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Formal Syntax



Zero-knowledge proofs

(pk, sk)← Gen
pk

· · ·

α1

β1

αk

βi ← Vpk(α1, . . . , αi−1) αi ← Psk(β1, . . . , βi−1)

(pk, sk)
?

∈ R

In many settings, some system-wide or otherwise important parameters pk
are generated by potentially malicious participants.

⊲ Zero-knowledge proofs guarantee that the parameters pk are correctly
generated without leaking any extra information.

⊲ Often, public parameters pk are generated together with auxiliary secret
information sk that is essential for the zero-knowledge proof.

⊲ The secret auxiliary information sk is known as a witness of pk.
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A few interesting statements

An integer n is a RSA modulus:

⊲ A witness is a pair of primes (p, q) such that n = p · q.

⊲ The relation is defined as follows (n, p, q) ∈ R⇔ n = p · q ∧ p, q ∈ P

A prover has a secret key sk that corresponds to a public key pk:

⊲ A witness is a secret key sk such that (pk, sk) ∈ Gen.

⊲ More formally (pk, sk) ∈ R⇔ ∀m ∈M : Decsk(Encpk(m)) = m.

A ciphertext c is an encryption of m wrt the public key pk:

⊲ A witness is a randomness r ∈ R such that Encpk(m; r) = c.

⊲ The relation is defined as follows (pk, c,m, r) ∈ R⇔ Encpk(m; r) = c.
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Two flavours of zero knowledge

An ideal implementation of a zero-knowledge proof

If ∃sk : (pk, sk) ∈ R

| y ← 1

Else

| y ← 0

pk pk

pk pk

y ⊥

An ideal implementation of a zero-knowledge proof of knowledge

If (pk, sk) ∈ R

| y ← 1

Else

| y ← 0

pk pk, sk

pk pk, sk

y ⊥
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Formal security requirements

Completeness. A zero-knowledge proof is perfectly complete if all runs
between honest prover and honest verifier are accepting. A zero knowledge
protocol is ε1-incomplete if for all (pk, sk) ∈ R the interaction between
honest prover and honest verifier fails with probability at most ε1.

Soundness. A zero-knowledge proof is ε2-unsound if the probability that
an honest verifier accepts an incorrect input pk with probability at most ε2.
An input pk is incorrect if (pk, sk) /∈ R for all possible witnesses sk.

Zero-knowledge property. A zero-knowledge proof is (tre, tid, ε3)-private
if for any tre-time verifying strategy V∗ there exists a tid-time algorithm
V◦ that does not interact with the prover and the corresponding output
distributions are statistically ε3-close.
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Example. Quadratic residuosity

v = s2 s ∈ Z
∗

n

β ←u {0, 1} r ←u Z
∗

nα = r2

β

γ = rsβ

γ2 = r2s2β ?
= αvβ

Halt if γ /∈ Z
∗

n

The modified Fiat-Shamir protocol is also secure against malicious verifiers.

⊲ If we guess the challenge bit β then we can create α such that the
transcript corresponds to the real world execution.

⊲ Random guessing leads to the correct answer with probability 1
2
.

⊲ By rewinding we can decrease the failure probability. The failure
probability decreases exponentially w.r.t. maximal number of rewindings.
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The corresponding security guarantees

Theorem. The modified Fiat-Shamir protocol is a zero-knowledge proof
with the following properties:

⊲ the protocol is perfectly complete;

⊲ the protocol is 1
2
-unsound;

⊲ for any k and tre the protocol is (tre, k · tre, 2
−k)-private.

Further remarks

⊲ Sequential composition of ℓ protocol instances decreases soundness error
to 2−ℓ. The compound protocol becomes (tre, k · ℓ · tre, 2

−k)-private.

⊲ The same proof is valid for all sigma protocols, where the challenge β
is only one bit long. For longer challenges β, the success probability
decreases with an exponential rate and simulation becomes inefficient.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 6



Zero-Knowledge Proofs

and

Knowledge Extraction



Challenge-response paradigm

v ∈ QNR(n) n = p · q

β ←u {0, 1}

r ←u Z
∗

n
β ← IsNQRp,q(α)

α = r2vβ

β

β
?
= β

For semi-honest provers it is trivial to simulate the interaction, since the
verifier knows the expected answer β = β. To provide security against
malicious verifiers V∗, we must assure that we can extract β from V∗:

⊲ Verifier must prove that she knows (r, β) such that c = r2vβ

⊲ The corresponding proof of knowledge does not have be zero knowledge
proof as long as it does not decrease soundness.
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Classical construction

v ∈ QNR(n) n = p · q

β ←u {0, 1}

r ←u Z
∗

n

α← r2vβ

β ← IsNQRp,q(α)

Halt if pokβ[·] fails

α

pokβ[α = r2vβ]

d

β
?
= β

We can use proofs of knowledge to assure that the verifier knows the end
result β. The proof must perfectly hide the witness β.

⊲ If v ∈ QR then α is independent from β and malicious prover can infer
information about β only through the proof of knowledge.

⊲ Hence, we are actually interested in witness hiding property of the proof
of knowledge, i.e., we should be able to fix β in the proof.
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Witness hiding provides soundness

We have to construct a sigma protocol for the following statement

pokβ

[

∃r : α = r2vβ
]

≡ pokr

[

r2 = α
]

∨ pokr

[

r2 = αv−1
]

Both sub-proofs separately can be implemented through the modified Fiat-
Shamir protocol. To achieve witness hiding we just use OR-composition.

⊲ For fixed challenge β, the sub-challenge pairs are uniformly chosen from
a set B = {(β1, β2) : β1 + β2 = β}.

⊲ Hence, the interactions where V proves pokr

[

r2 = α
]

and simulates
pokr [r2 = αv−1] are indistinguishable form the interactions where V

proves pokr [r2 = αv−1] and simulates pokr [r2 = α].

⊲ If v = s2 then also α0 = r2 and α1 = r2v are indistinguishable.

Consequently, a malicious adversary succeeds with probability 1
2

if v = s2.
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Simulator construction

SV∗































Choose randomness ω for V∗ and store α.

Use knowledge extractor to extract β.

Run V∗ once again.

if pokβ [∃r : α = r2vβ] fails then
[

Send ⊥ to V and output whatever V∗ outputs.

else
[

Send β to V and output whatever V∗ outputs.

The simulation fails only if knowledge extraction fails and pokβ [·] succeeds.
With proper parameter choice, we can achieve failure ε in time Θ

(

tre
ε−κ

)

.
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Optimal choice of parameters

Let ε be the desired failure bound and let κ be the knowledge error of the
sigma protocol. Now if we set the maximal number of repetitions

ℓ =
4 ⌈log2(1/ε)⌉

ε− κ

in the knowledge extraction algorithm so that the knowledge extraction
procedure fails on the set of good coins

Ωgood = {ω ∈ Ω : Pr [pokβ [·] = 1|ω] ≥ ε}

with probability less than ε. Consequently, we can estimate

Pr [Fail] ≤ Pr [ω /∈ Ωgood] · Pr [pokβ [·] = 1|ω] · Pr [ExtrFailure|ω]

+ Pr [ω ∈ Ωgood] · Pr [pokβ [·] = 1|ω] · Pr [ExtrFailure|ω] ≤ ε .
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Soundness through temporal order

v ∈ QNR(n) n = p · q

β ←u {0, 1}

r ←u Z
∗

n

α← r2vβ

pk← Gen

β ← IsNQRp,q(α)

(c, d)← Compk(β)

Halt if α 6= r2vβ

α
c, pk

r, β

d

β
?
= Openpk(c, d)

Let (Gen,Com, Open) is a perfectly binding commitment scheme such that
the validity of public parameters can be verified (ElGamal encryption).

⊲ Then the perfect binding property assures that the malicious prover P∗

cannot change his reply. Soundness guarantees are preserved.

⊲ A commitment scheme must be (tre + t, κ)-hiding for tre-time verifier.

⊲ By rewinding we can find out the correct answer in time Θ( 1
ε−κ

), where
ε is the success probability of malicious verifier V∗.
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Simulator construction

SV∗

































Choose randomness ω for V∗ and store α.

Use knowledge extractor to extract β.

Run V∗ once again with (c, d)← Compk(β).

if α 6= r2vβ then
[

Send ⊥ to V and output whatever V∗ outputs.

else
[

Send β to V and output whatever V∗ outputs.

Knowledge-extraction is straightforward. We just provide (c, d)← Compk(0)
and verify whether α = r2vβ. The choice of parameters is analogous.
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Further analysis

The output of the simulator is only computationally indistinguishable from
the real protocol run, as the commitment is only computationally hiding.
Let A be a t-time adversary that tries to distinguish outputs of V∗ and SV∗

⊲ If α = r2vβ and knowledge extraction succeeds, the simulation is perfect.

⊲ If α 6= r2vβ then from (tre + t, κ)-hiding, we get

∣

∣Pr
[

A = 1|VP

∗
∧ α 6= r2vβ

]

− Pr
[

A = 1|SV∗ ∧ α 6= r2vβ
]
∣

∣ ≤ κ .

⊲ Similarly, (tre + t, κ)-hiding assures that

∣

∣Pr
[

α = r2vβ|VP

∗

]

− Pr
[

α 6= r2vβ|V∗ ∧ (c, d)← Compk(0)
]
∣

∣ ≤ κ .

Hence, the knowledge extractor makes on average 1
ε−κ

probes.
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Strengthening of Σ-protocols



Strengthening with commitments

x x,w

zkx[(x, w) ∈ R]

β ←u B

(c, d)← Compk(β)

pk← Gen

α← Pw

β ← Openpk(c, d)

γ ← Pw(α, β)

pk
c
α
d
γ

Verx(α, β, γ)

If the commitment is statistically hiding then the soundness guarantees are
preserved. Again, rewinding allows us to extract the value of β.

⊲ If commitment scheme is ((ℓ + 1) · tre, ε2)-binding then commitment can
be double opened with probability at most ε2.

⊲ Hence, we can choose ℓ = Θ( 1
ε1

) so that simulation failure is ε1 + ε2.

⊲ The protocol does not have knowledge extraction property any more.
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Strengthening with coin-flipping

x x,w

zk-pokx[(x, w) ∈ R]

α← Pw

γ ← Pw(α, β)

α

β = coin-flip[B]

γ

Verx(α, β, γ)

We can substitute trusted sampling β ←u B with a coin-flipping protocol.

⊲ To achieve soundness, we need a coin-flipping protocol that is secure
against unbounded provers.

⊲ Statistical indistinguishability is achievable provided that the coin-flipping
protocol is secure even if all internal variables become public afterwards.

⊲ Rewinding takes now place inside the coin-flipping block.
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Strengthening with OR-construction

x x, w

zka-pokx[(x,w) ∈ R]

(x, w)← GenR

x

pokw[(x, w) ∈ R]

pokw,w[(x, w) ∈ R ∨ (x, w) ∈ R]

If the relation R generated by GenR is hard, i.e., given x it is difficult to
find matching w, then the proof is computationally sound.

The hardness of R also guarantees that the second proof is witness hiding.
Thus, we can extract first w and use it to by-pass the second proof.
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Certified computations



Basic concept

f x

f(x)

f

halt/ok

How to guarantee that a participant P does not alter input x if the
description of the deterministic f is published?

1. P must first commit all input bits x1, . . . , xn.

2. The description of a circuit f is given to P.

3. P computes all intermediate values wi in the circuit.

4. P commits all intermediate values wi.

5. P constructs a sigma protocol that validity of all gate computations.

6. The aggregate sigma protocol is converted to zero-knowledge proof.
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Possible implementation

Consider the Pedersen commitment scheme. Then we need two proofs

⊲ pokd [(c, d) = Compk(0; r)] ≡ pokr [yr = c]

⊲ pokd [(c, d) = Compk(1; r)] ≡ pokr

[

yr = cg−1
]

to express more complex relations among commitments of u, v and w

⊲ w = u ≡ [w = 0] ∧ [u = 0] ∨ [w = 1] ∧ [u = 1]

⊲ w = ¬u ≡ [w = 0] ∧ [u = 1] ∨ [w = 1] ∧ [u = 0]

⊲ w = u∧ v ≡ [w = 0]∧ [u = 0]∧ [v = 0]∨ . . . [w = 1]∧ [u = 1]∧ [v = 1]

⊲ w = u∨ v ≡ [w = 0]∧ [u = 0]∧ [v = 0]∨ . . . [w = 1]∧ [u = 1]∧ [v = 1]

Thus, we get a computationally sound sigma proof that is witness hiding.

Randomised functions can be handled by committing also the randomness.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 19


