
A Connection between Indistinguishability and

Semantic Security

Sven Laur

University of Tartu

1 Formal Definitions

Intuitively, if objects are indistinguishable then we cannot determine their per-
sonal properties which vary among the population. Indeed, if we could reliably
determine wheter an object is green or not then we could easily distinguish green
objects from yellow ones. Hence, indistinguishability indirectly implies that one
can reliably detect only trivial properties that either hold or do not hold for
the entire population. This basic argumentation template forms the cornerstone
of contemporary cryptography. In the following, we fill out all details that are
needed to convert this informal argumentation to a formal proof.

Let S be a distribution of secret values s and let supp(S) be the correspond-
ing support. Then we can define indistinguishability of states supp(S) w.r.t. a
function f : S → X . We say that states from supp(S) are (t, ε)-indistinguishable

if for any s0, s1 ∈ supp(S) and for any t-time algorithm A:

Adv
ind

s0,s1
(A) = |Pr [x← f(s0) : A(x) = 1]− Pr [x← f(s1) : A(x) = 1]| ≤ ε .

To define semantic security, we have to formalise which properties of a hidden
state are plausible or relevant. Essentially, we can talk about semantic security
w.r.t. computable functions g : S → Y. Of course, for fixed input and output
domains S and Y all functions are computable and thus this restriction is only a
cosmetic addition that represents our intent. In some scenarios, there are obvious
restrictions to the function g. For instance, we might require that the output of
g must be computable during the next one hundred years.

Now note that for any function g there is a trivial predictor algorithm A∗

that outputs the most probable outcome of g over the distribution S and thus
the advantage of an algorithm A is defined as the difference

Pr [s← S, x← f(s) : A(x) = g(s)]− Pr [s← S, x← f(s) : A∗(x) = g(s)] .

More formally, we say that states supp(S) are (t, ε)-semantically secure w.r.t.
functions f and g if for any t-time adversary A the corresponding advantage

Adv
sem

f,g (A) = Pr [A(x) = g(s)]− max
y∗∈Y

Pr [s← S : g(s) = y∗] ≤ ε .

2 Indistinguishability Implies Semantic Security

The main aim of this section is to prove the classical theorem about semantic
security and introduce basic concepts of game-playing proofs.

Theorem 1. If states from supp(S) are (2t, ε)-indistinguishable w.r.t. the func-

tion f , then states supp(S) are also (t, ε)-semantically for all functions g, i.e.,

Adv
sem

f,g (A) ≤ ε for all t-time adversaries A.

Proof. In order to present the proof modularly in easily understandable steps,
we start from the basic semantic security game

GA













s← S

x← f(s)

y ← A(x)

return [y
?
= g(s)]

and then gradually rewrite the game until we obtain the desired bound on the
success probability

Pr
[

GA = 1
]

≤ Pr [GA∗ = 1] + ε .

Coin fixing. Note that g does not have to be a deterministic function. However,
if Adv

sem

f,g (A) > ε for some randomised function g : S ×Ω → Y, then there exists
a deterministic function g∗ such that Adv

sem

f,g∗
(A) > ε. Indeed, by definition

Adv
sem

f,g (A) = Pr
[

GA = 1
]

− Pr [GA∗ = 1]

=
∑

ω0∈Ω

Pr [ω ← Ω : ω = ω0] ·
(

Pr
[

GA

ω = 1
]

− Pr [GA∗

ω = 1]
)

≤ max
ω∈Ω

{

Pr
[

GA

ω = 1
]

− Pr [GA∗

ω = 1]
}

where the game Gω is defined as follows

GA

ω












s← S

x← f(s)

y ← A(x)

return [y
?
= g(s; ω)]

Since gω(·) = g(·; ω) is a deterministic function, we have obtained

Adv
sem

f,g (A) ≤ max
ω∈Ω

Adv
sem

f,gω
(A)

and without loss of generality we can assume that g is deterministic. This kind
of coin-fixing argument is common in many cryptographic proofs.

Sampling Idiom. As a next step, we will split the domain of S into a set of
disjoint sub-domains that cover the entire domain

Sy
.
= {s ∈ S : g(s) = y} .

Since g is deterministic the partition is indeed a well defined. Now a distribution
S naturally defines a distribution over indices y. Let Y0 be the distribution over
elements of Y such that for all y0 ∈ Y

Pr [y ← Y0 : y = y0] = Pr [s← S : s ∈ Sy0
] .

Secondly, let Sy denote also a conditional distribution that emerges if we restrict
the set of outputs to the domain Sy, that is, for all s0 ∈ S and y ∈ Y:

Pr [s← Sy : s = s0] = Pr [s← S : s = s0|g(s) = y] .

Then the sampling procedure s← S can be rewritten in two steps

GA

∗
















y ← Y0

s← Sy

x← f(s)

y ← A(x)

return [y
?
= g(s)]

so that the success probability does not change for any adversary A. Indeed

Pr
[

GA = 1
]

=
∑

y∈Y

Pr [s← S : g(s) = y0] Pr
[

GA = 1|g(s) = y0

]

=
∑

y∈Y

Pr [y ← Y0 : y = y0] Pr
[

GA

y0
= 1

]

where the game Gy0
is defined as follows

GA

y0













s← Sy0

x← f(s)

y ← A(x)

return [y
?
= g(s)]

To be punctual, one has to use the total probability formula and the definition
of conditional probabilities to formally prove

Pr
[

GA = 1|g(s) = y0

]

≡ Pr
[

GA

y0
= 1

]

but this is a trivial exercise that is left to the reader.

Choosing between several simple hypothesis. Already a superficial in-
spection of the game G∗ reveals that an adversary A must choose between mul-

tiple simple hypotheses Hy0
= [y

?
= y0]. As a next step, we can express

Pr
[

GA

∗ = 1
]

= Pr [y ← Y0 : y = y1] Pr
[

GA

y1
= 1

]

+
∑

y0∈Y\y1

Pr [y ← Y0 : y = y0] Pr
[

GA

y0
= 1

]

where y1 is the most probable index element. Now note that

Pr [y1] Pr
[

GA

y1
= 1

]

= Pr [y1]− Pr [y1] ·
∑

y0∈Y\y1

Pr [s← Sy1
: A(f(s)) = y0]

≤ Pr [y1]−
∑

y0∈Y\y1

Pr [y0] Pr [s← Sy1
: A(f(s)) = y0]

since Pr [y0] ≤ Pr [y1] by the choice of y1. Consequently,

Pr
[

GA

∗ = 1
]

≤ Pr [y1] +
∑

y0∈Y\y1

Pr [y0]

∣

∣

∣

∣

∣

Pr

[

s← Sy0
:

A(·) = y0

]

− Pr

[

s← Sy1
:

A(·) = y0

]
∣

∣

∣

∣

∣

≤ Pr [y1] + max
y0∈Y

∣

∣

∣

∣

∣

Pr

[

s← Sy0
:

A(·) = y0

]

− Pr

[

s← Sy1
:

A(·) = y0

]∣

∣

∣

∣

∣

.

From complex hypotheses to simple hypotheses. Note that in terms of S
the last term in the upper bound obtained above is very close to a computational
distance between complex hypotheses [s← Sy0

] and [s← Sy1
].

In fact, if we know the maximising value y0, then we can convert a t-time
algorithm A that maximises the term into 2t-time distinguisher B : X → {0, 1}.

As y0 can be at most t-bits long, we can test [A(f(s))
?
= y0] in t-time and

consequently we can build 2t-time algorithm B such that

p0

.
= Pr [s← Sy0

: B(f(s)) = 1] = Pr [s← Sy0
: A(f(s)) = y0] ,

p1

.
= Pr [s← Sy1

: B(f(s)) = 1] = Pr [s← Sy1
: A(f(s)) = y0] .

Since

p0 =
∑

s0∈Sy0

s1∈Sy1

Pr [s← Sy0
: s = s0] Pr [s← Sy1

: s = s1] Pr [B(f(s0)) = 1]

p1 =
∑

s0∈Sy0

s1∈Sy1

Pr [s← Sy0
: s = s0] Pr [s← Sy1

: s = s1] Pr [B(f(s1)) = 1]

we can estimate

|p0 − p1| =

∣

∣

∣

∣

∣

∑

s0∈Sy0

s1∈Sy1

Pr [s0] Pr [s1] (Pr [B(f(s0)) = 1]− Pr [B(f(s1)) = 1])

∣

∣

∣

∣

∣

≤
∑

s0∈Sy0

s1∈Sy1

Pr [s0] Pr [s1] |Pr [B(f(s0)) = 1]− Pr [B(f(s1)) = 1]|

≤ max
s0∈Sy0

s1∈Sy1

|Pr [B(f(s0)) = 1]− Pr [B(f(s1)) = 1]|

≤ max
s0,s1∈S

cd
2t
x ([s

?
= s0], [s

?
= s1]) ≤ ε .

The final step. To summarise, we have obtained

Pr
[

GA = 1
]

= Pr
[

GA

∗ = 1
]

≤ max
y0∈Y

Pr [y ← Y0 : y = y0] + ε

≤ max
y0∈Y

Pr [s← S : g(s) = y0] + ε .

⊓⊔

3 Final Remarks

Note that the proof given above is strictly non-constructive and does not show
how to convert a good predictor of g-values into a good distinguisher of hidden
states s0, s1 ∈ S. Non-constructivity of the proof is simultaneously the main
strength and weakness of this approach. Theorem 1 is extremely powerful as a
mathematical claim, since it assumes nothing from the sample distribution S
and holds for all functions g. As a result, non-constructivity is essential in the
proof, since we cannot assume that elements of S can be efficiently sampled
neither we can assume that the function g is efficiently computable.

To be precise, non-constructivity enters into the proof in three places. First,
we fix random coins ω so that g(·, ω) behaves better than g(·). Second, we fix a
most probable output y1 and sub-distributions Sy for y ∈ Y. Third, we use two
proof steps for finding an output y0 ∈ Y and two states s0 ∈ Sy0

, s1 ∈ Sy1
that

maximises the difference |Pr [A(f(s0)) = y0]− Pr [A(f(s1)) = y0]| .
For a fixed distribution S and a fixed function g(·), the complexity of these

non-constructive steps is irrelevant. For a hypothetical t-time algorithm A that
achieves Adv

sem

f,g (A) > ε, there exist states s0, s1 ∈ S and a corresponding 2t-time

algorithm B such that Adv
ind

s0,s1
(B) ≥ ε and consequently the existence of such a

t-time algorithm A directly contradicts the security premise.
However, the efficiency is important if the distribution S is not fixed before-

hand and a contradiction triple (B, s0, s1) must be discovered on the fly. For
instance, Theorem 1 does not cover semantic security of ciphertexts in the set-
tings, where an adversary can influence which messages are encrypted. The latter

is not so far-fetched assumption. For instance, communication in a war is mostly
about the adversarial behaviour and thus clearly controllable by adversary.

To prove security in such settings, we have to weaken the claim so that the
construction in the proof would become efficiently constructable. In particular,
the distribution S must be efficiently samplable and g efficiently computable.
Then we can convert the original non-constructive proof into a constructive
reduction. The details of this approach are thoroughly discussed in [BDJR97].

References

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. Available from http://www-
cse.ucsd.edu/users/mihir/papers/sym-enc.html, 1997. Full version of the
FOCS publication.

