile Hosts have to publish Web Services every time
when they change the operating network. The spontaneous moving nature of nodes
results in bulk of out-of-date advertisements on one side, and a waste of registry
resources on the other. Even so, to keep the published Web Services information very
up to date is still not guaranteed and stays a hard nut to crack.

3.1.4 The Index Approach

In contrast with a registry, an index is a compilation or guide to information that exists
elsewhere. It is not authorities and does not centrally control the information that it
references. Publishing is passive: the provider entity exposes the service and
functional descriptions on the Web, and those who are interested (the index owners)
collect them without the provider entity’s specific knowledge. Anyone can create their
own index. When descriptions are exposed, they can be harvested using Web
spiders6 and arranged into an index. Multiple organizations may have such indexes
[BHMN04]. The information contained in an index could be out of date. However, since
the index contains pointers to the authoritative information, the information can be
verified before use. An index could include third-party information. Different indexes
could provide different kinds of information — some richer, some sparser. Free-market
forces determine which index people will use to discover the information that they
seek.

It is important to note that the key difference between the registry approach and the
index approach is not merely the difference between a registry itself and an index in
isolation. Indeed, UDDI could be used as a means to implement an individual index:
just spider the Web, and put the results into a UDDI registry. Rather, the key difference
is one of control: Who controls what and how service descriptions get discovered? In
the registry model, it is the owner of the registry who controls this. In the index model,
since anyone can create an index, market forces determine which indexes become
popular. Hence, it is effectively the market that controls what and how service
descriptions get discovered [BHMN04].

Perhaps the most well known type of discovery service used is the web search engine.
Search engines, such as Google7 and Altavista8, create massive indices of the
millions of web pages they crawl; allowing users to query for pages relevant to their

6
 A Web Spider is a program or automated script which browsers World Wide Web

methodically. Spiders are mainly used to create a copy of all the visited pages for later
processing by a search engine that will index the downloaded pages to provide fast searches.
Here spiders are used to gather specific types of information from Web pages.
7
 www.google.com

8
 www.altavista.com

 3 Conceptual Design

 47

interests using pattern matching. Search engines have progressed from only
cataloguing web pages to allowing searches on images, Usenet newsgroups, media
files, and more. To assist in searching for information on specific topics, sites such
as Yahoo!9 Provide directories of all web sites sorted into subject-related categories
and sub-categories. This allows users to use the directory service like a Yellow Pages
for services, or to narrow the subject scope of the index for their pattern match search.
Though search engines and directory services work well with static web services and
information, they are not suitable for searching for dynamic services. Because of the
enormous amount of information, web search engines cannot maintain a fresh index
of all websites [MaKr02]. Though the most popular sites may be crawled more often,
the average website index may be months old [BaCH00] [LaGi99]. Directories with
months-old stale information are not going to be suitable for locating web services with
lifespan of minutes or hours.

By distributing the index of content and services across many different servers, the
time and cost of maintaining the index in each server’s scope is greatly reduced.
Web services can register and update the directory servers handling their most
specific categories. A large distributed directory service must determine where
queries are sent and how to efficiently route them.

3.1.5 Dynamic Approach

The wish to enable Web Services discovery in an ad-hoc fashion arouse the extensive
research around the topic Dynamic Service Discovery. Among the prominent service
discovery mechanisms available, E-speak and UDDI (Universal Description,
Discovery and Integration) are designed specifically for discovering web services,
while Salutation, Jini, and UpnP (Universal Plug and Play) are geared toward services
furnished by hardware devices (printers, faxes, etc.). All can be used to discover
software services (web services) either by design or when provided with the
appropriate wrappers. Some of them are explained here.

3.1.5.1 E-speak

E-speak, Hewlett-Packard’s e-services initiative, is an open services platform. It is
designed to let e-services and smart devices communicate with one another in a
secure and manageable way regardless of their physical location, platform, system
management policy, development environment or device capabilities.

Through a powerful query mechanism clients could discover service dynamically from
E-speak engines and from external advertising depots. The query of clients is
constructed with the attributes of services. A client inquires the E-speak engine of
matching services. A query usually contains a constraint and may contains no
preferences at all or more than one preferences. The constraint specifies a condition
that services of interest much satisfy. If the E-speak engine finds services that match
constraints, preferences are used by the engine to make an order of results. Three
preference operators min, max and with are defined. The min takes an expression
and orders services in ascending order of the value of the expression. On the opposite,
the max orders services in descending order of the value of the expression. The
with operator has an condition and a weight expression. If the condition is evaluated

9
 www.yahoo.com

 3 Conceptual Design

 48

to true, then the weight is added to the total weight of resource. If the condition is
evaluated as false, then nothing is done. After all the evaluation is finished, the
services are ordered ascending or descending according to their total weight. The
number of results to be returned is decided by arbitration policy. Three operators are
used: first, all and any. The first operator has an integer variable in the form of “first

n” which indicates that the first n results should be returned. The all operator means

that all the results are to be returned. And any operator enables to return any service
which is found.

The following diagram explains the lookup process more clearly. From Repository
services which match the constraint construct N2. If the user specifies preference(s),
N2 will be ordered according to the preference(s) and construct N3. If no preference is
given, N2 remains the same, i.e. N3 equals N2. If the user specifies arbitration policy,
N3 will be filtered and construct N4. If no arbitration policy is specified, N3 remains the
same, i.e. N4 equals N3. N4 indicates the services to be returned to the user
[GKLS00].

 FIGURE 3-2 E-SPEAK LOOKUP PROCESS [GKLS00]

3.1.5.2 Salutation

Salutation is a service discovery and session management protocol developed by the
Salutation Consortium. Salutation was created to solve the problems of service
discovery and utilization among a broad set of appliances and equipment in an
environment of widespread connectivity and mobility. The architecture also enables
application, services and devices to search other applications, services or devices for
a particular capability, and to request and establish interoperable sessions with them
to utilize their capabilities.

The Salutation protocol aims to integrate different devices into a network by supplying
them with a standard communications and API specification for discovering the

capabilities of other entities in a network. As shown in FIGURE 3-3, this architecture is
based on a model called the Salutation Manager (SLM), which is similar to the lookup
service in Jini and functions as a service broker for services in the network. The

 3 Conceptual Design

 49

Salutation architecture enables transaction between function units representing
essential features of a service (e.g. fax, print, scan etc). Each functional unit is
composed of descriptive attribute record. Another important entity called transport
manager that isolate SLM from particular transport protocol and provide SLM reliable
communication channels independent transport layer. SLM may sit one more than one
Transport Manager attaching to different network, and provide a
transport-independent interface to Server and Client applications [YuAg03].

 FIGURE 3-3 SALUTATION ARCHITECTURE [YUAG03]

3.1.5.3 Jini

Jini is a coordination framework by Sun with the goal to turn the network into a flexible
tool for clients to find the resources they need. The clients refer both human users and
computers. A service protocol, which is a set of interfaces written in Java, serves for
the services to communicate with each other.

The discovery service of Jini proceeds in the following steps:

� A device (client) intends to look for a service and publish advertisements.

� A Lookup Service (server) runs instances of the discovery service which listen for

multicast requests form discovering entities.

� The discovering entity performs a multicast that requests references to the lookup

service.

� The lookup server calls a remote method on the discovering entity’s exported

object instance passing a remote reference to its lookup service as the parameter.

By extending Java application environment Jini enables code and data to move
between machines. Autonomous devices who could be aware of the existence of each
other and be able to coordinate to fulfil tasks if needed construct a federation. To
realize the coordination lookup service is used to find and resolve services. Lookup
Service keeps dynamic information about these autonomous devices and plays a key
role in the framework. Every device must find one or more Lookup services before
joining a federation. Lookup Services could also be assigned with group names. A
device may join the group according to group name of Lookup services. After finding
the lookup service which is of its interest, a device could register to provide lookup

 3 Conceptual Design

 50

service information about itself or query for information about other devices [Cals99].
So far all discovery mechanisms are based on the assumption that a registry by a
service proxy is always available, which is not realistic for dynamic ad hoc networks. A
discovery mechanism on the basis of centralized registry will not function well for Web
Services distributed in ad hoc networks. The following two approaches VISR and
Konark are designed to meet the needs of distributed Web Service discovery.

3.1.5.4 VISR

VISR (View based Integration of Web Service Registries) is developed as a P2P
architecture for distributed Web Service registry. They transform the Web Service
brokerage model to a distributed model with implicit Web Service brokerage to provide

accurate Web Service registry entries. From FIGURE 3-4 we could have a conceptual
overview of VISR’s Web Service registry paradigm. Every Web Service provider is at
the same time broker requestor, and every peer is part of the virtual Web Service
registry.

 FIGURE 3-4 VISR’S WEB SERVICE REGISTRY PARADIGIM [DUTR06]

Registry information is differentiated into three types in order to provide a flexible data
model. They are VISR peer profiles, view profiles and service profiles. Peer profiles
are used to identify WS providers. View profiles provide context information about WS
and serves to organize the global WS registry content within WS communities. Service
profiles tells about WS description in a lightweight.

Regarding WS discovery VISR not only supports keyword based match but also
makes improvement by employing the structure of VISR service profiles as potential
matching criteria. Besides, Xpath expressions are also supported to select Web
Services [DuTr06].

3.1.5.5 Konark service discovery protocol

Similar to VISR, Konark also enables each device to act both a server and as a client
simultaneously. A WS requestor uses active pull mechanism for WS discovery, while a
WS provider advertises their Web Services periodically by the so called passive push.
For large dynamic ad hoc network Konark has an extended incremental discovery
protocol, i.e. Service gossip protocol. By listening to service advertisement, request
and response messages in the network, each peer gossips its knowledge about
services minus the network’s knowledge. In this way, single peer gets the overview of

 3 Conceptual Design

 51

the whole network. Because repeated gossip of the same information is avoided, this
incremental discovery algorithm is supposed to effectively reduce network traffic for
service discovery [LHDV03].

3.1.5.6 UpnP

The UpnP is also an industry initiative headed by Microsoft to enable simple and
robust connect ivy among stand-alone devices and PCs from many different vendors.
UpnP networking usually consists of six phrases: Addressing, Discovery, Description,
Control, Eventing, and Presentation. Discovery comes after devices get their
addresses.

For service discovery UpnP uses Simple Service Discovery Protocol (SSDP). By
SSDP a device control point declares its presence to other devices and discovers
others. Unlike Jini, in which a lookup directory service is necessary for discovery,
SSDP could work without directory service. HTTP over multicast (HTTPMU) and
HTTP over unicast (HTTPU) are used for advertising. The advertising message
contains service type, name and location, an URLs that identifies the advertising
service and point to an XML file that provides a description of advertising services.
When a control point joins the network, it publishes discovery queries in form of
messages by way of HTTPMU. All devices listen to the standard multicast address for
these messages and must respond if any of their embedded devices or services
matches the search criteria in the discovery message by way of HTTPU. When the
device is removed or wants to leave the network it send bye-bye message to declare
its no more availability.

3.1.6 P2P-based Web Service Discovery – the chosen Mechanism for mobile
Web Service Discovery

Peer-to-Peer (P2P) computing is not a brand-new technology, since the earliest peer
to-peer network in widespread use was the Usenet news server system, in which
peers communicated with one another to propagate Usenet news articles over the
entire Usenet network. But P2P technology has become a hot topic and begun to draw
popular attention since the foundation of Napster in 2000. A P2P computer network
relies primarily on the computing power and bandwidth of the participants in the
network rather than concentrating it in a relatively low number of servers. P2P
networks are typically used for connecting nodes via largely ad hoc connections. More
information about P2P technology and development is already discussed in Section
2.3.

In web services discovery P2P provides an alternative that does not rely on
centralized registries; rather it allows Web services to discover each other dynamically.
Under this view, a Web service is a node in a network of peers, which may or may not
be Web services. At discovery time, a requester agent queries its neighbours in
search of a suitable Web service. If any one of them matches the request, then it
replies. Otherwise each queries its own neighbouring peers and the query propagates
through the network until a particular hop count or other termination criterion is
reached.

Peer-to-peer architectures do not need a centralized registry, since any node will
respond to the queries it receives. P2P architectures do not have a single point of
failure, such as a centralized registry. Furthermore, each node may contain its own

 3 Conceptual Design

 52

indexing of the existing Web services. Finally, nodes contact each other directly, so
the information they receive is known to be current. (In contrast, in the registry or index
approach there may be significant latency between the time a Web service is updated
and the updated description is reflected in the registry or index.)

The reliability provided by the high connectivity of P2P systems comes with
performance costs and lack of guarantees of predicting the path of propagation. Any
node in the P2P network has to provide the resources needed to guarantee query
propagations and response routing, which in turn means that most of the time the
node acts as a relayer of information that may be of no interest to the node itself. This
results in inefficiencies and large overhead especially as the nodes become more
numerous and connectivity increases. Furthermore, there may be no guarantee that a
request will spread across the entire network, therefore there is no guarantee to find
the providers of a service [BHMN04].

Because of their respective advantages and disadvantages, P2P systems, indexes
and centralized registries strike different trade-offs that make them appropriate in
different situations. P2P systems are more appropriate in dynamic environments in
which proximity naturally limits the need to propagate requests, such as ubiquitous
computing. Indexes may be more appropriate in situations that must scale well and
accommodate competition and diversity in indexing strategies.

3.2 Adapting Categorization to P2P-based Discovery

In order to make discovery process for mobile web services more efficient and
accurate, various mechanisms are considered. To adapt categorization in UDDI to
P2P based mobile web services discovery is one of them with vital priority because
the ability to attribute metadata to services registered in UDDI, and then run queries
based on that metadata is absolutely central to the purpose of UDDI at both design
time and run time. That’s why categorization is arguably the most important feature of
UDDI.

UDDI’s raison d’être is for the purpose of description and discovery and, as such, the
ability to perform searches and queries based on properties and attributes is critical. If
data cannot be found or understood, that data is functionally non-existent or worse,
misleading. Data is worthless if lost within a mass of other data. Even if an entity is
discovered, if the user cannot determine the context about the entity – how it is
supported, who owns it, what it does, etc. – the user cannot effectively interact with the
entity. In other words, being able to distinguish and differentiate data is as important
as being able to find data [Janu02].

This section consists of two parts. In the first part we will have a close reading to see
how UDDI specification handles categorization. The second part elaborates a
conceptual model to deploy categorization in P2P based discovery.

3.2.1 Categorization in UDDI Business Registry

Besides the ability to mark UDDI registration data with identifiers, another design goal
of UDDI is the ability to assign category information. Without categorization, locating

 3 Conceptual Design

 53

data within a UDDI registry would prove to be very difficult. Especially for the discovery
of previously unknown businesses, services, bindings or service types, it is
indispensable that the corresponding UDDI registration data is marked with a set of
categories that can universally be searched on. For example, the Universal Standard
Products and Services Classification (UNSPSC), a set of categorization codes
representing product and service categories, can be used to specify a business’
product and service offering in a more formalized way [UDDI04].

3.2.1.1 Simple categories

All four main UDDI data structure types, which are businessEntity, businessService,
bindingTemplate and the tModel, provide a structure to support attaching categories
to data. By providing a placeholder categoryBag for attaching categories to these
data structures, any number of categories can be used for a variety of purposes. The
information about categories is added to the UDDI data structure types by using a
categoryBag. A categoryBag consists of one or more keyedReference. Each
keyedReference contains three attributes:

• tModelKey: uniquely identifies the tModel that represents the category system

• keyName: human readable name of the category system, and when the actual
category is coded, a human readable rendition of the value

• keyValue: the actual category code within the specified category system

The find_tModel call is used to find available resource of UDDI. By setting

keyValue = ”categorization”

all category systems registered with a specific UDDI registry according to some
recommended policy to recognize category systems could be found. An alternative
is to search by keywords under Utility tModels and Conventions, the general keywords
taxonomy of UDDI. In this case the keyword to be searched should be set to

keyValue accordingly.

The fragment of an XML document in Appendix B presents a simple example of the
usage of categoryBag in one of the UDDI data structure types, businessEntity .

3.2.1.2 Grouping categories

When the use of single categories is not enough to describe an entity, the relationship
between single categories could be used. keyedReferenceGroup serves for this
purpose to contain a set of keyedReference. In this way an entity could be described
with more details [UDDI04].

By setting
keyValue = ”categorizationGroup”

and using find_tModel call all category group systems that are registered within a
UDDI registry that follows the recommended policy for recognizing category group
systems could be found. The fragment of an XML document in Appendix B presents
an example of the usage of keyedReferenceGroup in categoryBag.

 3 Conceptual Design

 54

3.2.2 How to Deploy Categorization in P2P based Discovery

3.2.2.1 Design of implementation of categorization in JXTA/JXME network

As one can see, in UDDI categorization helps the Web Services requester to find the
needed services more quickly and efficiently because the searching scope of
instances could be narrowed immediately with a given standard. With the same idea it
could also help to speed up the web services discovery in JXTA environment. For the
ULD such as mobile devices the better related searching results makes even more
sense than devices with no much processing and memory limits.

 FIGURE 3-5 TO ADAPT CATEGORIZATION TO JXTA MODULE [ELEN03]

In order to deploy categorization in our project, we also need a placeholder to attach
information about categories to Module Advertisements from Service Provider. We call
the structure which contains category information categoryPack. It introduces peer

groups by way of keyedReferenceGroup similar as the categoryBag in UDDI. A
peer group could belong to one or more keyedReferenceGroup.

The categoryPack will be defined and appended in Module Class Advertisement as in

FIGURE 3-5. When a peer starts the JXTA, declares its existence and gets its unique

mobile ID in the JXTA network. At the same time it publishes its category information
and will join in some (one or more) related PeerGroup(s) according to the

categorization (see FIGURE 3-6).

The super peer of each PeerGroup caches the peer ID and categoryPack of each

peer in the PeerGroup. When a service requester searches for a service, the request

 3 Conceptual Design

 55

will be sent to the related super peer(s) at first. The super peer looks through the
cache and sends the request to the still available peer IDs further.

Each peer who receives the request from its super peer conducts the search process
in its local cache by searching for the MCAs according to the keyword given by the
mobile requestor. An MCA maps the general description of Web Services under the
same group. Since more than one Web Services could possess the same general
description but different detailed description and content, one MCA could possibly
match more than one MSAs. Actually when an MSA is to be published in some peer
group(s), it should search for the most appropriate MCA in the chosen peer group(s) to
match by the category information provided by keyedReferenceGroup in MCA.

If the number of found MSAs is small, then the searching results could already be
accepted and sent back to the service requester. Otherwise some deep search
mechanism such as Lucene will further filter and improve the searching results. In
this way, it makes possible that the most related services could be found at the first
filtering stage.

 FIGURE 3-6 TO PUBLISH CATEGORY INFORMATION INTO JXTA

3.2.2.2 Categorization structure of mobile Web Services

One of the main focuses of this thesis is to improve efficiency of discovery service with
the introduction of a hierarchical peer group structure, which categorizes the mobile
Web Services in the JXTA/JXME network. With the reference of some popular
industry categorization standards North American Industry Classification System
(NAICS) and United Nations Standard Products and Services Code (UNSPSC), we

design a categorization structure of mobile Web Services in FIGURE 3-7. Neither have

 3 Conceptual Design

 56

we the ambition to build up a complete categorization hierarchy nor do we intend to
include all possible existing mobile Web Services into this hierarchy because those
are not our intension. The group structure which we build is a first draft to realize the
idea of categorization. It could be complemented and/or corrected by the mobile Host
who would publish some Web Services but find no satisfactory groups in our

categorization. In FIGURE 3-7 we define each peer group with a group name e.g.

profScienTecGroup and a brief group description, e.g. professional, scientific and

technical services for profScienTecGroup. The groups on the same level have the
same background color, e.g. all groups with green background belong to the third
level.

On the top level is mobile Web Service group with the peer group name

mWSGroup.

On the second level eleven peer groups are defined and direct child groups of
mWSGroup, they are

accomCaterGroup, artCultureGroup, educationGroup, entertainmentGroup,
FinanceInsuranceGroup, healthGroup, informationGroup, profScienTecGroup,
repairGroup, rentLeaseGroup, searchGroup.

On the third level there are thirty-three peer groups, which are

accomGroup, caterGroup, artSportGroup, coLearnGroup,informalLearnGroup,
jitLearnGroup,locBaseLearnGroup,museumGroup, mobiLearnGroup,ambuGroup,
profitEntertainGroup,gameGroup,bankingGroup,paypalGroup,dentistGroup,
firstAidGroup,homeCareGroup,internetGroup,telecomGroup, geoMapGroup,
videoaudioGroup,publishGroup,softGroup,draftingGroup,designGroup,
enginneringGroup, autoRepGroup,commNavEquipGroup, realEstateGroup,

rentalGroup, videoSearchGroup,picSearchGroup,musicSearchGroup.

On the fourth level there are twelve peer groups, which are

casinoGroup, lotteryGroup, locBaseServGroup, rssGroup, newspaperGroup,
directoryGroup,periodicalGroup,bookGroup,parkingGroup,
internetAccGroup, guideServGroup, autoRentGroup

Each peer group in the hierarchy except leave peer groups on the fourth level has one

or more child groups, e.g. mobiLearnGroup has child groups informalLearnGroup,
locBaseLearnGroup, coLearnGroup, jitLearnGroup.

The application of hierarchical categorization tree will be implemented by way of a
shell command in JXTA platform. In both the Windows Command Prompt window and
a UNIX shell, a number of built-in commands could be used to perform some simple
operations. The JXTA shell features a mix of both simple and complex commands. It is
an interactive application, which enables the user to have a look at the JXTA
environment and perform operations. Like any other shell, the JXTA shell issues a
prompt (JXTA>) on which the user could give input of shell commands. The shell
command then sends the corresponding output on the screen. For example, whoami
command is used by JXTA to show either the peer information of the current user, or
the peergroup advertisement of the group currently logged into. In order to publish the
hierachical categorization information into the JXTA network, we will implement such a

shell command category so that all the peer groups on FIGURE 3-7 will be created

 3 Conceptual Design

 57

with the hierachical structure and published into JXTA network when the user type the
command at the JXTA shell.

 FIGURE 3-7 MOBILE WEB SERVICES CATEGORY HIERARCHY

 3 Conceptual Design

 58

3.3 Web Services Invocation

When Web services are searched, found and established at mobile devices, it is then
the time to invoke them. Standard web service invocation is done through IPs,
however one of the main purpose of this project was to use peer ID instead of IP. In
previous work Port Forwarding model is deployed, which is using JXME pipes to pass
messages among peers. This model works as follows:

To receive incoming messages over the JXTA network it is required to create a pipe. A
server creates a pipe using peer ID, which is attached to Module Spec
Advertisement while the service provider application pushes the MSA service into
JXTA network.

 FIGURE 3-8 PORT FORWARDING MODEL [TOPR06]

A client side makes the search and retrieves back a result message containing the
service location address URL and pipe ID. The client peer creates a pipe to response
back to the message received from server. The Web service message is taken from
local http 80 port and combined with client peer pipe ID to send to the server. The
client peer ID is required by server to response back to client Web service invocation.

Because in JXTA environment any peer could be server as well as client, we will
consider the implementation in one side. The pipe application consists of three main
methods:

1. Creating pipe with peer ID.
2. Listening to pipe.
3. Sending message over pipe.

After a pipe is created with peer ID, it is required to send a listen request message to
the JXTA relay peer. The relay peer starts listening messages. By making a loop it is
possible to check the relay peer if you have a message or not. This operation is done
with poll function which it takes a time variable.

JXTA relay peer does not forwards received messages to JXME peers immediately,
instead it stores the incoming messages. The JXME client contacts the relay (a
mechanism called polling) to receive its incoming messages. JXME client always
check the relay peer if there is a message for it.

 3 Conceptual Design

 59

Send function is used to send a message through pipes, which it takes a pipe ID and
message element. The JXME messages are created with different element fields,
each element indicates a different behaviour. By default there are many elements at
each message. Additionally at thesis work two elements created one is to carry Web
service invocation message and the other to carry clients pipe ID.

When the mobile host receives the message it forwards it to local port 80 and prepares
a WS response message, then the mobile host uses the pipe ID (which was received
from client with incoming message) and sends the prepared message to the client
mobile. The client mobile takes the message and forwards it locally to port 80. Thus a
full invocation process is done.

3.4 Summary

Different approaches and technologies are studied and compared to find out a best
alternative for mobile Web Service discovery. Among registry, index, dynamic and
P2P paradigms we think P2P best suits this need because of its flexible and dynamic
nature. However, we also consider to borrow good properties of UDDI while
developing our P2P based discovery mechanism. Categorization is considered a key
feature of UDDI in Web Service discovery process and is therefore included in our
development. A hierarchical structure of peer groups is designed for JXTA/JXME
network with the assumption that it could bring efficiency as well as scalability to
discovery performance.

 4 Implementation

 60

4 Implementation

This section presents the detailed implementation of mobile Web Service Discovery
with categorization paradigm. At first the implementation environment and tools are
introduced in Section 4.1. Then we review the overall process of implementation
through a sequence diagram. From the aspect of different participants into the
discovery process we divide the narration of implementation into three parts: service
provider, mobile service client and JXME proxy.

4.1 Implementation Environment and Tools

Java is deployed as the main developing language throughout the implementation of
this work from the aspect of both server and client, although the role of server and
client could be played by the same device. In JXTA platform, through which P2P
based mobile Web Services discovery, is realized, Java is also used instead of other
languages thanks to its platform independence, object-oriented methodology and its
built-in support for networking. Java 2 Micro Edition is no doubt the version chosen to
develop client side user interface because it is running on mobile devices. In addition,
JXME, i.e. JXTA Micro Edition API is deployed to enable the function of connecting
and communicating within JXTA platform.

Eclipse is chosen as the developing framework on the aspect of service provider
because of its being Rich Client Platform10. Due to the same reason NetBeans IDE is
used to develop service requester application. The screen show function of NetBeans
provides convenient overview about the mobile interface. It is the second reason why
NetBeans is used on the client side.

4.1.1 Java 2 Platform and J2ME

The Java 2 Platform is a computing platform from Sun Microsystems which can run
applications developed using the Java programming language and a set of
development tools. Java has three kinds of versions: Java 2 Standard Edition (J2SE),
Java 2 Enterprise Edition (J2EE) and Java 2 Micro Edition (J2ME). These versions are
developed for different environments and for different devices.

J2ME platform is a collection of Java APIs for the development of software for small
devices with limited memory, display and power capacity such as PDAs, cell phones
and other consumer appliances. The intention of J2ME is to provide common
functions to the different capability and ability devices. To serve this goal modular
structure is developed, different kind of profiles and configurations are defined. J2ME
has two configurations: CLDC (Connected Limited Device Configuration) for personal
intermittent network connections and CDC (Connected Device Configuration) for
continuous network connections.

10 A Rich Client Platform (RCP) is a piece of software consisting of the following components: a core,a
standard bundling framework, a portable widget toolkit, file buffers, text handling, text editors, a workbench
(views, editors, perspectives, wizards), Update Manager.

 4 Implementation

 61

For our purpose to implement a Web Services discovery environment for mobile
devices the combination of CLDC and MIDP (Mobile Information Device Profile) would

be the best alternative, just as shown from the FIGURE 4-1. CLDC 1.0 and MIDP 2.0
are the configuration and profile used in the thesis and they are introduced in more
detail in next section.

4.1.1.1 CLDC 1.0

J2ME configuration describes minimal Java platform required by device family. The
devices which belong to this family have similar memory and processor capability. A
configuration provides the most basic set of libraries and virtual-machine features that
must be present in each implementation of a J2ME environment. A configuration
includes these items:

• Specific Java programming language specifications
• Specific Java Virtual Machine (JVM) specifications
• Specific Java libraries

 FIGURE 4-1 CLDC WIRELESS PLATFORM
11

4.1.1.2 MIDP 2.0 and MIDlet

J2ME profile consists of services which provided at application layer. These services
can be at any subject. However at some subjects profiles are standard, all the devices
which support that profile same service exists at similar form. Profiles run on a
configuration. A profile can operate over another profile. A device can support more
then one profile however it can have only one configuration. For instance SMS
messaging is one profile. This profile is commonly used for mobile phone
configuration.

The Mobile Information Device Profile (MIDP) offers the core application
functionality required by mobile applications, including the user interface, network
connectivity, local data storage and application management. Combined with CLDC,

11
 http://java.sun.com/javame/technology/index.jsp

 4 Implementation

 62

MIDP provides a complete Java runtime environment that leverages the capabilities of
handheld devices and minimizes both memory and power consumption.

MIDP offers portability, which is achieved through Java. An application that uses the
MIDP APIs will be portable to any MIDP device. MIDP allows the execution of multiple
MIDlets. The model defines how the MIDlet is packaged, what runtime environment is
available, and how it should behave when resources are constrained. The model also
defines how MIDlets can be packaged together in suites and how to share common
resources. Each MIDlet suite has also a JAD file, which is a descriptor file that allows
application management software (AMS) on the device to identify what it is about to
install prior to installation. The model also defines a lifecycle for a MIDlet which allows
starting, stopping and cleanup of a MIDlet [DeJo04].

A MIDlet is managed by the Java Application Manager, which executes the MIDlet and
controls its life cycle. The MIDlet can be in one of the following states: paused, active,
or destroyed. When you first create and initialize a MIDlet, it is in the paused state. If
an exception occurs in the MIDlet’s constructor, the MIDlet enters the destroyed state
and is discarded. The MIDlet enters the active state from the paused state when its
startApp() method call is completed, and the MIDlet can function normally. The MIDlet
can enter the destroyed state upon completion of the destroyApp (Boolean condition)
method. This method releases all held resources and performs any necessary cleanup.
If the condition argument is true, the MIDlet always enters the destroyed state
[MID03].

4.1.2 Eclipse SDK 3.2

Eclipse is an open-source software framework originally written in Java. But it is far
more than a Java IDE. Its main focus is to build an extensible development, runtime
and application framework to manage software along its complete lifecycle. Eclipse
SDK provides an IDE with a built-in Java compiler and neat presentation of Java
source files. To manage a huge project such as JXTA, such kind of support is
absolutely necessary. Eclipse provides a set of convenient tools for creating,
compiling, testing and modifying our project. With usage of workspace external files
could be created and refreshed, it further supports our purpose to access and process
external files. In addition, Eclipse serves our need to create platform-independent web
application in respect to every aspect. Therefore we chose Eclipse SDK (Software
Development Kit) as developing platform especially for Proxy/Relay service provider.

4.1.3 Sun wireless Toolkit and Sony Ericsson SDK

The Sun Java Wireless Toolkit is used for test together with Eclipse in the beginning of
requestor implementation .The Sun WTK 2.5.2 provides a set of tools for creating Java
applications that run on devices compliant with the Java Technology for the Wireless
Industry (JTWI, JSR 185) specification and the Mobile Service Architecture (MSA,
JSR 248) specification. It consists of build tools, utilities, and emulators.

4.1.4 NetBeans IDE and NetBeans Mobility Pack

During the implementation process on the mobile Web Services requester side of this
thesis NetBeans plays the main role both as platform to develop J2ME application and

 4 Implementation

 63

as an integrated development environment (IDE). The NetBeans IDE is an
open-source integrated development environment written entirely in Java using the
NetBeans Platform and supports development of all Java application types.

4.1.4.1 NetBeans Platform and NetBeans IDE 6.0

With NetBeans applications could be developed from modules, i.e. a set of modular
software components. The Java classes which are edited to interact with NetBeans
APIs and a manifest file declaring its module identity construct a Java archive file and
each such Java archive file is a module. Extensibility is a very advantageous feature of
modules because it simplifies the development for the third party developer who would
work further on the applications on the basis of modules. Besides, the platform
provides services such as user interface and setting management, storage
management, window management etc. to help developers focus on the logic part of
developing task.

4.1.4.2 NetBeans Mobility Pack

The main reason for us to choose NetBeans to develop mobile Web Service requester
application is NetBeans Mobility Pack. Not only does it integrate support for MIDP 2.0
and CLDC 1.1, but the functions and tools it provides greatly simplifies and clarifies
the logic specifications of codes while editing, testing and debugging applications for
J2ME platform. One example is the screen functions which presents not only source
code, but Screen Design and Flow Design. Since both screen design and flow design
are on one side routine coding, on the other side needs visual feedback for the source
coding while editing, the tools enormously eases the editing process. The developer
could then more focus on logics of coding task.

4.1.5 JXTA and JXTA Java Micro Edition (JXME)

As introduced in Section 3, we assume a P2P based discovery mechanism would be
a better alternative for our mobile applications. JXTA is designed to enable the
refactoring of many applications in a P2P environment rather than being a library for
creating concrete applications. JXTA aims to provide services and infrastructure for
P2P applications. Its group concept e.g. serves to organize randomly distributed peers
and embodies them common entities and services. The routing and communicating
mechanism frees the peers from a variety of usual barriers of traffics such as firewalls.
Those principles exactly respond the requirement and need of our project. We need
such a truly distributed system for mobile devices and at the same time super peers to
perform the resource-consuming heavy load tasks such as keeping files, processing
messages etc.

The JXTA Java Micro Edition (JXME) provides a JXTA compatible platform on
resource constrained devices using the Connected Limited Device Configuration
(CLDC) or the Mobile Information Device Profile 2.0 (MIDP), or Connected Device
Configuration (CDC). The devices are ranged from smart phones to PDAs. By way of
JXTA Java Micro Edition platform, the CLDC/MIDP/CDC devices can participate in the
JXTA network and communicate with other JXTA devices[JXME05]12.

12
 https://jxta-jxme.dev.java.net/

 4 Implementation

 64

In Section 2.4, we have reviewed the key concepts and architecture of JXTA,
including three simple software layers: core layer, service layer, application layer, the
relationship between peers and groups, the form of different advertisements and IDs,
six protocols with respective functional domain, pipes for sending and receiving
messages, as well as concept of module as a media to represent any behaviour of
applications.

In this section, we will firstly go behind the concept facet and present how JXTA API
support us with implementation from Web Service provider’s aspect. Then what
interests us is how JXTA Java Micro Edition contributes to enable a light weight
implementation from mobile Web Service requester’s aspect possible.

4.2 Overall Publishing and Discovery Implementation

Although our focus in the thesis is discovery process of mobile Web Services, we
could not present a complete workflow of discovery process without an overview of
publishing process. This section 4.2 provides a bird’s eye view of mobile Web
Services producing and consuming behaviours with the help of a sequence diagram. It
starts from bootstrap of the mobile P2P network and ends with the invocation of the

found Web Service as shown in FIGURE 4-2:

• Bootstrap

First of all, Mobile P2P network needs to be established and category information is
published into the P2P network. The peer from MWSMF (Mobile Web Service Medium
Framework) joins JXME network as a super peer. A mobile service requestor starts
JXME and joins P2P network via MWSMF.

• Publishing

Some Web Services are developed by some developers. The developers join some
peer group(s) according to the category information and publish available Web
Services in the P2P network. A mobile Host deploys a Web Service. The mobile Host
joins P2P network by connecting with a super peer via MWSMF and chooses one or
more groups to join according to category information.

• Requesting

A mobile service requestor needs some Web Service and chooses a peer group, in
which the service requestor believes some Web Service is most possible to be found,
and provides a keyword. With provided group name and keyword by service requestor
the JXME proxy starts the discovery process.

• Searching

When the JXME proxy of the service requestor received search request. The keyword
based search starts in its local cache and will be forwarded to all the known
Rendezvous peers and edge peers if necessary. The chosen peer group has to be
found at first. Then MCAs based on the given keyword are searched in the chosen
group.

 4 Implementation

 65

If some keyword matching MCAs are found, the MCA IDs are extracted to search for
the matching MSAs to MCAs. If the result list of MSA is not very long, i.e., the number
of found MSAs does not surpass the threshold set by service requestor, then the
searching process is over and the result list of MSAs are ready to be sent back to
service requestor. If the number of found MSA is greater than the threshold, then deep
search mechanism will be deployed to shorten the result list.

If no MCA is found in the provided peer group by service requestor, then a depth-first
search for MCAs proceeds in all child groups of the given peer group till some MCA is
found or till all its child groups are visited.

 FIGURE 4-2 PUBLISHING AND DISCOVER OF MOBILE WEB SERVICE [SRIR06]

 4 Implementation

 66

• Choosing from found MSAs

When the result list of MSAs are sent to service requestor, it should choose one from
them according to the provided key information such as name and description of Web
Services on the mobile screen. By scrolling up and down, the requestor chooses one
which interests her/him the most. Now the requestor needs further information about
how to invocate the Web Service. Therefore it sends a message to the service
provider expecting more detailed information.

• Invoking

Service provider received the request for invoking information of Web Services and
sends the requestor the necessary information such as link of WSDL file of Web
Services or application link. With the information service requestor could then invoke
the Web Service.

When considering how to present the implementation process, we decide on one side
to follow the sequence phrases which are just mentioned above, on the other side take
the participants into the discovery process as standpoints. In the following detailed
presentation about implementation discovery process, we would therefore generally
introduce the process into three sections, which are service provider (section 4.3),
service requestor (section 4.4) and JXME proxy (section 4.5).

4.3 Service provider Implementation

In this section we start to introduce the implementation from the viewpoint of Service
provider. JXTA/JXME is the network to enable P2P communication possible, therefore
a peer has to be a member of JXTA/JXME network, i.e., to install JXTA, do
configuration and log in the network in form of a shell before it intends to perform any
action in the communication process. Usually a service provider proceeds the
followings phrases starting from connecting to some super peer in JXTA :

• Connect to Super Peer

• join JXTA

• get Peer ID

• Publish category information by way of MCA

• Join respective Peer Group(s)

• Publish available Web Services in form of MCAs and MSAs

• Ready to handle request messages from mobile client

Service provider is any entity who possesses some Web Services and is ready to
share it with those who need it against cost or for free. To enable the requestor know
the existence of some Web Services, some kind of broker is needed, who functions to
bridge the supplier and consumer so that both parties are informed for further possible
information exchange. Who plays the role of broker is the critical benchmark for
discovery approach.

In Section 3.1 we have introduced four types of discovery approach form different
viewpoints: registry, search engine, dynamic and peer-to-peer. In the first three
viewpoints the role of broker is played mostly by a third party as provider and

 4 Implementation

 67

requester. Take one example of registry approach, UDDI, e.g. the single central
registry as well as the broker is UDDI index. An example of search engine, Google, e.g.
has the web server as broker. Although dynamic discovery approach makes progress
with the broker stub model, a central broker must still often be available.

The principal feature of P2P approach which differs itself from all the other three
viewpoints is that NO third-party broker has the necessity to exist in order to convey
data about available Web Services in the network. By multicasting or broadcasting
advertisements a service provider announces the availability of Web Services within
TTL (Time To Live) periodically. In our improved version of P2P discovery approach
with the introduction of categorizing mobile Web Services into hierarchical groups we
have the hypothesis that searching cost should be reduced and the discovery
mechanism should be more scalable. In order to support our hypothesis we will do
scalability test and performance analysis in Section 5.

We start to introduce the implementation from the very beginning of the hide-and-find
game. The narration begins with how to start JXTA platform, including how to start and
configurate a JXTA shell, followed by categorization implementation, the main focus of
this thesis. After that comes the publishing of advertisement of mobile Web Services.
In the end we will know how the shell command “category” is created so that every
peer could join the hierarchical group structure as soon as it joins the JXTA network.
To give a brief bird eye’s view, the process takes place in following stages:

4.3.1 To Start JXTA

4.3.1.1 To Start a JXTA shell

Before starting a JXTA shell, some elementary work has to be done. All the
advertisements published by the peer must be saved in local cache, the so-called
JXTA_HOME, which is nothing but a directory in the hard disk. JXTA_HOME could be

set in system configuration of operating systems or in the codes. By system
configuration the advertisements of all peers on the same computer has to be put in
the same directory. This is not what we want to see, since it could lead to wrong
discovery results if the advertisements lie in the directory of the peer, which they
should not belong to. For this reason we set the JXTA_HOME every time according to

our need before we start JXTA platform in codes. Conventionally, the newly created
advertisements as well a file called PlatFormConfig is saved in a directory

named .jxta. With the function System.setProperty() we set then .jxta the

directory as the home directory to store files created by the system.

Every time when a shell is newly started, files of advertisements are created and
saved in the above mentioned directory. Obsolete Advertisements could affect some
operations such as searching time in discovery process. It is therefore necessary to
keep the cache tidy before we start the JXTA platform. With function clearCache()

the cache, to be more exact, the files in .jxta/cm are cleared by deleting every

time before the JXTA platform starts.

To enable our application to be a peer and a member in JXTA network, we firstly
create a default peer group by calling the NetPeerGroupFactory()and

getInterface(). This group provides many useful services such as to discover

 4 Implementation

 68

and create new groups. To get some service from this group, e.g. discovery service,
just call the function NetPeerGroup.getDiscoveryService(). Generally, all

JXTA applications belong to this group by default.

4.3.1.2 To Configurate a JXTA shell

JXTA configurator is presented at the first time of application execution or when the
user wishes to reconfigurate the peer. Before starting the JXTA platform it needs to be
configurated by providing the following information:

1. Basic settings:

a name and password for the peer.

2. Advanced settings:
Service settings (relay, rendezvous, JXME proxy),
Connection information settings (protocol, IP Address, Port etc.)

3. Rendezvous/Relay settings

 FIGURE 4-3 JXTA CONFIGURATOR

In FIGURE 4-3 is a screen shot of JXTA configuration advanced setting. Detailed
screenshots about configurator settings could be found in Appendix D. The
configuration is needed either at the first time of application or is chosen to be done by
the user to change the settings for some new usage.

 4 Implementation

 69

One of the main focuses of this thesis is to improve efficiency of discovery service with
the introduction of a hierarchical peer group structure, which categorizes the mobile
Web Services in the JXME network. With the reference of some most popular industry
service categorization standard, we design a categorization structure of mobile Web

Services in FIGURE 3-7. However, we do not have the ambition to build up a complete
categorization hierarchy. The group structure which we build is a first draft to realize
the idea of categorization. It could be complemented and/or corrected by the mobile
Host who would publish some Web Services but find no satisfactory groups in our
categorization. In the next section we will introduce how the categorization of mobile
Web Services is implemented in JXTA platform.

4.3.2 Categorization implementation

Without categorization mobile Hosts declares the existence of a Web Service by just
publishing the relevant advertisements in the NetPeerGroup by default. To categorize
Web Services is actually to publish Web Services in respective groups. These groups
must be created at first before mobile Hosts do anything with them. In section 4.3.2.1
we will introduce how peer groups are created and in section 4.3.2.2 we will introduce
how to publish web services in chosen groups.

4.3.2.1 To Create Peer Group

The following information is necessary to create a new peer group: name, description,
and who its parent group is. Every group should have its name and short descriptions
about its scope according to JXTA protocols. Remember that the every newly created

group should be a member of the group structure in FIGURE 3-7, so we need to know
which group the newly created group belongs to. For this reason we need parent
group information to create a new group. By the same function createGroup()all

the groups, no matter on which level, could be created one by one.

We start with the top parent group in FIGURE 3-7: mobile We Service Group. It is the
first level of the hierarchy and all other groups belong to this group. Its parent group is
default peer group NetPeerGroup. We name the group mWSGroup and describe it by

“This is a mobile Web Service Group.” All the other groups are built in the

similar way by createGroup(). The details about the implementation of the whole

categorization structure are in section 4.3.3.

In createGroup() we call the function newGroup()of the parent group to get an

instance of netPeerGroup. Here peergroup implementation Advertisement is also

needed, we get it by calling getAllPurposePeerGroupImplAdvertisement().

After a new peer group is created with the instance of netPeerGroup and the
necessary parameters, it is then the time to declare its existence to the JXTA network.
The declaration is done through another type of dvertisement,
PeerGroupAdvertisement and we get it by calling

getPeerGroupAdvertisement() from the newly created group. Every JXTA

peer group has some ready available services, such as discovery service. One of the
functions of discovery service is publishing advertisements in the local cache so as to
enable other peers to find them or to other peers in the network. A newly created peer
group needs to announce its presence therefore discovery service is necessary. It is
called by getDiscoveryService().

 4 Implementation

 70

JXTA employ modules to provide information about services and applications
available in a peer group. Three types of modules are defined for peers to discover
modules: a Module Class Advertisement (MCA), a Module Specification
Advertisement (MSA), and a Module Implementation Advertisement (MIA).

An MCA exists only to announce the existence of a class of module. Here an MCA is
needed to announce the existence of a peer group. More detailed features about peer
group are saved in categoryPack from an XML document. And this categoryPack

is added to MCA to announce the existence of a class of module and introduce the
basic features of this peer group. To create an MCA for our newly created peer group,
we call newAdvertisement() from AdvertisementFactory by providing

ModuleClassAdvertisement.getAdvertisementType().Group name and

description are set to MCA. Besides, an unique ID is created by calling
newModuleClassID() from IDFactory for each MCA. This ID will play a key role in

later phrase of discovery. When the MCA is readily built, it is published to other peers
by remotepublish(mca) of discovery service of the peer group.

Till now, a new, self-defined group is built and has announced its presence in the
network. Every group in our categorization diagram is born in principle in this way.
Later in section 4.3.3 we will further present how the whole categorization structure is
implemented. Now we just suppose that the whole structure is already built up and it is
the time for mobile Hosts to publish their Web Services.

In this section we introduced how to create a new peer group and announce its
existence to other peers. When the groups are available, it is then possible for mobile
Host to publish Web Services they would provide. Section 4.3.2.2 gives an overview
of how Web Services publishing is implemented.

4.3.2.2 Web Service publishing implementation

Parameters needed to publish Web Service

Web Services, which is in form of WSDL file, will be published into JXTA network by
MCA and MSA. MCA declares the existence of the Web Service. And MSA provides
metadata of the Web Service. We need three kinds of variables before we start to
implement Web Service publishing required elements for MCA, required elements for
MSA and the peer group which the Web Services belong to. Required elements for
MCA include mcaName and mcaDescription , required elements for MSA include

msaName, msaDescription, msaVersion, msaCreator, msaURI, while

chosenGroupName, discoveryChosenGroup are about chosen peer group.

For example, we intend to put a Web Service about weather forecast in the group
mobile Web Service Group, i.e. mWSGroup, it could have “weather” as its

mcaName , “weather service” as its mcaDescription , “Weather Forecast

Database NOAA”as msaName, “Weather Forcast” as its msaDescription,

mWSGroup as its chosenGroupName.

 4 Implementation

 71

 FIGURE 4-4 SERVICE PROVIDER CLASS DIAGRAM

To Find or Construct MCA of Web Service

The first attempt to get a matching MCA for MSA of Web Services is to search in the
local cache of chosen peer group by the given MCA name. If there already exists MCA

with the given name, then we could get the MCA ID by getID()at once.If no MCA

with the expected name is found, then such an MCA should be created. After the MCA
is created, get an MCA ID by IDFactory.newModuleClassID().MCA ID is

needed to build MSA ID because MSA ID is built on the basis of MCA ID. One MCA
could have more than one corresponding MSA, while each MSA matches just one
MCA (see example in Appendix B-1).

To Construct MSA of Web Service

Now the elements are ready to create MSA associated with the Web Service. Just as
the creation of MCA we use AdvertisementFactory.newAdvertisement() to

get ModuleSpecAdvertisement at first. Then the information about MSA from the

variables such as msaName, msaDescription, msaVersion, msaCreator,

msaURI are set to ModuleSpecAdvertisement. With MCA ID a MSA ID is created

 4 Implementation

 72

by IDFactory. The description of Web Service is in a WSDL document. This file

could be found in a URL or a directory in the hard disk. We suppose that the Web
Services are in the hard disk and get a structured document from the WSDL document
And we set the WSDL document in MSA by setParam()(see example in Appendix

B-2).

To Attatch a pipe advertisement to MSA

A pipe advertisement indicates the location, instead of IP, of Mobile Host. A client
must use the same pipe advertisement to take to Mobile Host. The pipe advertisement
is also set to MSA. When a client finds the modules it needs, it will extract pipe
advertisement from MSA and contact mobile Host according to the location
information from pipe advertisement. Like other types of advertisements
PipeAdvertisement is also created by AdvertisementFactory. We need to get

peerID so as to set it as PipeID. The peerID actually indicates the location of

mobile Host and a client contacts a mobile Host by this unique ID for communication.
There are three types of message transfer: unicast, propagate, and secure unicast.

For communication between single peers we use UnicastType. After the needed

qualities are set to PipeAdvertisement, we write the advertisement in a XML file

and append the advertisement to the MSA which it belongs to (see example in
Appendix B-2).

 FIGURE 4-5 TO ATTATCH A PIPE AD TO MSA

Time to Publish MSA

Till now the required content of MSA is complete. It is the time to publish MSA. In order
to publish MSA in the chosen group we must use the discovery service of that group.
As usual, publish() and remotepublish() are used for local and remote

publishing.

In Section 4.3.2 we present single steps about how to create a new peer group so as
to build categorization structure and how to publish Web Services. The actual
deployment of this categorization mechanism is not done until the mobile Host user

 4 Implementation

 73

gives the command on the shell of JXTA peers. We name this command category .

In this section 4.3.3 we will introduce how the shell command category is

implemented and how the hierarchal structure of categorization is built up.

4.3.3 Shell command Implementation

JXTA project is designed to create tools that would have familiar look&feel to
developers. JXTA shell is such an interactive application that enables direct access to
the JXTA network in the same way the Unix shell provides direct access to operating
systems. Available commands include e.g. peers to discover peers, join to join

a peer group, search to discover jxta advertisements. The shell is extensible and new

command could be added with ease. Next we will present how our new self-defined
command is created and added to JXTA shell application.

 FIGURE 4-6 SHELL COMMAND CATEGORY SCREENSHOT

How to create a Shell command

It is required that a new command should extend ShellApp. ShellApp is a

framework for new commands that contains two methods: startApp()and

stopApp() . These two methods must be overridden when a new command is created.

When the users enters a command on the JXTA shell, startApp() is called.

Therefore the primary work of the new command should be contained in the
startApp() or called from startApp(). We name the new command for

categorization hierarchy catergory , and all the work of hierachical group creation is

contained in startApp(). When the work in the command is finished, stopApp ()

will be called to perform any necessary housekeeping.

 4 Implementation

 74

How to build the hierarchy

The top level of our hierarchy is mWSGroup, i.e., mobile Web Service group. On the

second level there are eleven groups: accomCaterGroup, artCultureGroup,
educationGroup, entertainmentGroup, FinanceInsuranceGroup,
healthGroup, informationGroup, profScienTecGroup, repairGroup,

rentLeaseGroup, searchGroup. They are all child groups of mWSGroup. On the

third level there are again thirty-three groups, which belong to different eleven groups
on the second level. On the fourth level we create twelve groups and they take some
of the thirty-three groups on the third level as their parent groups.

The service sphere of each group could be interpreted from the name of most groups.
A brief description of each sphere could be found in the categorization diagram in

FIGURE 3-7. profScienTecGroup, e.g. is about the professional scientific and

technical web services. And accomCaterGroup, is about accommodation and

catering web services. By way of Map tool TreeMap in java we could create all the

child groups with the same parent group with one TreeMap. The implementation of

TreeMap is based on red-black tree. The keys or the pairs are in sorted order if you

get the results presented.

4.4 JXME Mobile Client Implementation

4.4.1 JXME Client Application

There are two versions for JXME: proxy version and proxyless version. Till now no
stable proxyless version is available yet therefore we still use proxied version.

• Search WS by category

• Find the related Peer Group(s)

• Send request to Super Peer

• Deep research mechanism to improve discovery results at middleware framework

• Get the service description

• Invoke the service

4.4.2 Search in Group Request implementation

After the mobile user chooses the peer group, in which the Web Services it requires,
and a keyword for searching, The method searchInGroup() of JXME Class

peerNetwork is called (see FIGURE 4-7). The original version of searching in JXME

class has no group element, so we added this method with group element to suit our
need to search Web Services in some group of the categorization hierarchy. In this
method, a message consisting of seven elements is built up and is sent as a request
to the JXME proxy with which it is connected. These elements include information
about the type of request, request ID, the chosen group and the keyword from the
user.

 4 Implementation

 75

 FIGURE 4-7 JXME MIDLET CLASS DIAGRAM

When the JXTA peer who is acting as proxy for this JXME midlet receives incoming
messages, it processes them with the method processIncomingMessage(), This

method about how to process the message and how the Web Services are searched
will be covered in section 4.5 when we introduce JXME proxy implementation. Now
let’s talk about the searching result. With method poll()JXME MIDlet keeps

watching incoming message at a time interval. If the searching in JXME proxy is
successful it will send message back to inform JXME MIDlet of searching result about
Web Services. The message contains information about all the MSAs found by

 4 Implementation

 76

searching mechanism. From them the MSA names are picked out and printed out to
the screen of JXME MIDlet. The MSA names are listed one by one for mobile users to
choose. In section 4.3 we introduced that MSA name represents the name of Web
Services. Therefore based on the name of available Web Services the user could
choose the one which suits its need the best.

4.5 JXTA Proxy/Relay Implementation

The task of JXME Proxy is to listen to the request from JXME midlet and searches the
Web Services according to the criteria of mobile client. In JXTA platform the class
ProxyService fulfils the task to deal with messages. In this class with method
processIncomingMessage() JXME proxy processes the incoming messages by the

type of request and lets the respective method deal with the request. In this section we
will cover how the JXME proxy handles with request to search Web Services in
chosen peer group and the shadow and deep searching mechanism during the
discovery process.

4.5.1 Processing message

As introduced in section 4.4.2, we add a new type of request message
SearchInGroupRequest on the side of JXME midlet to satisfy our need of searching
message in Group. There is a type of search request message of JXTA platform, but it
can not serve our need to not only general search but search in some certain group of
the catergorization structure. When the SearchInGroupRequest message is sent by
the mobile client and arrived at JXME proxy, a matching method must also be written
to deal with this SearchInGroupRequest, since such a method does not exist in the

original JXTA platform. We write handleSearchInGroupRequest() to handle the
searchInGroupRequest.

The method handleSearchInGroupRequest()at first extract the elements needed for
searching the matching Web Services with the given value of Advertisement and
chosen group. In this method three subfunctions

searchGroup(),searchMCAinGroup(), searchMSAbyMCA() are called. Accordingly
the whole searching task is fulfilled in three phrased.

4.5.2 Searching Web Service in Group implementation

This section describes implementation about how to search Web Service in peer
group in three stages. At first the given peer group is to be found. After that the related
advertisements (MCA) are searched in the found peer group. Then it goes on with the
search for MSA(s) according to the information by the found MCA(s).

4.5.2.1 Searching peer group

In the first phrase the given group is searched. It starts with the comparison whether
the searched group is mWSGroup, i.e. the parent group of all the other groups. If the
answer is yes, then the search is ended and mWSGroup is returned. If the searched

group is a child group of mWSGroup, then the method searchGroupInGroup()is

 4 Implementation

 77

called in order to return the exact chosen peer group.

The search for the right group proceeds by depth-first search, i.e. child of a group is
visited earlier than the neighbour of this group on the same level.

 FIGURE 4-8 JXME PROXY CLASS DIAGRAM

4.5.2.2 Searching MCA(s) in peer group

In the second phrase Module Class Advertisement with the given value is to be
searched in the found peer group from the first phrase. What we are really searching
for is Module Spec Advertisements of the relevant Web Services since the description
WSDL document is appended to MSA. But in order to make the searching process
more efficient, we look for MCAs with the given value at first. Since each MCA relates
to one or more MSAs, if we find some MCA which satisfies the given value, it means at
once that we have found one or more MSAs with the given value. The advantage of
the searching mechanism by way of MCA instead of direct search of MSAs is the
simplified searching complexity of logarithms instead of linear cost. In a large P2P
network this simplification is very meaningful to improve the scalability of the whole
searching algorithm.

When no MCA meeting the prerequisites of mobile client is found, the search for MCA
will go further into all the child groups of the given group and will not halt until some
MCAs with the given value are found in some child group of given group or all the
leave groups of the categorization tree are visited. . This is realized by recursively

calling the method searchMCAinGroup()by depth-first search.

When some MCAs meeting the prerequisites of mobile client are found, they are

 4 Implementation

 78

returned and the searching process goes to the next phrase.

 FIGURE 4-9 SEARCHING WEB SERVICES IN PEER GROUP OVERVIEW

4.5.2.3 Searching MSA(s) by MCA

In the third phrase Module Spec Advertisement are searched through MCA ID. The
length of MCA is 49 digits. The MSA ID is created based on the corresponding MCA
ID by deleting the last two digits and adding some different digits. Therefore, to search
for MSA on the basis of its MCA we just need to delete the last two digits of MCA ID
and add a wildcard symbol.

• Shadow search implementation

In the searchMSAInGroup message from mobile client an upper limit of number of
MSAs to be sent back is set. Therefore the number of MSAs which will be finally sent
back should not be bigger than this number. If the number of found MSAs is under the
limit, the searching task is successfully finished and the found MSAs could be sent
back to mobile client. We call this search process shadow search.

• Deep search implementation

When the number of found MSAs is over the set limt, the number of found MSAs
should be further reduced by deep search mechanism of Lucene. The deep search is
implemented in the earlier phrase of our project, therefore we will just provide a rough
overview.

 4 Implementation

 79

All the found MSAs are pushed into a document container. Lucene can hold the
container in a storage device or in a random access memory RAM, An analyser for
general purpose Standard Analyser is used in this project. Two parameters are
needed to create a document. The first parameter the MSA ID and is got from Module
Spec Advertisement. The second parameter is the content of WSDL document about
Web Services which is appended to MSA in the element of param.

 FIGURE 4-10 SEARCHING WEB SERVICES IN PEER GROUP FLOWCHART

 4 Implementation

 80

4.6 Summary

From the points of view of participants in the publishing and discovery process, the
implemented is in detail presented. For Web Service provider, it should publish its
available Web Service into some chosen peer groups instead of into NetPeerGroup by
default. A mobile Web Service requestor needs to select a peer group in addition to a
keyword for searching. The JXME proxy peer process the incoming message of
searchInGroup then accordingly by shadow and deep search mechanism.

 5 Evaluation

 81

5 Evaluation

For network performance scalability is an acknowledged desirable feature. The more
heterogeneous a network is, the larger the scale of a network is, the more value and
impact scalability has on the network traffic and the more meaningful is scalability for a
network. In respect to P2P system, scalability is especially a most critical criterion for
performance evaluation. In this section we are going to do research on the definition of
scalability at first so as to properly denote the meaning of scalability on our project.
Then by studying and comparing with related research we will set up the methodology
of performance analysis for our projects. After that the result of experiments to test the
scalability will be reported in order to study the characteristic of our P2P based
discovery mechanism.

5.1 What is scalability?

Generally speaking, we say a system is scalable if it is able to accommodate an
increasing number of elements or objects and/or to process growing volume of work
gracefully. Gracefully here means with no dramatic overload. In other words,
scalability is an attribute that the enlargement of a system does not affect the
performance much compared to that of original system before enlargement.

Some defined scalability with two attributes: the ability to function well as it is changed
in size or volume in order to meet a user need and the ability not only to function well
in the rescaled situation, but to actually take full advantage of it [Scal04]. The second
attribute is actually a further idealized improved quality based on the first attribute.

To evaluate the scalability of a system many aspects of factors must be taken into
consideration. Different factors lead to different types of scalability to study. Scalability
is under some circumstances up to the type of data structures and algorithms for
implementation. The structures with extendable characteristics e.g. are entitled
inherently with the better scalability than those of fixed size. This type of scalability is
called structural scalability. Functions of a system are realized and influenced
positively or negatively with the existence of data structures on the cost both of space
and of time. From this aspect we could analyze the performance of a system by space
scalability and time scalability. Sometimes inherent wastefulness due to frequently
repeated actions of a system also lead to poor scalability The presence of access
algorithms may result in suboptimal scheduling of resources too. In this case a system
may runs well if the load is not heavy. Once the amount of load increases, its
performance deteriorates dramatically. Load is therefore another consequential
criterion for performance analysis and we call the system whose performance does
not suffer much from the increase of load with load scalability.

In Section 2.5.2, the related work of scalability test of JXTA protocol is reviewed and
JXTA discovery protocol is paid special attention. With those references it is time now
to set the goals (Section 5.2) and design the appropriate methodology (Section 5.3)
for the scalability test for the task in this thesis.

 5 Evaluation

 82

5.2 Goals of the Scalability Test of mobile Web Service
Discovery Mechanism

The goals of evaluation phrase of this thesis especially the scalability test are trying to
answer the following questions during the design and implementation phrase:

1. Is categorization discovery mechanism more efficient than non-categorization

discovery?

2. If yes, how efficient is categorization discovery mechanism compared with

non-categorization discovery?

3. Is discovery by implemented categorization mechanism scalable?
In order to answer the questions reasonably, a persuasive performance model for the
test is necessary. The model should take the most probable related factors into
consideration and include a detailed plan about single actions to proceed. To measure
the performance an appropriate benchmark suit is also inevitable. Therefore, in the
following research we have these goals:

• Develop a performance model and Benchmark Suite of non-categorization
Discovery Mechanism

• Develop a performance model and Benchmark Suite of categorization Discovery
Mechanism

• Conduct the tests according to the performance models and Benchmark Suite.

• Analyze the scalability of Discovery with categorization by comparing the results of
Discovery with categorization with those of non-categorization Discovery.

To accomplish the goals we proceed the test in two phrases:

• Establish the respective performance model and benchmark suite for JXTA/JXME
discovery mechanism with and without categorization.

• Interpret and analyze the performance results.

Section 5.3 contains details of the developments of performance model and
benchmark suite. And Section 5.4 covers the comparison, interpretation and analysis
of performance results.

 5 Evaluation

 83

5.3 Methodology for Scalability Performance

5.3.1 Performance Model

To evaluate the performance of a complicated system like JXTA/JXME, we need to
establish a model which covers all the relevant components. As introduced in Section
2.4.3, JXTA consists of six protocols. Among them discovery protocol interests us at
most. In addition, different types of peers: Edge Peer, Relay Peer, Rendezvous Peer
and JXME Proxy must be considered in our test. Because JXTA project is still under
development and no standardized performance metrics are available, we take the
above introduced projects as reference and conduct the experiment on the basis of
peer operations in the process of discovery. With reference to related research the
main metrics in our test are the startup benchmark for pre-discovery stage and
round-time trip benchmark for discovery stage.

� Startup benchmark in pre-discovery stage

The minimum time a user has to wait for the initial response from the JXTA platform
after starting an application is startup time. Startup time may be up to many factors.
Platform configuration, size and location of the advertisement cache, the number and
type of advertisement count as the primary factors. In addition, the peer configuration
of rendezvous and/or relay settings may also affect startup time because of possible
remote connections involved but this should not be counted as startup time, therefore
it is not counted in the startup time. To make sure that only the JXTA platform JVM
time is measured, the measurement of startup time should be inside a Java class.

We have presented in detail the implementation of discovery mechanism before. In
order to observe the effect of categorization on discovery process, it is reasonable to
also study the default discovery process of JXTA and compare this default discovery
without categorization with our categorized discovery mechanism. The study consists
of two stages: pre-discovery and discovery. Because the configurations of two
different discovery mechanisms are to a large extent different from each other, it is
reasonable to illustrate the respective happening by these two discovery mechanisms
in order to observe the difference. To measure the difference we use a startup
benchmark because it reflects the key time cost in pre-discovery stage.

The pre-discovery stage must be illustrated from the aspects of mobile WS requester,
and WS provider and/or broker. In the simplest scenario where JXME Proxy/Relay

peer acts also as WS provider, it has to conduct the actions in FIGURE 5-1 to enable
later discovery process possible:

• Start JXTA, Load platform classes, join default group of JXTA, i.e. Net Peer Group,
open socket listener as Proxy peer and clear up local cache.

• Publish WS, create and publish an MCA and MSA to announce the availability of
some WS.

• Ready for Request, Keep listener open to be ready to process incoming message
request for WS search.

 5 Evaluation

 84

Start JXTA

Load platform

classes

Join default group

Open listener

sockets

Clean-up cache etc

Publish WS

Search/create a

matching MCA for

WS

Create an MSA for

WS

Publish MCA

Publish MSA

Wait for Request

Keep socket listener

open

Ready to process

incoming message

for WS search

Start JXME

Load platform

classes

Connect with Proxy

Clean-up cache etc

Provide a Keyword

Provide a keyword

for WS search

Send search Request

Send search

message to JXME

proxy

JXME proxy/

WS Provider

Mobile WS

Requestor

 FIGURE 5-1 NON-CATEGORIZATION DISCOVERY MECHANISM OPERATIONS

Accordingly a WS requester conducts the following actions to search for a WS:

• Start JXME, load platform classes, connect with its Proxy and clear local cache

• Provide a keyword for WS search

• Send search request message to its Proxy peer.

In categorized discovery mechanism, one more act has to be taken both by WS
provider (in the simplest scenario) and mobile WS requester, that is, to publish
category information and to choose groups under categorization. For a WS provider it

will create all the groups for categorization designed in Section 3.2 (see FIGURE 3-7)
and then publish WS in one or more appropriate group(s). For a mobile WS requester
it has to choose a peer group in addition to a keyword for search request as shown in

FIGURE 5-2.

To create groups for categorization and publish categories of peer groups is a critical
peer operation. Therefore time cost to create and publish categories is to be measured
and compared with default startup time of a Proxy Peer. Startup timestamp becomes
then the Benchmark for pre-discovery stage.

� Round-trip time benchmark in discovery stage

Round-Trip Time (RTT) is the time it takes from sending a message by a sender to
receiving acknowledgement (ACK) responded by a receiver. It is an elementary metric
for a communication protocol. To receive ACK polling mechanism is used because
pipes are asynchronous and unreliable. A polling timeout is also set to prevent a peer
from waiting endlessly for an ACK which may be dropped on the way of message
transfer. One factor which may affect RTT is overhead to compose and process
message since JXTA protocols are in form of XML. Because of the TCP and HTTP
transports underlying the pipes some overhead may also occur during message
transmission.

 5 Evaluation

 85

By way of Message a mobile WS requester sends request for WS search and with the
same way a WS provider responds to the request. A JXTA message is a unit of data
transfer over the JXTA pipes. In discovery stage message Round-Trip Time is
therefore usually taken as an elementary metric to evaluate peer operations and
communication. In our test message RTT is measured on a mobile WS requester from
the moment to send search request to its Proxy and to the time point when a response
message is successfully received by polling messages within time interval.

Start JXTA

Load platform

classes

Join default group

Open listener

sockets

Clean-up cache etc

Publish Categories

Publish categories

of peer groups

Publish WS in Groups

Search/create a

matching MCA for

WS

Create an MSA for

WS

Publish MCA

Publish MSA

Wait for Request

Keep socket listener

open

Ready to process

incoming message

for WS search

Start JXME

Load platform

classes

Connect with Proxy

Clean-up cache etc

Choose Group

Select a PeerGroup

to search for WS

Send search Request

Send

searchWSInGroup

message to JXME

proxy

Provide a Keyword

Provide a keyword

for WS search

 FIGURE 5-2 CATEGORIZATION DISCOVERY MECHANISM OPERATIONS

5.3.2 Benchmark Suite

According to the proposal by JXTA Benchmarking project, our discovery test should
be conducted in these scenarios:

• one mobile Peer (JXME) and one Proxy/Relay Peer (JXTA)

• one mobile Peer (JXME) and one Proxy/Relay Peer (JXTA), the relay peer
connects to one RDV (JXTA)

• one mobile Peer (JXME) and one Relay Peer (JXTA), the relay peer connects to
more than one RDV (JXTA)

There are two versions for a JXME mobile peer to connect with JXTA peers:
proxy-based and proxyless. Although proxyless version may take less latency in
message transmission, no final stable version is available by the time of this research.
So we still deploy the proxy-based version and connect JXME mobile peer with a
JXTA peer who acts as JXME proxy. We are using the stable release JXTA 2.4.1.
According to this release, a JXME proxy should be simultaneously a relay peer. So in
the initial configuration, the JXTA peer which will play the role of JXME proxy should
be set as both JXME proxy and a relay Peer.

 5 Evaluation

 86

With the intention to compare discovery performance with and without categorization,
we design the discovery test with the following topologies:

1. A. Non-categorization Discovery through relay peer

 M<-> R

On a mobile peer M, it measures the time it takes to discover a MSA. All Web
Services are attached to advertisements and published into default group
NetPeerGroup during the startup time. These advertisements about web services
are saved in the local cache of the relay peer of mobile peer.

B. Categorization Discovery through relay peer

 CM<-> CR

On a categorized mobile peer CM, it measures the time it takes to discover a web
service under the groups structure of categorization. WS are published in groups
which are chosen by the service provider according to categorization criterion.
During the startup time of JXTA framework the categorization structure is build up.
Advertisements containing WS information are created and together with peer
group advertisements by categorization are saved in the local cache of the relay
peer.

2. A. Non-categorization Discovery with one relay peer and one RDV peer

M <-> R<-> RDV

On a mobile peer M, it measures the time it takes to find MSA(s) containing
requested WS on the local cache of RDV by way of Relay peer R.

B. Categorization Discovery with one relay peer and one RDV peer

CM<-> CR<-> CRDV

On a mobile peer CM, it measures the time it takes to find MSA(s) in the chosen
peer group on CRDV by way of CR. Both CR and CRDV are categorized.

3. A. Non-categorization Discovery with one relay peer and two RDV peers

M <-> R<-> RDV1<->RDV2

On a mobile peer M, it measures the time it takes to find MSA(s) on RDV2 by way
of R and RDV1.

B. Categorization Discovery with one relay peer and two RDV peers

CM<-> CR<-> CRDV1<-> CRDV2

 5 Evaluation

 87

On a categorized mobile peer CM, it measures the time it takes to find MSA(s) in
the chosen peer group on CRDV2 by way of CR and CRDV1. All three peers CR,
CRDV1 and CRDV2 are categorized.

4. A. Non- categorization Discovery with one relay peer and three RDV peers

M <-> R<-> RDV1<->RDV2<->RDV3

On a mobile peer M, it measures the time it takes to find MSA(s) on RDV3 by way
of R, RDV1 and RDV2.

B. Categorization Discovery with relay peer and three RDV peers

CM<-> CR<-> CRDV1<-> CRDV2<-> CRDV3

On a categorized mobile peer CM, it measures the time it takes to find MSA(s) in
the chosen peer group on CRDV3 by way of CR, CRDV1 and CRDV2. All four
peers CR, CRDV1, CRDV2 and CRDV3 are categorized.

 FIGURE 5-3 SCALABILITY TEST TOPOLOGIES

 5 Evaluation

 88

5.4 Performance Results and Analysis

This section presents the performance results drawn from the test. At first hardware,
software as well as network environment for testing are introduced. Then we will
present and analyze the performance in two sections: pre-discovery stage and
discovery stage. Startup latency of JXTA framework is the main benchmark in
pre-discovery stage. With the measurement we could have a clear mind about the
time cost of building up the categorization structure and the usual time cost to publish
WS in form of MSA. Discovery stage performance is of course our main focus in this
section and is reviewed in order of four types of topologies planned in our benchmark
suit. During the discussion, eye-catching phenomena observed from the tests in the
four topologies are picked out and analyzed with attention. Otherwise the similarity
and difference of the results from the different topologies are compared and discussed
with the intention to get some satisfactory answers to the questions in Section 5.3.

5.4.1 Testing Environment

The network environment is campus 100 Mbps LAN at RWTH Aachen, Germany. The
hardware environment consists of a Sony Ericsson P990i smart phone and a pool of
eight computers. The phone has a memory of 60 MB and 3G technology with data
transfer speed up to 384 kbps for Internet. The related configurations of the eight
peers are given in Table 5.1. Two of them (Jxta 04 and Jxta05), each of which has
2GM RAM, are configurated as RDV peers in some topologies, because more
powerful RAM often means better performance for applications and the efficiency is
very needed for RDV peers. JXTA-JXSE version 2.4.1 is used to execute the test.
Eclipse is the chosen developing framework and the JVM version is required to be
above 1.5.0 for Eclipse SDK 3.2.

Name IP Address CPU RAM OS Eclipse JVM

Jxta01 137.226.232.157 PentiumIV,3.2GHz 1GB Win XP Pro 2002 3.2 1.5.0

Jxta02 137.226.232.168 PentiumIV,3.2GHz 1GB Win XP Pro 2002 3.2 1.6.0

Jxta03 137.226.232.103 PentiumIV,3.2GHz 1GB Win XP Pro 2002 3.2 1.6.0
Jxta04 137.226.232.127 PentiumIV,3.2GHz 2GB Win XP Pro 2002 3.2 1.6.0
Jxta05 137.226.232.153 PentiumIV,3.2GHz 2GB Win XP Pro 2002 3.2 1.6.0
Jxta06 137.226.232.124 PentiumIV,3.2GHz 1GB Win XP Pro 2002 3.2 1.6.0
Jxta07 137.226.232.172 PentiumIV,3.2GHz 1GB Win XP Pro 2002 3.2 1.5.0
Jxta08 137.226.232.101 PentiumIV,3.2GHz 2GB Win XP Pro 2002 3.2 1.6.0

 Table 5-1 Configuration of JXTA test peers

According to our Benchmark Suite the eight computers in the pool are configured in
JXTA framework according to four different topologies on the basis of the number of

RDV peers (see FIGURE 5.5).

• Single Proxy/Relay Peer, i.e. no RDV peer is available.

• One RDV Peer R1 is available. The Proxy/Relay Peer, as well as all other six Edge
Peers, set the exclusive RDV Peer as their seed RDV peer.

 5 Evaluation

 89

• Two RDV Peers R1 and R2 are available. The Proxy/Relay Peer sets R1 as its
seed RDV, R1 sets R2 as its seed RDV. R1 and R2 each has a few Edge peers
connected to them.

• Three RDV Peers R1, R2 and R3 are available. The Proxy/Relay Peer sets R1 as
its seed RDV, R1 sets R2 as its seed RDV, R2 sets R3 as its seed RDV. R1, R2
and R3 each has a few Edge peers connected to them.

5.4.2 Pre-discovery stage Performance Results and analysis

According to performance model and benchmark suit we made, the purpose of
measuring startup time is to tell the time cost of building up categorization and
advertisements to propagate the availability of WS. Non-categorization and no
advertisements version takes the shortest time of 21,261 ms. Categorization but no
advertisements version takes 407,477 ms, i.e. to build up the peer group structures of
categorization alone takes around 386,116 ms. To publish 100 advertisements in
NetPeerGroup takes about 22,926 ms, while to publish 100 advertisements in chosen
peer groups takes about 39,272 ms.

 Non-categorization categorization

 No Ads published 21,361 407,477

100 Ads published 44,287 446,749

 Table 5-2 Startup latency (milliseconds)

The result of categorization latency is not a small number for our application. However,
categorization is conducted on the JXTA peers which intend to publish Web Services.
Since our main attention is the latency for a mobile peer to find a Web Service, the
categorization latency will not lead to a critical concern.

5.4.3 Discovery stage Performance Results and Analysis

Four sets of tests are conducted with four different configurations planned in the
Benchmark suite. The respective performance results are reviewed in each
configuration and compared with each other.

5.4.3.1 Single Peer Topology – Results and Analysis

In this simplest topology, no RDV peer is available. The single JXTA peer fulfils all the
tasks of building up categorization as well as creating advertisements and publishing
them, when needed. We start the discussion by comparing the discovery performance
of non-categorization and categorization mechanism to have a general view. Then we
analyze each performance separately.

 5 Evaluation

 90

Non-Categorization vs. Categorization Discovery

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100 120

Number of available MSAs

D
is
c
o
v
e
ry
 t
im
e
s
ta
m
p
 (
m
s
)

 (A) Without categorization (B) With categorization

 (A) Trend line (B) Trend line

 FIGURE 5-4 SINGLE PEER TOPOLOGY – COMPARISON

In the case of non-categorization discovery the test is comparatively easier to conduct.
Since the only variable is the number of MSAs to be published, what the single peer
needs to fulfil is to create and publish MSAs with number 10, 20… till 100. The
discovery latency is measured in each case of different number of MSAs in the local
cache of the single peer. In this way we get the points in (A) of Figure 5.4.

In categorization discovery the measurement is more complicated. Since four levels of
peer groups are built in the category hierarchy and with the concern that the discovery
latency may be rather diversified on different levels of category hierarchy, we think it is
necessary to measure the performance from each level of hierarchy. With number of
MSAs to be published as the variable, discovery latency is measured from groups of
each of the four levels. The point in (B) of Figure 5.4 is the mean of the four results
form four groups on different levels with the same number of MSAs. The measurement
on four levels of groups will be in detail presented next in Figure 5.6 . What we would
like to discuss now is the different trend line forms and complexity of
non-categorization and categorization discovery mechanisms.

With no doubt the results in (B) with categorization shows less latency than (A) without
categorization for a mobile peer to find a MSA. The first unanswered question in
section 5.2 has a positive answer in this topology. By comparing the mean of the
points in (A) and (B) we could see that the time cost is reduced by about 50% with
categorization.

What interest us further is the contrasting form of trend lines (A) and (B). Line (A)
shows a very mild but obvious linear trend while line (B) runs in a near logarithm
tendency. To have a better view of their respective form, we put them under loop as in
Figure 5.5 and Figure 5.6 and discuss them one by one next.

 5 Evaluation

 91

Non-Categorization Discovery

The goal of test in the single peer topology is to measure the time it takes for a mobile
WS requestor to find a WS in the default JXTA group, NetPeerGroup. As introduced in
Section 4.3.2.2, an available WS in form of WSDL file is attached to a Module
Specification Advertisement of a Peer which joins the JXTA Framework and published
to the NetPeerGroup by the Peer. In the Single Peer scenario, the single peer acts as
JXME Proxy and at the same time must be a Relay Peer according to the
configuration requirement of JXTA-JXSE version 2.4.1. In addition, it must take the
task of creating and publishing MSAs into NetPeerGroup serving to be searched later
by mobile WS requestor.

2400

2550

2700

2850

3000

0 20 40 60 80 100 120

Number of available MSAs

D
is
c
o
v
e
ry
 T
im
e
s
ta
m
p
 (
m
s
)

(A) Nr (matching MSAs) = 1
(B) Nr (matching MSAs) = 5
(A) Trendline
(B) Trendline

 FIGURE 5-5 SINGLE PEER – NON-CATEGORIZATION DISCOVERY

Every time before the single peer creates and publishes MSAs, local cache is cleaned
up so that no obsolete advertisement has any effect for the next round operation.
MSA(s) is published at the number of 1, 10, and 20 up to 100 with an interval of 10
pieces between 10 and 100. Besides the number of available MSAs, the number of
matching MSA(s) could also be a critical factor which affects the discovery time. With
this assumption we measure the variable by the number 1 and 5. The number of 1 is
taken since it is the least number of matching MSA for a successful discovery process.
And the number of 5 matching MSA is an assumed average matching number
regarding the total number of available MSAs of 100.

The points on FIGURE 5-5 shows the time it takes to find 1 and/or 5 matching MSAs

with 1 to 100 available MSAs. With the help of their respective polynomial function, we
could interpret the trend of discovery time cost in single peer without categorization
mechanism. Both lines show a growing trend of time cost with the growing number of
available MSAs.

 5 Evaluation

 92

Categorization Discovery

400

550

700

850

1000

1150

1300

1450

1600

1750

1900

0 10 20 30 40 50 60 70 80 90 100 110

Number of Available MSAs

D
is
c
o
v
e
ry
 T
im
e
s
ta
m
p
 (
m
s
)

 (1) 1st level Group Search (2) 2nd level Group Search
 (3) 3rd level Group Search (4) 4th level Group Search
 (1) Trend line (2) Trend line
 (3) Trend line (4) Trend line

 FIGURE 5-6: SINGLE PEER TOPOLOGY – CATEGORIZATION DISCOVERY

Discovery from the peer groups on different levels of categorization hierarchy shows
verified performance. The search mechanism according to our implementation starts
from the given peer group. The given peer group by mobile WS requestor has to be
found at first before the search for MSA starts. The search could have to be conducted
in several recursions if the given peer group is on the high level of the hierarchy. This
explains on some sense why the latency is high for line (3) and (4). If no MSA is found
in the given peer group, recursive depth-first search will be conducted in all the child
groups of given peer groups until some MSA is found or till all the leaf groups are
visited. This explains partially why the latency of line (1) is not as low as line (2). Line
(1) shows the discovery latency by searching WS from the first level of hierarchy, i.e.
mWSGroup. If no MSA is found in mWSGroup, then the search is conducted in the
worst case in all the child groups, i.e., all the other peer groups in the categorization
hierarchy.

5.4.3.2 Topology with One-RDV – Results and Analysis

In the one-RDV Topology, the JXME Proxy/Relay peer, as well as the other six edge
peers set the single RDV peer as seed RDV by configurator. The RDV peer publishes
MSAs in its local cache with the number between 10 and 100 with an interval of 10.
The time is measured with the different number of available MSAs on the mobile peer
to find matching MSA(s) from RDV. We start the discussion again with the comparison
of two discovery mechanisms and then concentrate on the performance of each
mechanism.

 5 Evaluation

 93

Non-Categorization vs. Categorization Discovery

From the trend lines (A) and (B) in FIGURE 5-7 we could see that the fluctuation of the
(A) is milder than that of single peer topology. Besides, the tendency of both
categorization and non-categorization remains similar. The performance results of
categorization discovery mechanism runs out a relative stable constant trend line.
The mean of (B) is 2941 ms, in comparison to 4655 ms of (A) and reduces the time
cost by about 37%. Therefore, in one-RDV topology categorization mechanism is still
more efficient than non-categorization mechanism.

2000

2500

3000

3500

4000

4500

5000

5500

0 10 20 30 40 50 60 70 80 90 100 110

Number of Available MSAs

D
is
c
o
v
e
ry
 T
im

e
s
ta
m
p
 (
m
s
)

 (A) non-categorization (B) categorization

 (A) Trend line (B) Trend line

 FIGURE 5-7 TOPOLOGY WITH ONE-RDV – COMPARISON

Non-categorization Discovery

In order to observe the developing tendency of discovery performance with a more
detailed view, we put the same results in a diagram with larger interval for timestamps

on y axis as in FIGURE 5-8. The points on Line (A) in FIGURE 5-8 and FIGURE 5-7

has exactly the same data resource. In FIGURE 5-8 we could read more clearly about

the trend that the time cost grows steadily with the growth of total available number of
MSAs on the RDV peer.

4500

4550

4600

4650

4700

0 20 40 60 80 100 120

Number of Available MSAs

D
is
c
o
v
e
ry
 T
im

e
s
ta
m
p
 (
m
s
)

 (A) Nr(matching MSAs) = 1 (B) Nr(matching MSAs) = 5

(A) Trend line (B) Trend line

 FIGURE 5-8 TOPOLOGY WITH ONE-RDV – NON-CATEGORIZATON DISCOVERY

 5 Evaluation

 94

Categorization Discovery

The main difference of discovery behaviour in 1-RDV topology from single peer
topology is that the principal function of remote discovery of advertisement instead of
solely searching advertisements in local cache. With the given peer group by mobile
WS requestor, the search is conducted only in this peer group instead of the
exhaustive searching behaviour in all its child groups no matter MSA is found or not. If
no matching MSA is found in the local peer group on the JXME proxy/relay peer, the
search runs then in the same peer group on the remote RDV peer. Therefore, the
recursive search for child peer groups and for advertisements in the groups is not
deployed in the test of 1-RDV topology. It explains why the discovery time in (3) and (4)

are much less fluctuated than those in FIGURE 5-6.

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

0 20 40 60 80 100 120

Number of Available MSAs

D
is
c
o
v
e
ry
 T
im
e
s
ta
m
p
 (
m
s
)

 (1) mean (2) 2nd level group search

 (3) 3rd level group search (4) 4th level group search

 (1) Trend line (2) Trend line

 (3) Trend line (4) Trend line

 FIGURE 5-9 TOPOLOGY WITH ONE-RDV –CATEGORIZATON DISCOVERY

5.4.3.3 Topology With Two-RDV and Three-RDV – Results and Analysis

By comparing the trend lines of discovery timestamp with categorization in topology

with 2-RDV (FIGURE 5-12) and in topology with 3-RDV (FIGURE 5-13), we could see
that the one or two more RDV on the route of discovery bring no dramatic effect to the
discovery time and trend. The results from 2-RDV and 3-RDV topology are very much
alike to 1-RDV topology. The non-categorization discovery approach keeps the
tendency of mild linear growth, while categorization discovery approach leads to
almost constant discovery time hardly affected by the growing number of available
MSAs in peer groups.

 5 Evaluation

 95

2000

2500

3000

3500

4000

4500

5000

5500

0 10 20 30 40 50 60 70 80 90 100 110

Number of available MSAs

D
is
c
o
v
e
ry
 T
im

e
s
ta
m
p

w ithout categorization w ith categorization

 (B) Trend line (A) Trend line

 FIGURE 5-10 TOPOLOGY WITH TWO-RDV – COMPARISON

2000

2500

3000

3500

4000

4500

5000

5500

0 10 20 30 40 50 60 70 80 90 100 110
Number of available MSAs

D
is
c
o
v
e
ry
 T
im

e
s
ta
m
p

 (A) w ithout categorization (B) w ith categorization

 (A) Trend line (B) Trend line

 FIGURE 5-11 TOPOLOGY WITH THREE-RDV – COMPARISON

5.4.3.4 Comparison between Difference Topologies

In order to achieve an overview of performance results in different scenarios, we
compare the mean discovery time to find Web Services in the cases of four topologies

where five matching MSAs are available as search result. The result in FIGURE 5-12
indicates that the use of categorization in discovery process obviously improved the
performance by 40% to 50% in average. With the addition of more RDV peers, the
discovery time of non-categorization version grows lightly, which could lead to
undesirable scalable property in large-scale network. In contrast the discovery time
with categorization mechanism does not grow much, if at all, with the addition of more
RDV peers. Although it is just a small-scale test result, we could still tell from different
trends of performance that discovery with categorization actually could improve the

 5 Evaluation

 96

performance in mobile Web Service discovery and with categorization the
performance is more scalable.

According to the trend analysis from the small-scale test it could be reasonably
assumed that the discovery mechanism with categorization will keep the property of
scalability even when the scale of the network grows up to some extent. The design of
discovery mechanism with categorization then could very probably bring scalable
performance even when under the situation of large-scale network.

0
1

2
3

0

1000

2000

3000

4000

5000

D
is
c
o
v
e
ry
 T
im

e
s
ta
m
p
 (
m
s
)

Number of RDV peers

(B) Categorization

(A) non-Categorization

 FIGURE 5-12 PERFORMANCE ANALYSIS OF ALL FOUR TOPOLOGIES

5.5 Summary

Scalability is a highly desirable property for network performance. By studying the
definition of scalability and related projects about scalability test of JXTA/JXME project,
we design a performance model and Benchmark suite for our test. The performance
result in different topologies indicate that discovery with categorization mechanism
could in fact improve the performance and is more scalable than non-categorization
mechanism.

 6 Conclusion and Future Work

 97

6 Conclusion and Future Work

The main outcome of this thesis is the p2p based mobile Web Service discovery
through categorization mechanism. This section summarizes the design,
implementation and evaluation of the P2P based mobile Web Service discovery
mechanism, reviews encountered issues and discusses perspectives for future
research of P2P based mobile Web Service provisioning and consumption.

6.1 Conclusion

Due to limited resource of mobile peers mobile applications usually follow the discover,
lease, deploy and discard model when they need some Web Service. To deploy
application is the purpose, but to discover applications which meet certain functional
criteria is the first and a very crucial stage of the whole process. Web Services
Discovery takes place in the first stage of the whole web services process and
discovery is the therefore prerequisite for a functional web service process and is the
key focus of our project research.

UDDI is normally used for Web Service discovery. But this mechanism on the basis of
central registry does not suit the flexible and dynamic behaviour of mobile peers. P2P
provides an alternative that does not rely on centralized registries; rather it allows Web
services to discover each other dynamically. The P2P based JXTA/JXME is chosen as
framework to implement mobile Web Service discovery mechanism.

On the basis of the past study of mobile Web Service discovery, this diploma thesis
intends to design and implement a more efficient discovery mechanism by borrowing
some good characteristics of UDDI such as categorization. With the reference of some
popular industry categorization standards we build up a categorization hierarchy. It
starts with the root group mobile Web Service Group and consists of peer groups of
further three levels hierarchically. The group structure which we build is a first draft to
realize the idea of categorization. Neither have we the ambition to build up a complete
categorization hierarchy nor do we intend to include all possible existing mobile Web
Services into this hierarchy because those are not our intension.

In JXTA/JXME Framework, this structure is initiated by a shell command “category”
self-defined and implemented by us. If the user wants to deploy the categorization
mechanism, all s/he needs to do is type the command on the JXTA shell. Web Service
provider could choose suitable peer groups to publish the advertisement about Web
Service in one or more peer groups. When a mobile Web Service requestor searches
for a Web Service, s/he could choose a suitable peer group in addition to keyword for
search. Categorization in form of peer groups in JXTA is supposed to reduce the
searching scope efficiently.

In order to test the scalability of the categorization mechanism, we take related
research as reference and make a practical performance model and benchmark suite
with limited resource available to us. Since the large scale test on multi-site distributed
tested is not realizable, we take eight peers in computer pool of the institute, which
could be configured for our need, as test sample and conduct the scalability test in
small scale. The results from the test denote that the categorization mechanism works
more efficiently than non-categorization mechanism. The time cost could be reduced
by 40 to 50 percent by deploying categorization mechanism for discovery. With

 6 Conclusion and Future Work

 98

different topologies of the configuration for the test peers we intend to know how the
growing number of RDV peer affects performance. With up to three RDV peers the
discovery performance shows similar developing trends and is not affected much. We
interpret the result as the property of being scalable for the categorization mechanism
in the initial small scale test. It could further be inferred that with high probability that
the scalable property of the designed mechanism in this thesis will be kept in even
larger scale network.

6.2 Future Work

The main focus of this thesis is to improve performance efficiency of in the stage of
mobile Web Service discovery. The goal is partially reached by borrowing the idea of
categorization from UDDI. It is planned in the projects to compare the performance of
UDDI approach and the P2P approach in which both have categorization paradigm.
However, invocation of the found Web Service is still to be implemented in order to do
the comparison between UDDI and the P2P approach realized in this thesis. The
function of CategoryPack, which contains categorization details according to widely
acknowledged industry standards, is not fully used in this thesis. It could be further
deployed in future research.

Since the test is based on a small scale sample of advertisements and peers, the
present searching mechanism is not much overburdened. But in large scale network
and large amount of advertisements the searching mechanism is not sufficient. The
performance could be improved by using advanced searching mechanism such as
advanced features of Lucene. In addition, the search mechanism could be extended
by context awareness. The search request from the client could be stored in a
middleware device. When a user makes a new request those stored information could
help improve the search results.

Proxyless version is preferred to proxy-based version in respect to mobile peer. With
the ongoing of JXTA-JXME project it is expected that the stable proxyless version is
developed soon. In JXTA-SOAP[JSOA07] project it is found that kXML should be
more appropriate to invocate Web Services for mobile peers with JXME.

 99

Appendix A. Category in UDDI

A-1 Simple Categorization

<businessEntity businessKey=”uddi:my_company.example”>
 …
 <categoryBag>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:unspsc”
 keyName=”UNSPSC:Medical Equipment and Accessories and Supplies”
 keyValue=”42.00.00.00.00”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:unspsc”
 keyName=”UNSPSC:Drugs and Pharmaceutical Products”
 keyValue=”51.00.00.00.00”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:iso3166”
 keyName=”GEO:Germany”
 keyValue=”DE”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:iso3166”
 keyName=”GEO:France”
 keyValue=”FR”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:iso3166”
 keyName=”GEO:United States”
 keyValue=”US”/>
 </categoryBag>
</businessEntity>

 100

A-2 Group Categorization

<businessEntity businessKey=”uddi:my_company.example”>
 …
 <categoryBag>
 <keyedReferenceGroup
 tModelKey=
 “uddi:uddi.org:ubr:categorizationgroup:unspsc_geo3166”>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:unspsc”
 keyName=”UNSPSC:Medical Equipment and Accessories and Supplies”
 keyValue=”42.00.00.00.00”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:iso3166”
 keyName=”GEO:Germany”
 keyValue=”DE”/>
 </keyedReferenceGroup>
 <keyedReferenceGroup
 tModelKey=
 “uddi:uddi.org:ubr:categorizationgroup:unspsc_geo3166”>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:unspsc”
 keyName=”UNSPSC:Medical Equipment and Accessories and Supplies”
 keyValue=”42.00.00.00.00”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:iso3166”
 keyName=”GEO:France”
 keyValue=”FR”/>
 </keyedReferenceGroup>
 <keyedReferenceGroup
 tModelKey=
 “uddi:uddi.org:ubr:categorization:unspsc_geo3166”>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:unspsc”
 keyName=”UNSPSC:Drugs and Pharmaceutical Products”
 keyValue=”51.00.00.00.00”/>
 <keyedReference
 tModelKey=”uddi:uddi.org:ubr:categorization:iso3166”
 keyName=”GEO:United States”
 keyValue=”US”/>
 </keyedReferenceGroup>
 …
 </categoryBag>
</businessEntity>

 101

Appendix B. Modules in JXTA

B-1 Declare existence of a Web Service by MCA

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jxta:MCA>
<jxta:MCA xmlns:jxta=”http://jxta.org”>
 <MCID>
 urn:jxta:uuid-E28CE82813DC49C8B53EE5B679FF900505
 </MCID>
 <Name>
 exchange
 </Name>
 <Desc>
 currency exchange service
 </Desc>
</jxta:MCA>

B-2 Describe features of a Web Service by MSA

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jxta:MSA>
<jxta:MSA xmlns:jxta=”http://jxta.org”>
 <MSID>
 urn:jxta:uuid-E28CE82813DC49C8B53EE5B679FF90054646F2ACD0A64D8E9A19A405B32
BD88506
 </MSID>
 <Name>
 currencyExchange
 </Name>
 <Desc>
 foreign currency exchange service
 </Desc>
 <Crtr>
 Hongyan Zhu
 </Crtr>
 <SURI>
 http://www.hongyanzhu.org
 </SURI>
 <Vers>
 WSDL Version 1.2
 </Vers>
 <jxta :PipeAdvertisement xmlns :jxta= »http ://jxta.org »>
 <Id>
 urn :jxta :uuid-59616261646162614A78746150325033639808603ECD42B5B3F3F1D8D
12BC49F03
 </Id>
 <Type>
 JxtaUnicast
 </Type>
 <Name>
 Hongyan Unicast Pipe Advertisement
 </Name>
 </jxta:PipeAdvertisement>
 <Parm>

<WSDL>
 …

 </WSDL>
 </Parm>
</jxta:MSA>

 102

Appendix C. Screenshots of mobile Web Service requestor

Screenshot C-1: setting connection Screenshot C-2: confirming connection

Screenshot C-3: root peer group - mWSGroup

 Screenshot C-1: setting connection

Provide protocol zu deploy

Provide IP Address of JXME proxy

Provide Port Number of JXME proxy

 Screenshot C-2: confirming connection

Connect with JXME proxy

Confirm connection after successful

connection

 Screenshot C-3: root peer group

Go to root peer group –

mWSGroup

Choose child group by goChild

command

 103

Screenshot C-4: selecting peer group Screenshot C-5: providing a keyword to search

 Screenshot C-4: selecting peer group

Select parent group by goParent

command

Select child group by goChild command

 Screenshot C-5: providing a keyword

Provide a keyword to search

Construct search criterion composed of

keyword and selected peer group

Send Search message to JXME proxy

by search command

 Screenshot C-6: getting search result(s)

Get one or more search results returned

from JXME proxy

Select a Web Service to deploy by choose

command

Screenshot C-6: getting search result(s)

 104

Appendix D. Screenshots of JXTA configurator

Screenshot D-1: Basic Settings Screenshot D-2: Advanced Settings

Screenshot D-3: RDV/Relay Settings

 Screenshot D-1: Basic Settings

Set peer name (compulsory)

Set password (compulsory)

 Screenshot D-2: Advanced Settings

Set services (selective)

Set address and port number for TCP if

needed

Set address and port number for HTTP

if needed

 Screenshot D-3: RDV/Relay Settings

Set RDV(s) (selective)

Set Relay(s) (selective)

 105

LIST OF REFERENCES

[ABGP01] R.AGRAWAL, R.BAYARDO, D.GRUHL, S.PAPADIMITRIOU: VINCI: A

SERVICE-ORIENTED ARCHITECTURE FOR RAPID DEVELOPMENT OF WEB

APPLICATIONS, IN PROCEEDINGS OF THE 10
TH
 INTERNATIONAL CONFERENCE ON

WORLD WIDE WEB (HONG KONG, HONG KONG, MAY 01 – 05, 2001), WWW ’01,
ACM PRESS, NEW YORK, NY, 355-365

[ACDJ06] G.ANTONIU, L.CUDENNEC, M.DUIGOU, M.JAN: PERFORMANCE SCALABILITY OF

THE JXTA P2P FRAMEWORK, PARALLEL AND DISTRIBUTED PROCESSING

SYMPOSIUM, 2007. IPDPS 2007. IEEE INTERNATIONAL

[APAC05] THE APACHE SOFTWARE FOUNDATION: AXIS PROJECT, AVAILABLE AT:
HTTP://WS.APACHE.ORG/AXIS/

[BACH00] P.BAILEY, N.CRASWELL AND D.HAWKING: DARK MATTER ON THE WEB. IN
POSTER PROCEEDINGS, 9

TH
 WORLD-WIDE WEB CONFERENCE, 2000

[BHMN04]

BOOTH, H.HAAS, F.MCCABE, E.NEWCOMER, W3C WORKING GROUP NOTE,
FEB. 2004, AVAILABLE AT:
HTTP://WWW.W3.ORG/TR/WS-ARCH/

[BMCM04]

BROSN, T.MAITRAT, A.COLHOUN, B. MACARDLE, AVAILABLE AT:
HTTP://NTRG.CS.TCD.IE/UNDERGRAD/4BA2.02-03/INTRO.HTML

[BPEL05] WHAT IS BPEL? AVAILABLE AT:

HTTP://SEARCHWEBSERVICES.TECHTARGET.COM/SDEFINITION/0,290660,SID26_
GCI845110,00.HTML

[CALS99] UPNP WHITEPAPER : UPNP,JINI AND SALUTATION – A LOOK AT SOME POPULAR

COORDINATION FRAMEWORKS FOR FUTURE NETWORKED DEVICES. AVAILABLE AT:
HTTP://WWW.CALSOFTLABS.COM/WHITEPAPERS/UPNP-DEVICES.HTML

[CCDD05] F. CAPPELLO, E. CARON, M. DAYDE, F. DESPREZ ET AL: GRID’5000: A LARGE

SCALE AND HIGHLY RECONFIGURABLE GRID EXPERIMENTAL TESTBED, GRID

COMPUTING WORKSHOP, 2005

[CZM05]

P. CONTRERAS, D. ZERVAS, F. MURTAGH: WEB SERVICES IN NATURAL

LANGUAGE: TOWARDS AN INTEGRATION OF WEB SERVICE AND SEMANTIC WEB

STANDARDS IN THE JXTA PEER TO PEER ENVIRONMENT, MAY 2005,
AVAILABLE AT:
HTTP://THAMES.CS.RHUL.AC.UK/~WSTALK/PAPERS/RHULPAPERS/ORCHESTRATIO

N.PDF

[CERA02]

E.CERAMI: WEB SERVICES ESSENTIALS. AVAILABLE AT :
HTTP://WWW.DEVELOPER.COM/SERVICES/ARTICLE.PHP/10928_1602051_1

[DEJO04] M. DE JODE: PROGRAMMING JAVA 2 MICRO EDITION ON SYMBIAN OS, A

DEVELOPER’S GUIDE TO MIDP 2.0, SYMBIAN PRESS, 2004

[DOYP02] D. M. DOOLIN, O. YEUNG, K.S. PABLA: JXTA P2P PLATFORM BENCHMARK PLAN.
AVAILABLE AT:
HTTPS://JXTA-BENCHMARKING.DEV.JAVA.NET/BENCHPLAN.HTML

[DUTR06] S. DUSTDAR, M. TREIBER: INTEGRATION OF TRANSIENT WEB SERVICES INTO A

VIRTUAL PEER-TO-PEER WEB SERVICE REGISTRY, DISTRIB PARALLEL

DATABASES, 2006

 106

[ELEN03] ELENIUS: SERVICE DISCOVERY IN PEER TO PEER NETWORKS, SEPT. 2003,
AVAILABLE AT:
HTTP://WWW.IDA.LIU.SE/~DAELE/EXJOBB/

[GRAD05] J. GRADECKI: MASTERING JXTA: BUILDING JXTA PEER-TO-PEER

APPLICATIONS, 2005

[GROS04] D. GROSS: BUY CELL – HOW MANY MOBILE PHONES DOES THE WORLD NEED?
AVAILABLE AT: HTTP://WWW.SLATE.COM/ID/2101625

[GKLS00] S. GRAUPNER, W. KIM, D. LENKOV, A. SAHAI: E-SPEARK – AN ENABLING

INFRASTRUCTUREFOR WEB-BASED E-SERVICES, HEWLETT-PACKARD

CORPORATION E-SPEAK OPERATION, 2000

[HADE03] E. HALEPOVIC, R. DETERS: THE COST OF USING JXTA, PROCEEDINGS OF THE

THIRD INTERNATIONAL CONFERENCE ON PEER-TO-PEER COMPUTING, 2003

[HAJA03] S. HAJAMOHIDEEN: A MODEL FOR WEB SERVICE AND INVOCATION IN JXTA, 2003
AVAILABE AT:
HTTP://WWW.TI5.TU-HARBURG.DE/PUBLICATION/2003/THESIS/HAJA03/HAJA03.P

DF

[HALL06] M. HALLING-BROWN: COMPUTATIONAL TECHNIQUES FOR THE PREDICTION

MINOR HISTOCOMPATABILITY AND T CELL ANTIGENS, AVAILABLE AT:
HTTP://IGRID-EXT.CRYST.BBK.AC.UK/WWW/PHD_THESIS.HTM

[HYAR04] E. HARJULA, M. YLIANTTILA, J. ALA-KURKKA, J. RIEKKI, PLUG-AND-PLAY

APPLICATION PLATFORM: TOWARDS MOBILE PEER-TO-PEER, OKT. 2004,
AVAILABLE AT:
HTTP://WWW.MEDIATEAM.OULU.FI/PUBLICATIONS/PDF/570.PDF

[JANU02] K. JANUSZEWSKI: THE IMPORTANCE OF METADA: REIFICATION,
CATEGORIZATION, AND UDDI, SEP. 2002, AVAILABLE AT:
HTTP://MSDN2.MICROSOFT.COM/EN-US/LIBRARY/MS953942.ASPX#IMPMETADATA

_TOPIC6

[JSOA07] JXTA-SOAP PROJECT, AVAILABLE AT
HTTPS://SOAP.DEV.JAVA.NET/

[JUWR99] M. B.JURIC, T.WELZER, T.ROZMAN, ET AL, “PERFORMANCE ASSESSMENT

FRAMEWORK FOR DISTRIBUTED OBJECT ARCHITECTURES,” ADVANCED IN

DATABASES AND INFORMATION SYSTEMS, VOL. 1691, PP. 349-366, 1999

[JXME05] JXTA-JXME PROJECT. AVAILABLE AT:
HTTPS://JXTA-JXME.DEV.JAVA.NET/

[JXTA02] K. WILSON: JXTA, 2004, NEW RIDER’S PUBLISHING, AVAILABLE AT
HTTP://WWW.BRENDONWILSON.COM/PROJECTS/JXTA-BOOK/

[JXTA04A] JXTA TECHNOLOGY: CREATING CONNECTED COMMUNITIES, 2004, AVAILABLE AT
HTTP://WWW.JXTA.ORG/DOCS/JXTA-EXEC-BRIEF.PDF

[JXTA04B] WHAT IS JXTA? AVAILABLE AT:
HTTP://SEARCHSOA.TECHTARGET.COM/SDEFINITION/0,,SID26_GCI778096,00.HT
ML

 107

[JXTA05]

JXTA V2.3X : JAVA PROGRAMMER’S GUIDE, APR. 2005, AVAILABLE AT

HTTP://WWW.JXTA.ORG/DOCS/JXTAPROGGUIDE_V2.3.PDF

[JXTA07]

JXTA V 2.5 PROGRAMMER’S GUIDE, SEPT, 2007, AVAILABLE AT
HTTP://WWW.LULU.COM/INCLUDES/DOWNLOAD.PHP?FCID=1197206&FMID=10

4608

[LAGI99] S.LAWRENCE AND C. L.GILES. ACCESSIBILITY OF INFORMATION ON THE WEB.

NATURE, 400: 107-109, JULY 1999

[LHDV03] C.LEE, A. HELAL, N.DESAI, V.VERMA ET AL: KONARK: A SYSTEM AND

PROTOCOLS FOR DEVICE INDEPENDENT, PEER-TO-PEER DISCOVERY AND

DELIVERY OF MOBILE SERVICES, IEEEE TRANSACTIONS ON SYSTEMS, MAN AND

CYBERNETICS, VOL. 33, NO. 6, NOV, 2003

[MAKR02] S.MARTI, V.KRISHNAN: CARMAN: A DYNAMIC SERVICE DISCOVERY

ARCHITECTURE, MOBILE AND MEDIA SYSTEMS LABORATORY, HP LAB PALO

ALTO, SEPT. 2002

[MID03] MIDLET BASICS, AVAILABLE AT:
HTTP://WWW6.SOFTWARE.IBM.COM/DEVELOPERWORKS/EDUCATION

[MANN04] R. MANNING: JXTA TECHNOLOGY FOR XML MESSAGING, OASIS SYMPOSIUM

NEW ORLEANS, LA, APRIL 2004

[OASI06] OASIS REFERENCE MODEL DEFINITION FOR SOA 1.0, AVAILABLE AT:
HTTP://WWW.OASIS-OPEN.ORG/COMMITTEES/DOWNLOAD.PHP/19679/SOA-RM-CS
.PDF

[ORT05] E.ORT: SERVICE-ORIENTED ARCHITECTURE AND WEB SERVICES: CONCEPTS,
TECHNOLOGIES, AND TOOLS, APRIL 2005, AVAILABLE AT:
HTTP://JAVA.SUN.COM/DEVELOPER/TECHNICALARTICLES/WEBSERVICES/SOA2/SO
A2.PDF

[RIOR06] L. RIORDAN: SERVICES REGISTRY, LAST EDITED ON DECEMBER 2006,
AVAILABLE AT:
HTTP://WWW.GOVDEX.GOV.AU/CONFLUENCE/DISPLAY/GOVDEXREFERENCE/SER

VICES+REGISTRY

[RYAN06]

M. RYAN: WHAT IS A SOA SERVICE? NOV 2006, AVAILABLE AT:
HTTP://WWW.DIGERATEUR.COM/ARTICLES/WHATISASERVICE.JSP

[SCAL04] WHAT IS SCALABILITY? 2004, AVAILABLE AT:
HTTP://WWW.WHATIS.COM/SCALABILITY.HTM

[SRJP06A] S. SRIRAMA, M. JARKE, W. PRINZ: MOBILE WEB SERVICE PROVISIONING,
INTERNATIONAL CONFERENCE ON INTERNET AND WEB APPLICATION AND

SERVICES (ICIW06), IEEE COMPUTER SOCIETY, FEB. 2006

[SRJP06B] S. SRIRAMA, M. JARKE, W. PRINZ: MOBILE HOST: A FEASIBILITY ANALYSIS OF

MOBILE WEB SERVICE PROVISIONING, 4
TH
 INTERNATIONAL WORKSHOP ON

UBIQUITOUS MOBILE INFORMATION AND COLLABORATION SYSTEMS, UMICS

2006

[SSJP06] S. SRIRAMA, M. JARKE, W. PRINZ: A MEDIATION FRAMEWORK FOR MOBILE WEB

SERVICE PROVISIONING, 10
TH
 IEEE INTERNATIONAL ENTERPRISE DISTRIBUTED

OBJECT COMPUTING CONFERENCE WORKSHOPS (EDOCW’06), 2006

 108

[SRIR04] S. SRIRAMA: CONCEPT, IMPLEMENTATION AND PERFORMANCE TESTING OF A

MOBILE WEB SERVICE PROVIDER FOR SMART PHONES, MASTER THESIS, JULY,
2004, RWTH AACHEN

[SRIR06] S. SRIRAMA: PUBLISHING AND DISCOVERY OF MOBILE WEB SERVICES IN

PEER-TO-PEER NETWORKS, INTERNATIONAL WORKSHOP ON MOBILE SERVICES

AND PERSONALIZED ENVIRONMENTS (MSPE’06), NOV. 2006

[TENH06] R. TEN-HOVE: WHAT IS ENTERPRISE SERVICE BUS? APR 2006, AVAILABLE AT:
HTTP://BLOGS.SUN.COM/RTENHOVE/ENTRY/WHAT_IS_ENTERPRISE_SERVICE_BUS

[TOPR06] A.TOPRAK: MOBILE WEB SERVICE DISCOVERY IN JXTA/JXME, MASTER THESIS,
DECEMBER 2006, RWTH AACHEN

[RIOR06] N,RIORDAN: SERVICES REGISTRY, LAST EDITED ON DECEMBER 2006,
AVAILABLE AT:
HTTP://WWW.GOVDEX.GOV.AU/CONFLUENCE/DISPLAY/GOVDEXREFERENCE/SERV

ICES+REGISTRY

[UDDI04] UDDI VERSION 3.0.2, OKT, 2004, AVAILABLE AT :
HTTP://UDDI.ORG/PUBS/UDDI-V3.0.2-20041019.HTM

[SOUR04] D. SOURCE: INTRODUCTION TO SOAP 1.1, MAY 2004, AVAILABLE AT:
HTTP://WWW.DEVELOPER.COM/SERVICES/ARTICLE.PHP/10928_1602051_1

[WALS02] L.WALSH: UDDI, SOAP, AND WSDL: THE WEB SERVICES SPECIFICATION

REFERENCE BOOK, PRENTICE HALL PROFESSIONAL TECHNICAL REFERENCE,
2002

[WEHR06] K. WEHRLE: “MASSIVELY DISTRIBUTED SYSTEMS I” LECTURE NOTES, IN RWTH

AACHEN, 2006

[WIKI07] WHAT IS PEER-TO-PEER? 2007, AVAILABLE AT:
HTTP://EN.WIKIPEDIA.ORG/WIKI/PEER-TO-PEER

[YUAG03] Y.YUAN, W. ARBAUGH: A SECURE SERVICE DISCOVERY PROTOCOL FOR

MANET, THE 14
TH
 IEEE INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR

AND MOBILE RADIO COMMUNICATION PROCEEDINGS, 2003

