
MTAT.07.003 Cryptology II
Spring 2008 / Homework 7

1. Consider the standard simulators S1 and S2 for the Blum coin flipping
protocol that were described in the lecture. Assume that initial states of
parties φ1 and φ2 are empty, i.e., the both parties start from a scratch.
Estimate the real and ideal world output distributions ψ and ψ◦ under
the following conditions.

(a) The commitment scheme is totally non-hiding, e.g. (m,m)← Com(m),
and the party P∗

2
always sets b2 = b1 and outputs ψ2 = b1 ⊕ b2.

(b) The commitment scheme is totally non-binding, e.g. (0,m)← Com(m),
and the party P∗

1
sets b1 = 1⊕ b2 and chooses ψ1 ←u {0, 1}.

(c) The commitment scheme is perfectly hiding and binding but the
party P∗

1
always halts if b1 ⊕ b2 = 0.

(d) The commitment scheme is (k · t, ε1)-hiding and (t, ε2)-binding and
both parties always output ψi ∈ {0, 1}.

2. Consider the parallel composition of the Blum coin flipping protocol dis-
cussed in the lecture. Let ℓ denote the number of protocols.

(a) Construct the simulators for malicious participants P
∗
1

and P
∗
2
. You

may mimic the construction of the simulator for the Blum protocol.
That is, S1 should provide all possible replies b1

2
, . . . , bℓ

2
to extract

b1
1
, . . . , bℓ

1
that correspond to the commitments c1, . . . , cℓ. Similarly,

S2 can repeat the original protocol until b1 ⊕ b2 = y.

(b) Assume that the commitment scheme is (t, ε1)-extractable and (t, ε2)-
equivocable, i.e. there exists a modified setup procedure (pk, sk) ←
Gen∗ such that we can use Extrsk(·) to break the hiding property
and Com∗

sk() and Equivsk(·) functions to break the binding property.
Construct the corresponding simulators S1 and S2 for the original
protocol and the corresponding parallel compositions.

Estimate the statistical distance between the real and ideal world outputs.

3. Consider the following entity authentication protocol proposed by Bellare
and Rogaway. In the Map-1 protocol, parties P1 and P2 share the secret
key k ←u K of a (t, ε)-pseudorandom function f : {0, 1}∗ ×K → T .

1. P1 sends a random nonce r1 ←u R to P2.

2. P2 generates a random nonce r2 ←u R and sends the identities id1, id2,
nonces r1, r2 and the authentication tag f(id1‖id2‖r1‖r2, k) to P1.

3. P1 replies id1, rb and the authentication tag f(id1‖rb, k) to P2.

Parties P1 and P2 halt if the received messages are not in correct form.
Otherwise, both parties are convinced that they are indeed talking with

1

each other. Consider the security of Map-1 protocol in the standalone
setting, where P1 and P2 run a single instance of the protocol by sending
messages through the adversary A who can alter, drop or insert messages
into the conversation. The adversary A succeeds in deception if both
parties reach accepting state but the adversary has altered some messages.

(a) Estimate the probability that the adversary A sends r̂1 6= ri to P2

and still succeeds in deception.

(b) Estimate the probability that the adversary A sends (îd1, îd2, r̂1, r̂2) 6=
(id1, id2, r1, r2) to P1 and still succeeds in deception.

(c) Estimate the probability that A sends (îd1, r̂2) 6= (id1, r2) to P1 and
still succeeds in deception.

(d) Summarise the results and give the final bound on deception.

4. Consider the security of the Map-1 protocol in the the strongest model,
where the adversary A can force parties P1 and P2 to start as many
instances of authentication protocols as he or she likes.

(a) Formalise the notion of deception so that it provides the strongest
possible security guarantees. As an hint, note that in the ideal im-
plementation the adversary can either transfer all messages without
changes or stop the protocol instance. The same original message
should not be used in several protocol instances.

(b) Show that each protocol instance is determines unique nonces r1 and
r2 and estimate the corresponding collision probability.

(c) Give the final bound on the deception under the assumption that
there are no nonce collisions. Compute the final deception bound.

5. The Kerberos protocol is uses a trusted key generation server T to set
up shared keys between participants P1, . . . ,Pn. Let (Gen,Enc,Dec) be a
IND-CCA2 secure symmetric cryptosystem. Then in a setup phase, each
party Pi shares a secret key ski ← Gen with the trusted server T. To set
up a new session key skij ← Gen between Pi and Pj , the parties P1, P2

and T execute the following protocol.

1. Pi sends idi, idj and a random nonce r1 ←u R to the server T.

2. T generates a new session key skij ← Gen and sends back:

ticket← Encskj
(skij , idi, expiration time) ,

enc-info← Encski
(skij , r1, expiration time, idj) .

3. Pi decrypts enc-info creates another nonce r2 ←u R and sends ticket

and Encskij
(idi, r2) to Pj, who replies Encskij

(r2).

Participants halt if some messages are not in expected form. An adversary
A succeeds in deception if either P1 or P2 reach the accepting state but
one of them has a fraudulent output.

2

(a) Estimate the probability that Pi accepts altered enc-info.

(b) Estimate the probability that Pj accepts altered ticket.

(c) Estimate the probability that Pj halts but Pi accepts.

(d) Give the final bound on the deception probability.

6. Let (Gen,Enc,Dec) be (t, ε)-IND-CCA2 secure cryptosystem such that the
message space M is an additive group. Then the classical challenge-
response protocol for proving the possession of sk:

1. The verifier V chooses m←u M and sends Encpk(m) to the prover P.

2. Given a challenge c, the prover P replies m← Decsk(c).

3. The verifier V accepts if m = m to V.

is also (t, 1

|M| + ε)-secure in the most powerful attack scenario. Prove that

the following AND and OR compositions are also secure.

AND composition for secret keys sk1 and sk2:

1. The verifier V choosesm1,m2 ←u M and sends two challenges Encpk
1
(m1)

and Encpk
2
(m2) to the prover P.

2. Given challenge ciphertexts c1, c2, the prover P uses both secret keys
sk1 and sk2 and replies m1 ← Decsk1

(c) and m2 ← Decsk2(c) to V.

3. The verifier V accepts if m1 = m1 and m2 = m2.

OR composition for secret keys sk1 and sk2:

1. The verifier V choosesm←u M and sends the corresponding challenge
pair Encsk1

(m; r1) for r1 ←R, and Encsk2
(m; r2) for r2 ←R to P.

2. Given challenge ciphertexts c1, c2, the prover P uses one of the secret
keys sk1 and sk2 to decrypt a challenge and then uses a commitment
scheme to create a commitment to the answer m.

3. The verifier V sends m, r1 and r2 to the prover P who recomputes
ciphertext c1 and c2 to make sure that they are indeed encryptions
of the same message. If not the prover P halts, otherwise the prover
P reveals the decommitment value.

3. The verifier V opens the commitment and verifies that m = m.

More precisely, prove the following facts and provide the corresponding
security guarantees.

(a) The verifier V cannot cheat in the OR composition.

(b) The AND and OR compositions are functional and secure in the most
powerful attack scenario.

(c) The verifier cannot distinguish whether the prover knows the secret
key sk1 or sk2.

(d) How to generalise this approach for any monotone formula? What
could be the potential applications?

3

