MTAT.07.003 Cryptology II
Spring 2009 / Exercise session IV

PRP/PRF switching lemma
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1. Let A be the adversary that tries to distinguish a random permutation
f:{1,2,3} — {1,2,3} from a random function f : {1,2,3} — {1,2,3}
according to the adaptive deterministic querying strategy depicted above.
More formally, nodes represents adversaries queries. The adversary A
starts form the root node and moves to next nodes according to the an-
swers depicted as arc labels. The dashed line corresponds to the decision
border, where A stops querying and outputs his or her guess.

(a) Compute the following probabilities

Pr[f <« Fan : A reaches vertex u| |,

Pr[f < Fan : A reaches vertex u A —Collision] ,
Pr(f « Fan : —Collision] ,

Pr[f « Fan : A reaches vertex u|-Collision] |
Pr(f

— Form : A reaches vertex u]

for all nodes u in the decision border.

(b) Compute these probabilities for an arbitrary message space M under
the assumption that A makes exactly ¢ queries and conclude

Pr[A = 0|F. A —Collision] = Pr [A = 0| Fpm]

2. For the proof of the PRP/PRF switching lemma, consider the following
games. In the game Gy, the challenger first draws f « F,; and then
answers up to ¢ distinct queries. In the game G, the challenger draws
f « Fprm and then answers up to ¢ distinct queries. In both games, the
output is determined by the adversary A who submits its final verdict.

(a) Formalise both games as short programs, where G can make oracle



calls to A. For example, something like
Gyt
[ f < Fan
Yo — L
Forie {l,...,q} do
z; — A(yi-1)
If 2; = L then break the cycle
yi — f (@)
| return A

(b) Rewrite both games so that there are no references to the function f
but the behaviour does not change. Denote these games by Gs, Gs.

(c) Analyse what is the probability that execution in the games Go and
Gs starts to diverge. Conclude sd, (G2, G3) = Pr[Collision]

Hint: Note that following code fragment samples uniformly permutations

Sample f(z;)
Yi M
If y; € {y1,...,yi—1} then
[yi =M\ {y1,- -, ui}

What is the probability we ever reach the if branch?

. Let y1,...,y, be chosen uniformly and independently from the set M.
Let Distinct(k) denote the event that y1, ..., yx are distinct. Estimate the
value of Pr[Distinct(k)|Distinct(k — 1)] and this result to prove

Pr [Distinct (k)] < e~2(@=1/2IMD)
How one can use this result to prove the birthday bound

-1
Pr [Collision|q queries] > 0.316 - ala—1) .
M|
Hint: Note that 1 —x <e™*.
Hint: Note that 1 —e™® > (1 —e 1)z if 2 € [0, 1].

. A block cipher is commonly modelled as a (t, ¢, €)-pseudorandom permu-
tation family F. As such, it is perfect for encrypting a single block.

(a) The electronic codebook mode ECB uses a same permutation f « F
for all message blocks ECB;(ma||...[[my) = f(ma)|...||f(my) is
known to be insecure pseudorandom permutation. Find an algorithm
that can distinguish EcBf : M"™ — M" from a random permutation
over M". Is this weakness relevant in practise or not?



(b) Let M2 = {(ma,...,my) € M™ : m; # m;} denote the set of mes-
sages with distinct blocks. Show that EcBy : My — M7 is (¢, L, ¢)-
pseudorandom permutation family if F is (¢, ¢, £)-pseudorandom per-
mutation family.

(c) If addition is defined over M, random shifts ¢y, ..., ¢, < M can be
used to avoid equalities in the message @ = (m1 +c¢1,..., My + Cp).
Compute the probability Prle1,..., ¢, - M : ¢ MZ].

(d) The cipher-block chaining mode CBC uses the permutation f «— F
to link plaintext and ciphertexts: CBCy(m|l...||myn) = c1f ... |cn
where ¢; = f(m; @ ¢;—1) and ¢p is know as initialisation vector
(nonce). The CBC mode can be viewed as more efficient way to mod-
ify the message by setting shifts ¢; < f(m;_1). Again, compute the
probability Pr[co «- M, -+, ¢y — f(mp—1 + cpn—1) : T8 ¢ M?]. Con-
clude that CBCy is a secure pseudorandom permutation over M".

5. The IND-CPA security notion is also applicable for symmetric cryptosys-
tems. Namely, a symmetric cryptosystem (Gen, Enc, Dec) is (¢,e)-IND-
CPA secure, if for any t-time adversary A:

AdVind_Cpa(-A) _ |P1" [ggl — 1] — Pr [QA _ 1]| <e

where
Q' of
sk — Gen sk «— Gen
(mg,my) — A910) (mo, m1) — A1)
return A% (Encg(mo)) return A% (Encg(m1))

and the oracle O serves encryption calls.
Let f: M x K — M be a (t,e)-pseudorandom permutation. Then a
CTR-$ symmetric encryption scheme is defined as follows:

e A secret key is a randomly chosen k < K.

e To encrypt a message my,..., My, choose a random nonce sy < M
and output sg,m1 + f(so+ 1,k),...,m, + f(so +n, k).

e To decrypt sp,c1, ..., ¢, output ¢ — f(so+1,k),...,cn—f(so+n, k).
Prove that CTR-$ is IND-CPA secure cryptosystem.

6. Estimate computational distance between following games under the as-
sumption that (Gen, Enc, Dec) is (¢,¢)-IND-CPA secure cryptosystem.



(a) Left-or-right games

G'

[ sk < Gen
Fori=1,...,qdo
(mp, my) — A

Give Encg(m}) to A

| return the output of A

(b) Real-or-random games

G'
[ sk < Gen
Fori=1,...,qdo
mt— A
Give Encg(m?) to A
| return the output of A

Gi'

[ sk « Gen
Fori=1,...,qdo
(mp,my) — A

Give Encg(m}) to A

| return the output of A

Gi'

[ sk < Gen
Fori=1,...,qdo
mpy — A,mt o M

Give Encg(m}) to A

| return the output of A



