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Spring 2010 / Exercise Session IX

1. Consider a following message transmission protocol. A sender P1 knows
the public encryption key pk2 of a receiver P2 and the receiver P2 knows
the public signing key pk1 of the sender P1. To encrypt a message m the
sender sk computes c ← Encpk2

(m), s ← Signsk1
(c) and sends (c, s) over

unreliable channel to P2. The receiver P2 first checks the authenticity by
computing Verpk1

(c, s) and then decrypts the message m← Decsk2
(c).

(a) What are properties of the encryption and the signing scheme are
needed to guarantee secure message transmission? Compute the cor-
responding security guarantees.

(b) Show that the message transmission protocol may become insecure
if P1 uses the signing key sk1 also for some other purposes. Give an
explicit attack description under the assumption that the secret key
sk2 can be extracted using chosen message attacks.

(c) Show that the message transmission protocol can become insecure if
P2 uses sk2 to decrypt messages of several senders.

(d) Interpret the results. In which contexts, the this message transmis-
sion protocol is useful? When is the traditional construction based
on symmetric encryption and authentication primitives better?

(⋆) Give a construction of secure message transmission protocol that is
still based on signing and asymmetric encryption primitives but is
significantly more secure against malicious behaviour.

2. Construct an identification scheme that is based on a signature scheme.
Prove that the corresponding identification scheme is secure in the most
powerful setting, where the adversary can run several identification pro-
tocols concurrently in order to impersonate true signer.

3. Digital signatures are often used in various electronic transaction systems.
In the simplest setting, sellers issue a bills for goods that must be signed
by a bank before the transaction becomes valid. However, such a setting
violates the privacy of buyers as the bank will always know what its clients
have bought. The latter is the main motivation for blind-signatures as they
allow to hide messages from the signer. More precisely, consider an blind
signature scheme, which is based on full domain hash and RSA.

• A public key is RSA modulus n and a exponent e. The corresponding
private exponent d such that ed = 1 mod φ(n) is the secret key.

• To sign a message m, the signer must compute s = h(m)d mod n.

• A signature (m, s) is valid if h(m) = se mod n.

• To get a blind signature, a client must compute h(m) and then choose
r ←

u
Z
∗
n and sent m = h(m)re mod n to the signer. When the signer

replies s = md mod n, the client computes s = sr−1 mod n.
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(a) Show that the signature obtained in the blind signing protocol is
valid and the signer learns nothing about the message, i.e., we can
simulate m without seeing m.

(b) Show that the blind signature scheme can be less secure than the
underlying RSA signature scheme by providing an explicit attack
that works against blind signatures and not for the RSA signature.

(c) Construct a protocol for selling goods over the internet that preserves
the privacy of buyers, assures that no client can spend more money
than he or she owns and guarantees that sellers get their money.

(d) Is it possible to design a protocol where buyers can anonymously
revoke transactions when sellers cheat.

(⋆) Prove that security of a signature scheme can be never proved through
a reduction that shows how to extract secret key from an adversary who
is successful in deception. More precisely, show that if such a reduction
exists then there exists also an attack strategy that extracts a secret key
using few signing queries. Why this impossibility result does not conflict
with the security proofs in the random oracle model?

4. Let G = 〈g〉 be a (t, ε1)-secure q-element discrete logarithm group. Then
the Schnorr signature scheme is defined as follows.

• A secret key x←
u

Zq and the corresponding public key y ← gx.

• To sign a message m, generate r ←
u

Zq, compute α← gr, β ← h(m, α)
and then compute the reply γ of the Schnorr identification protocol.
The resulting signature is a triple s = (α, β, γ).

• A pair (m, s) is a valid signature if h(m, α) = β and gγ = yβα.

Prove that if h is replaced with a random oracle Oh(·), then the Schnorr
signature scheme is (c · tε1,

ε1

2
)-secure against existential forgeries in the

key only attack model for an appropriate constant c provided that the
adversary makes only single call to Oh(·) and that the adversary always
controls the validity of the proposed signature.

(a) Show that an that if an adversary A succeeds with probability ε,
there exists an adversary B that succeeds with probability ε in the
Schnorr identification protocol and has same time complexity.

(b) Use the theorem about matrix games to estimate the average running-
time of a knowledge extractor for the Schnorr protocol and use Markov
inequality to find success probability for a strict time bound.

(c) Note that the previous result holds only for the values of public keys
y such that the success probability is large enough. Show that if the
average success probability Advent-auth(B) > ε then the probability of
getting a bad key y such that εy < ε

2
is low.
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5. Construct a generic signature scheme from the Fiat-Shamir identification
protocol. Recall that the Fiat-Shamir protocol works as follows.

• A secret key s←
u

Z∗
n and the public key v ← s2 mod n.

• To authenticate, the prover generates r ←
u

Z∗
n and sends α ← r2

mod n to the verifier. The verifier sends β ←
u
{0, 1} to the prover who

replies γ ← rsb mod n. The prover succeeds if γ2 = αvb mod n.

6. Any instantiation of the full domain hash signature scheme defines implic-
itly a bundle H ⋊⋉ Ftp of function families H and Ftp. Namely, the signa-
ture scheme is determined by a tuple of algorithms (Gen, Map, Inv, Hash),
where (Gen, Map, Inv) determines the collection of trapdoor permutations
Ftp and functions Invsk :Mpk → S and Hashpk :M→ Tpk have matching
input and output domains Tpk ⊆Mpk for every (pk, sk)← Gen. The corre-
sponding bundle H ⋊⋉ Ftp of function families H and Ftp is (t, ε)-claw-free
if for any t-time adversary A the following advantage

Advc-free
Ftp⋊⋉H(A) = Pr

[

GA = 1
]

≤ ε

where

GA







(pk, sk)← Gen

(m, s)← A(pk)

return [Hashpk(m)
?
= Mappk(s)]

Prove the following facts about the full domain hash signature scheme.

(a) The signature scheme is (t, ε)-secure against existential forgeries in
the model, where the adversary cannot access the signing oracle, if
the bundle H ⋊⋉ Ftp is (t, ε)-claw-free.

(b) Generalise the notion of claw-free bundles so that (t, ε)-security is
sufficient for the standard attack model.

7. Consider a full domain hash signature as in the previous exercise. Assume
that the hash function family H is strongly ε1-regular, i.e., for every key
pair (pk, sk)← Gen and the output distribution of Hashpk(m) where m←

u

M and uniform distribution over Mpk are ε1-close. Now consider the
security against universal forgeries

Adv
u-forge
H⋊⋉Ftp

(A) = Pr
[

GA = 1
]

where

GA











(pk, sk)← Gen

m←
u
M

s← A(m, pk)

return Verpk(m, s)
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and prove that (t, ε)-security of trapdoor collection Ftp is sufficient for
security. Generalise the notion of one-wayness so that it is also sufficient
against chosen message attacks.
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