
MTAT.07.003 Cryptology II
Spring 2010 / Exercise session III / Example solution

Problem. Consider the following game, where an adversary A gets three val-
ues x1, x2 and x3. Two of them are sampled from the efficiently samplable
distribution X0 and one of them is sampled from the efficiently samplable dis-
tribution X1. The adversary wins the game if it correctly determines which
sample is taken from X1. Find an upper bound to the success probability if
distributions X0 and X1 are (t, ε)-indistinguishable.

Solution. Any such problem can be split into three conceptual parts: formal-
isation of the attack scenario, game manipulation, and final probability compu-
tations. One possible formalisation of the attack scenario is given below

GA

0






















x1 ← X0

x2 ← X0

x3 ← X1

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

The fourth line in the game models random shuffling of the values x1, x2, x3. If
we choose uniformly a permutation π over {1, 2, 3}, the elements xπ(1), xπ(2), xπ(3)

are in a random order. Obviously, the guess of A is correct if and only if π(i) = 3.
As a second step, we modify the game in the following way

GA

0






















x1 ← X0

x2 ← X0

x3 ← X1

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

IND
===⇒

GA

1






















x1 ← X0

x2 ← X0

x3 ← X0

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

Note that the games differ only in a single line: x3 is chosen either from X0 or
from X1 depending on the game. The latter allows us to use the entire game as

1



a distinguisher for X0 and X1. Namely, let us define a new adversary

B(x)






















x1 ← X0

x2 ← X0

x3 ← x

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

against the indistinguishability games

QB

0
[

x← X0

return B(x)

QB

1
[

x← X1

return B(x)

By the (t, ε)-indistinguishability assumptions

Adv
ind

X0,X1
(B) =

∣

∣Pr
[

QB

0 = 1
]

− Pr
[

QB

1 = 1
]
∣

∣ ≤ ε

for any t-time adversary B. Let us estimate the behaviour of our concrete
adversary by inserting its definition into the games Q0 and Q1:

QB

0


























x← X0

x1 ← X0

x2 ← X0

x3 ← x

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

QB

1


























x← X1

x1 ← X0

x2 ← X0

x3 ← x

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

By doing simple syntactic changes that do not alter the behaviour of games, we
can convert QB

0 to GA
1 and QB

1 to GA
0 . Hence, we have established that

∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]∣

∣ =
∣

∣Pr
[

QB

1 = 1
]

− Pr
[

GB

0 = 1
]∣

∣ ≤ ε

provided that the running-time of B is less than t. Let tA be the running-time
of A and ts time needed to get a sample from X0 or X1. Then the running time
of B is 2ts + tA + O(1). Hence, for all t− 2ts −O(1) time adversaries

∣

∣Pr
[

GA

0 = 1
]

− Pr
[

GA

1 = 1
]
∣

∣ ≤ ε . (1)

2



By doing syntactic changes that do not alter the behaviour of the game, we can
rewrite the game G1 even further

GA

1






















x1 ← X0

x2 ← X0

x3 ← X0

π ←u Perm({1, 2, 3})

i← A(xπ(1), xπ(2), xπ(3))

return [π(i)
?
= 3]

Syntax
====⇒

GA

2






















x1 ← X0

x2 ← X0

x3 ← X0

i← A(x1, x2, x3)

π ←u Perm({1, 2, 3})

return [π(i)
?
= 3]

Note that the behaviour of the game does not change since A gets the same
input distribution X0 × X0 × X0 in both games. As the output of A is fixed
before the permutation is chosen, we get

Pr
[

GA

2 = 1
]

=
1

3
. (2)

By combing (1) and (2) we obtain

Pr
[

GA

0 = 1
]

≤
1

3
+ ε

provided that the running-time of A is t− 2ts −O(1).

Comments. if distributions X0 and X1 are (t, ε)-indistinguishable, it is always
possible to change the game by replacing a line x ← X0 with a line x ← X1.
The total time-complexity of the game sets limitations on the overall running
time of the adversary, as the corresponding distinguisher B must simulate the
game inside its code. By applying such rewriting rules long enough, we can
prove computational closeness of many complex games.

3


