MTAT.07.003 Cryptology II
Spring 2010 / Exercise session IIT / Example solution

Problem. Consider the following game, where an adversary A gets three val-
ues x1, x2 and x3. Two of them are sampled from the efficiently samplable
distribution Ay and one of them is sampled from the efficiently samplable dis-
tribution A;. The adversary wins the game if it correctly determines which
sample is taken from AX;. Find an upper bound to the success probability if
distributions Xy and X; are (t, ¢)-indistinguishable.

Solution. Any such problem can be split into three conceptual parts: formal-
isation of the attack scenario, game manipulation, and final probability compu-
tations. One possible formalisation of the attack scenario is given below
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[ 21 — A

To — Ay

x3 — X

m < Perm({1,2,3})

i — A(Tr(1), Tr(2), Tn(3))

| return [7(i) L 3]

The fourth line in the game models random shuffling of the values x1, x2, x3. If
we choose uniformly a permutation 7 over {1, 2, 3}, the elements Tr(1), Tr(2)> T (3)
are in a random order. Obviously, the guess of A is correct if and only if 7(i) = 3.

As a second step, we modify the game in the following way
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3 — X} NP 3 — X

7 < Perm({1,2,3}) 7w < Perm({1,2,3})

i = AlTr(1), Tr(2), Tr(3)) i = A1), Tr(2), Tr(3))
| return [7(7) < 3] | return [7(7) < 3]

Note that the games differ only in a single line: 3 is chosen either from Xj or
from X&) depending on the game. The latter allows us to use the entire game as



a distinguisher for Xy and X;. Namely, let us define a new adversary

B(x)

[ — Ap

x2 — Xp

T3 < T

m < Perm({1,2,3})

i — A(Tr1), Tr(2), Tn(3))

| return [7(i) L 3]

against the indistinguishability games

Q5 o
€T < XO €T < Xl
return B(x) return B(z)

By the (t, €)-indistinguishability assumptions
Adviy v (B)=|Pr[Qf =1] —Pr[Qf =1]| <e

for any t-time adversary B. Let us estimate the behaviour of our concrete
adversary by inserting its definition into the games Qy and Qi:
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x1 — Xo z1 — Xo

xy — Xo xy — Xo

T3 — T T3 — T

m < Perm({1,2,3}) m < Perm({1,2,3})

b= A(Tr(1), Tr(2), Tn(3)) = ATr(1), Tr(2)s Tr(3))
| return [7(7) L 3] | return (i) < 3]

By doing simple syntactic changes that do not alter the behaviour of games, we
can convert Qgs to g{l and Q'{s to g({l. Hence, we have established that

Prig =1] - Pr[gf = 1]| = [Pr[Q] =1] ~ Pr[6 =1]| <=

provided that the running-time of B is less than t. Let ¢4 be the running-time
of A and ts time needed to get a sample from X or &;. Then the running time
of B is 2ts +ta + O(1). Hence, for all t — 2ty — O(1) time adversaries

‘Pr[QS‘zl}—Pr[glﬂzlﬂga. (1)



By doing syntactic changes that do not alter the behaviour of the game, we can
rewrite the game G; even further

gi' s
(21 — &) (21 — &)
zy — Xp zo — X
r3 — X EE z3 — Xy
7 < Perm({1,2,3}) i — Az, x2,x3)
i~ ATr1), Tr(2), Tr(3)) 7 < Perm({1,2,3})
[ return x(5) £ 3  return [r(i) £ 3

Note that the behaviour of the game does not change since A gets the same
input distribution Xy x Xy x Xy in both games. As the output of A is fixed
before the permutation is chosen, we get

Pr[gg“:ﬂ:% . @)
By combing (1) and (2) we obtain

PrGf=1] <
provided that the running-time of A is t — 2t — O(1).

Comments. if distributions Xy and X; are (¢, ¢)-indistinguishable, it is always
possible to change the game by replacing a line z «+ Xy with a line x «— Aj.
The total time-complexity of the game sets limitations on the overall running
time of the adversary, as the corresponding distinguisher B must simulate the
game inside its code. By applying such rewriting rules long enough, we can
prove computational closeness of many complex games.



