
Computational Indistinguishability

Sven Laur
swen@math.ut.ee

University of Tartu

Indistinguishability

A quick recap of hypothesis testing

s

s← S0

x← f(s)

Given x and
– description of S0

– description of f(·)

Charlie has to accept or reject

– a hypothesis H

There are several types of hypotheses:

⊲ simple hypotheses H = [s
?
= s0]

⊲ complex hypotheses H = [s
?
= s0 ∨ s

?
= s1 ∨ . . . ∨ s

?
= sk]

⊲ trivial hypotheses that always hold or never hold.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 1

Computational distance

To choose between hypotheses H0 = [s
?
= s0] and H1 = [s

?
= s1], we have

to distinguish two output distributions X0 = f(s0) and X1 = f(s1).

These distributions are (t, ε)-indistinguishable if for all t-time algorithms A:

Advind
X0,X1

(A) = |Pr [x← X0 : A(x) = 0]− Pr [x← X1 : A(x) = 0]| ≤ ε

In other terms, the distributions X0 and X1 are (t, ε)-indistinguishable if

cdt
x(H0,H1) ≤ ε .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 2

Basic properties of computational distance

⊲ Triangle inequality. For all simple hypotheses H0, H1, H2:

cdt
x(H0,H2) ≤ cdt

x(H0,H1) + cdt
x(H1,H2) .

⊲ Symmetry. For any two simple hypothesis H0 and H1:

cdt
x(H0,H1) = cdt

x(H1,H0) .

⊲ Positively definiteness. For any reasonably large time bound t:

cdt
x(H0,H1) = 0 ⇔ sdx(H0,H1) = 0 ⇔ H0 ≡ H1 .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 3

Interactive hypothesis testing

s

s← S0

x1

y1

· · ·
xn

Charlie has to accept or reject

– a hypothesis H

based on interaction pattern

⋆ = (x1, y1, . . . , yn−1, xn).

We use analogous notation for computational and statistical distance:

cdt
⋆(H0,H1) = max

A is t-time
|Pr [A(⋆) = 0|H0]− Pr [A(⋆) = 0|H1]| ,

sd⋆(H0,H1) = max
A

|Pr [A(⋆) = 0|H0]− Pr [A(⋆) = 0|H1]| .

These measures also satisfy triangle inequality and other distance axioms.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 4

Examples

Pseudorandom functions

Let Fall denote the set of all functions f :M→ C and let F ⊆ Fall be a
function family. Then we can consider the following interactive hypothesis
testing scenario. A t-time adversary A that makes at most q calls to the
oracle O(·) in order to distinguish two worlds (hypotheses):

⊲ H0 : Oracle chooses f ←u Fall and for every query xi replies yi ← f(xi).

⊲ H1 : Oracle chooses f ←u F and for every query xi replies yi ← f(xi).

We say that F is (t, q, ε)-pseudorandom function family if for any t-time
adversary A that makes at most q queries the corresponding advantage

Advind(A) = |Pr [f ←u Fall : A
O(·) = 0]− Pr [f ←u F : A

O(·) = 0]| ≤ ε .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 5

Pseudorandom permutations

Let Fprm denote the set of all permutations f :M→M and let F ⊆ Fprm

be a permutation family. Then we can consider the following interactive
hypothesis testing scenario. A t-time adversary A that makes at most q
calls to the oracle O(·) in order to distinguish two worlds (hypotheses):

⊲ H0 : Oracle chooses f ←u Fprm and for every query xi replies yi ← f(xi).

⊲ H1 : Oracle chooses f ←u F and for every query xi replies yi ← f(xi).

We say that F is (t, q, ε)-pseudorandom permutation family if for any t-time
adversary A that makes at most q queries the corresponding advantage

Advind(A) = |Pr [f ←u Fprm : A
O(·) = 0]− Pr [f ←u F : A

O(·) = 0]| ≤ ε .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 6

Pseudorandom generators

Let f be a function that stretches m-bit seed s to n-bit string. Then we
can consider the following classical hypothesis testing scenario. A t-time
adversary A gets x and must distinguish two worlds (hypotheses):

⊲ H0 : The string x is uniformly chosen over {0, 1}
n
.

⊲ H1 : The string x← f(s) for uniformly chosen s←u {0, 1}
m

.

We say that f is (t, ε)-pseudorandom generator if for any t-time adversary
A the corresponding advantage is bounded

Advind(A) = |Pr [x←u {0, 1}
n : A(x) = 0]− Pr [s←u {0, 1}

m : A(f(s)) = 0]| ≤ ε .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 7

Practical implementations

⊲ Pseudorandom functions. Constructing good pseudorandom functions
has never been a an explicit design goal. Cryptographic hash functions
h :M×K → T with implicit or explicit keys are often treated as
pseudorandom functions. However, they are also known to contain
much more weaknesses than good block ciphers.

⊲ Pseudorandom permutations. Block ciphers are specifically designed
to be pseudorandom permutations. This is the most thoroughly studied
branch of practical primitive design and we have many good candidates.

⊲ Pseudorandom generators. Stream ciphers are designed to be fast
pseudorandom generators. However, we know much more about block
ciphers than about stream ciphers. In fact, there is no widely adopted
stream cipher standard. There are also more secure constructions based
on number theoretical constructions but they are much slower.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 8

Guessing Games

Simplest guessing game

Consider the simplest attack scenario:

1. S0 is a uniform distribution over two states s0 and s1.

2. H0 and H1 denote simple hypotheses [s
?
= s0] and [s

?
= s1].

3. Given x← f(s), Charlie must choose between hypotheses H0 and H1.

The probability of an incorrect guess

Pr [Failure] = Pr [H0] · Pr [A(x) = 1|H0] + Pr [H1] · Pr [A(x) = 0|H1]

=
1

2
·
(
Pr [A(x) = 1|H0]
︸ ︷︷ ︸

False negatives

+ Pr [A(x) = 0|H1]
︸ ︷︷ ︸

False positives

)

=
1

2
+

1

2
·
(
Pr [A(x) = 0|H1]− Pr [A(x) = 0|H0]

)

︸ ︷︷ ︸

±cdt
x(H0,H1)

.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 9

Guessing game with a biased coin

Let D be a distribution over {0, 1} such that Pr [i← D : i = 0] ≤ 1
2 and

consider a guessing game G between a challenger and an adversary A:

G
A

2

6

6

6

4

i← D

b← A(f(si))

return [b
?
= i]

For this game, the adversary succeeds with probability

Pr [Success] = Pr [H0] · Pr [A = 0|H0] + Pr [H1] · Pr [A = 1|H1]

≤ Pr [H1] · (1 + Pr [A = 0|H0]− Pr [A = 0|H1])

≤ Pr [H1] + cdt
x(H0,H1) .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 10

Choosing between many values

Now consider a game

G
A

2

6

6

6

4

s← S0

s
′
← A(f(s))

return [s
?
= s

′]

If for all possible states si, sj ∈ supp(S0) distributions f(si) and f(sj) are
(t, ε)-indistinguishable, then for all t-time algorithms

min
s

Pr [s]− ε ≤ Pr [Success] ≤ max
s

Pr [s] + ε .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 11

The corresponding proof

Let s∗ the element with the maximal probability over S0. Then

Pr [Success] =
∑

s 6=s∗

Pr [s] · Pr [A(f(s)) = s]

+ Pr [s∗]−
∑

s6=s∗

Pr [s∗] · Pr [A(f(s∗) = s)]

≤ Pr [s∗] +
∑

s6=s∗

Pr [s] · |Pr [A(f(s)) = s]− Pr [A(f(s∗)) = s]|
︸ ︷︷ ︸

≤ε

≤ Pr [s∗] + ε .

The proof of the lower bound is analogous.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 12

Semantic Security

Semantic security

s

s← S0

f(s)

Given
– S0

– f(s)
Charlie tries to guess g(s)

s

s← S0

Given
– S0

Charlie tries to guess g(s)

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 13

Formal definition

Consider the following games:

G
A

0
2

6

6

6

4

s← S0

g
′
← A(f(s))

return [g
′ ?
= g(s)]

G
A

1
2

6

6

6

4

s← S0

g
′
← argmaxg′ Pr

ˆ

g(s) = g
′˜

return [g
′ ?
= g(s)]

Then we can define a true guessing advantage

Advsem
f,g(A) = Pr [GA

0 = 1]− Pr [GA

1 = 1]

= Pr [s← S0 : A(f(s)) = g(s)]−max
g′

Pr [g(s) = g′] .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 14

IND =⇒ SEM

Theorem. If for all si, sj ∈ supp(S0) distributions f(si) and f(sj) are
(t, ε)-indistinguishable, then for all t-time adversaries A:

Advsem
f,g(A) ≤ ε .

Note that

⊲ function g might be randomised,

⊲ function g : S0 → {0, 1}
∗

may extremely difficult to compute,

⊲ it might be even infeasible to get samples from the distribution S0.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 15

The corresponding proof

Assume that there exists g and A such that violate the claim. Then there
exists also a deterministic function g such that Advsem

f,g(A) > ε.

Let Hi = [g(s) = i]. Then we can prove

cdt
x(Hi,Hj) ≤ ε .

Now observe

Pr [Success] =
t∑

i=0

Pr [Hi] · Pr [A(f(s)) = i|Hi] ≤ max Pr [Hi] + ε .

Advsem
f,g(A) = Pr [Success]−max Pr [Hi] ≤ ε .

Hence, we have a desired contradiction.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 16

Postmortem

We have now formally shown that if f is a (t, ε)-pseudorandom generator
then it is difficult to approximate any predicate g(s) given only f(s).

Similarly, if f :M×K → C is a (t, ε)-pseudorandom function family then

⊲ it is difficult to approximate a predicate g(k) by adaptively querying fk(·),

⊲ it is difficult to approximate a predicate g(x) given only the value f(x, k)
and black-box access to the function fk(·).

However, this general semantic security guarantee has also limitations:

⊲ The proof is non-constructive.

⊲ The theorem does not hold if S0 is specified by the adversary.
For example, if adversary can influence which messages are enciphered.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 17

Switching lemma

Motivation

Block ciphers are designed to be pseudorandom permutations. However, it
is much more easiser to work with pseudorandom functions. Therefore, all
classical security proofs have the following structure:

1. Replace pseudorandom permutation family F with the family Fprm.

2. Use the PRP/PRF switching lemma to substitute Fprm with Fall.

3. Solve the resulting combinatorial problem to bound the advantage:

⊲ All output values f(x) have uniform distribution.

⊲ Each output f(x) is independent of other outputs.

More formally, let G0 the original security game and G1 and G2 be the games
obtained after replacement steps. Then

Advwin
G0

(A) = Pr [GA

0 = 1] ≤ cdt
⋆(G0,G1) + sd⋆(G1,G2) + Pr [GA

2 = 1] .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 18

PRP/PRF switching lemma

Theorem. Let M be the input and output domain for Fall. Then the
permutation family Fprm is (q, ε)-pseudorandom function family where

ε ≤
q(q − 1)

2 |M|
.

Theorem. Let M be the input and output domain for Fall. Then for any
q ≤

√

|M| there exists a O(q log q) distinguisher A that achieves

Advind
Fall,Fprm

(A) ≥ 0.316 ·
q(q − 1)

|M|
.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 19

Birthday paradox

Obviously f /∈ Fprm if we find a collision f(xi) = f(xj) for i 6= j.

For the proof note that:

⊲ If x1, . . . , xq are different then the outputs f(x1), . . . , f(xq) have uniform
distribution overM× . . .×M when f ←u Fall.

⊲ Hence the corresponding adversary A that outputs 0 only in case of
collision obtains

Advind
Fall,Fprm

(A) = Pr [Collision|Fall]− Pr [Collision|Fprm]

= Pr [Collision|Fall] ≥ 0.316 ·
q(q − 1)

|M|
.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 20

Distinguishing strategy as decision tree

Let A be a deterministic distinguisher that makes up to q oracle calls.

αi

1

1
3

1
9

βi

1

1
3

1
6

f(1)?

f(3)? f(2)? f(2)?

f(2)? f(2)? f(2)? f(3)? f(3)? f(3)? f(3)? f(3)? f(3)?

1 2 3
1 2 3 1 2 3 1 2 3

Then Pr [Vertex u|Fprm] and Pr [Vertex u|Fall ∧ ¬Collision] might differ.
However, if A makes exactly q queries then all vertices on decision border
are sampled with uniform probability and thus

Pr [A = 0|Fprm] = Pr [A = 0|Fall ∧ ¬Collision] .

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 21

The corresponding proof

Obviously, the best distinguisher A is deterministic and makes exactly q
oracle calls. Consequently,

Pr [A = 0|Fall] = Pr [Collision|Fall] · Pr [A = 0|Fall ∧ Collision]

+ Pr [¬Collision|Fall] · Pr [A = 0|Fall ∧ ¬Collision]

≤ Pr [Collision|Fall] + Pr [A = 0|Fprm]

and thus also

Advind
Fall,Fprm

(A) ≤ Pr [Collision|Fall] .

Now observe

Pr

[

∨
i 6=j

f(xi) = f(xj)

]

≤
∑

i 6=j

Pr [f(xi) = f(xj)] =
q(q − 1)

2
·

1

|M|
.

MTAT.07.003 Cryptology II, Computational Indistinguishability, February 15, 2008 22

