
Zero-Knowledge Proofs

Sven Laur
swen@math.ut.ee

University of Tartu

Formal Syntax

Zero-knowledge proofs

(pk, sk)← Gen
pk

· · ·

α1

β1

αk

βi ← Vpk(α1, . . . , αi−1) αi ← Psk(β1, . . . , βi−1)

(pk, sk)
?

∈ R

In many settings, some system-wide or otherwise important parameters pk
are generated by potentially malicious participants.

⊲ Zero-knowledge proofs guarantee that the parameters pk are correctly
generated without leaking any extra information.

⊲ Often, public parameters pk are generated together with auxiliary secret
information sk that is essential for the zero-knowledge proof.

⊲ The secret auxiliary information sk is known as a witness of pk.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 1

A few interesting statements

An integer n is a RSA modulus:

⊲ A witness is a pair of primes (p, q) such that n = p · q.

⊲ The relation is defined as follows (n, p, q) ∈ R⇔ n = p · q ∧ p, q ∈ P

A prover has a secret key sk that corresponds to a public key pk:

⊲ A witness is a secret key sk such that (pk, sk) ∈ Gen.

⊲ More formally (pk, sk) ∈ R⇔ ∀m ∈M : Decsk(Encpk(m)) = m.

A ciphertext c is an encryption of m wrt the public key pk:

⊲ A witness is a randomness r ∈ R such that Encpk(m; r) = c.

⊲ The relation is defined as follows (pk, c,m, r) ∈ R⇔ Encpk(m; r) = c.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 2

Two flavours of zero knowledge

An ideal implementation of a zero-knowledge proof

If ∃sk : (pk, sk) ∈ R

| y ← 1

Else

| y ← 0

pk pk

pk pk

y ⊥

An ideal implementation of a zero-knowledge proof of knowledge

If (pk, sk) ∈ R

| y ← 1

Else

| y ← 0

pk pk, sk

pk pk, sk

y ⊥

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 3

Formal security requirements

Completeness. A zero-knowledge proof is perfectly complete if all runs
between honest prover and honest verifier are accepting. A zero knowledge
protocol is ε1-incomplete if for all (pk, sk) ∈ R the interaction between
honest prover and honest verifier fails with probability at most ε1.

Soundness. A zero-knowledge proof is ε2-unsound if the probability that
an honest verifier accepts an incorrect input pk with probability at most ε2.
An input pk is incorrect if (pk, sk) /∈ R for all possible witnesses sk.

Zero-knowledge property. A zero-knowledge proof is (tre, tid, ε3)-private
if for any tre-time verifying strategy V∗ there exists a tid-time algorithm
V◦ that does not interact with the prover and the corresponding output
distributions are statistically ε3-close.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 4

Example. Quadratic residuosity

v = s2 s ∈ Z
∗

n

β ←u {0, 1} r ←u Z
∗

nα = r2

β

γ = rsβ

γ2 = r2s2β ?
= αvβ

Halt if γ /∈ Z
∗

n

The modified Fiat-Shamir protocol is also secure against malicious verifiers.

⊲ If we guess the challenge bit β then we can create α such that the
transcript corresponds to the real world execution.

⊲ Random guessing leads to the correct answer with probability 1
2
.

⊲ By rewinding we can decrease the failure probability. The failure
probability decreases exponentially w.r.t. maximal number of rewindings.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 5

The corresponding security guarantees

Theorem. The modified Fiat-Shamir protocol is a zero-knowledge proof
with the following properties:

⊲ the protocol is perfectly complete;

⊲ the protocol is 1
2
-unsound;

⊲ for any k and tre the protocol is (tre, k · tre, 2
−k)-private.

Further remarks

⊲ Sequential composition of ℓ protocol instances decreases soundness error
to 2−ℓ. The compound protocol becomes (tre, k · ℓ · tre, 2

−k)-private.

⊲ The same proof is valid for all sigma protocols, where the challenge β
is only one bit long. For longer challenges β, the success probability
decreases with an exponential rate and simulation becomes inefficient.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 6

Zero-Knowledge Proofs

and

Knowledge Extraction

Challenge-response paradigm

v ∈ QNR(n) n = p · q

β ←u {0, 1}

r ←u Z
∗

n
β ← IsNQRp,q(α)

α = r2vβ

β

β
?
= β

For semi-honest provers it is trivial to simulate the interaction, since the
verifier knows the expected answer β = β. To provide security against
malicious verifiers V∗, we must assure that we can extract β from V∗:

⊲ Verifier must prove that she knows (r, β) such that c = r2vβ

⊲ The corresponding proof of knowledge does not have be zero knowledge
proof as long as it does not decrease soundness.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 7

Classical construction

v ∈ QNR(n) n = p · q

β ←u {0, 1}

r ←u Z
∗

n

α← r2vβ

β ← IsNQRp,q(α)

Halt if pokβ[·] fails

α

pokβ[α = r2vβ]

d

β
?
= β

We can use proofs of knowledge to assure that the verifier knows the end
result β. The proof must perfectly hide the witness β.

⊲ If v ∈ QR then α is independent from β and malicious prover can infer
information about β only through the proof of knowledge.

⊲ Hence, we are actually interested in witness hiding property of the proof
of knowledge, i.e., we should be able to fix β in the proof.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 8

Witness hiding provides soundness

We have to construct a sigma protocol for the following statement

pokβ

[

∃r : α = r2vβ
]

≡ pokr

[

r2 = α
]

∨ pokr

[

r2 = αv−1
]

Both sub-proofs separately can be implemented through the modified Fiat-
Shamir protocol. To achieve witness hiding we just use OR-composition.

⊲ For fixed challenge β, the sub-challenge pairs are uniformly chosen from
a set B = {(β1, β2) : β1 + β2 = β}.

⊲ Hence, the interactions where V proves pokr

[

r2 = α
]

and simulates
pokr [r2 = αv−1] are indistinguishable form the interactions where V

proves pokr [r2 = αv−1] and simulates pokr [r2 = α].

⊲ If v = s2 then also α0 = r2 and α1 = r2v are indistinguishable.

Consequently, a malicious adversary succeeds with probability 1
2

if v = s2.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 9

Simulator construction

SV∗































Choose randomness ω for V∗ and store α.

Use knowledge extractor to extract β.

Run V∗ once again.

if pokβ [∃r : α = r2vβ] fails then
[

Send ⊥ to V and output whatever V∗ outputs.

else
[

Send β to V and output whatever V∗ outputs.

The simulation fails only if knowledge extraction fails and pokβ [·] succeeds.
With proper parameter choice, we can achieve failure ε in time Θ

(

tre
ε−κ

)

.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 10

Optimal choice of parameters

Let ε be the desired failure bound and let κ be the knowledge error of the
sigma protocol. Now if we set the maximal number of repetitions

ℓ =
4 ⌈log2(1/ε)⌉

ε− κ

in the knowledge extraction algorithm so that the knowledge extraction
procedure fails on the set of good coins

Ωgood = {ω ∈ Ω : Pr [pokβ [·] = 1|ω] ≥ ε}

with probability less than ε. Consequently, we can estimate

Pr [Fail] ≤ Pr [ω /∈ Ωgood] · Pr [pokβ [·] = 1|ω] · Pr [ExtrFailure|ω]

+ Pr [ω ∈ Ωgood] · Pr [pokβ [·] = 1|ω] · Pr [ExtrFailure|ω] ≤ ε .

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 11

Soundness through temporal order

v ∈ QNR(n) n = p · q

β ←u {0, 1}

r ←u Z
∗

n

α← r2vβ

pk← Gen

β ← IsNQRp,q(α)

(c, d)← Compk(β)

Halt if α 6= r2vβ

α
c, pk

r, β

d

β
?
= Openpk(c, d)

Let (Gen,Com, Open) is a perfectly binding commitment scheme such that
the validity of public parameters can be verified (ElGamal encryption).

⊲ Then the perfect binding property assures that the malicious prover P∗

cannot change his reply. Soundness guarantees are preserved.

⊲ A commitment scheme must be (tre + t, κ)-hiding for tre-time verifier.

⊲ By rewinding we can find out the correct answer in time Θ(1
ε−κ

), where
ε is the success probability of malicious verifier V∗.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 12

Simulator construction

SV∗

































Choose randomness ω for V∗ and store α.

Use knowledge extractor to extract β.

Run V∗ once again with (c, d)← Compk(β).

if α 6= r2vβ then
[

Send ⊥ to V and output whatever V∗ outputs.

else
[

Send β to V and output whatever V∗ outputs.

Knowledge-extraction is straightforward. We just provide (c, d)← Compk(0)
and verify whether α = r2vβ. The choice of parameters is analogous.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 13

Further analysis

The output of the simulator is only computationally indistinguishable from
the real protocol run, as the commitment is only computationally hiding.
Let A be a t-time adversary that tries to distinguish outputs of V∗ and SV∗

⊲ If α = r2vβ and knowledge extraction succeeds, the simulation is perfect.

⊲ If α 6= r2vβ then from (tre + t, κ)-hiding, we get

∣

∣Pr
[

A = 1|VP

∗
∧ α 6= r2vβ

]

− Pr
[

A = 1|SV∗ ∧ α 6= r2vβ
]
∣

∣ ≤ κ .

⊲ Similarly, (tre + t, κ)-hiding assures that

∣

∣Pr
[

α = r2vβ|VP

∗

]

− Pr
[

α 6= r2vβ|V∗ ∧ (c, d)← Compk(0)
]
∣

∣ ≤ κ .

Hence, the knowledge extractor makes on average 1
ε−κ

probes.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 14

Strengthening of Σ-protocols

Strengthening with commitments

x x,w

zkx[(x, w) ∈ R]

β ←u B

(c, d)← Compk(β)

pk← Gen

α← Pw

β ← Openpk(c, d)

γ ← Pw(α, β)

pk
c
α
d
γ

Verx(α, β, γ)

If the commitment is statistically hiding then the soundness guarantees are
preserved. Again, rewinding allows us to extract the value of β.

⊲ If commitment scheme is ((ℓ + 1) · tre, ε2)-binding then commitment can
be double opened with probability at most ε2.

⊲ Hence, we can choose ℓ = Θ(1
ε1

) so that simulation failure is ε1 + ε2.

⊲ The protocol does not have knowledge extraction property any more.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 15

Strengthening with coin-flipping

x x,w

zk-pokx[(x, w) ∈ R]

α← Pw

γ ← Pw(α, β)

α

β = coin-flip[B]

γ

Verx(α, β, γ)

We can substitute trusted sampling β ←u B with a coin-flipping protocol.

⊲ To achieve soundness, we need a coin-flipping protocol that is secure
against unbounded provers.

⊲ Statistical indistinguishability is achievable provided that the coin-flipping
protocol is secure even if all internal variables become public afterwards.

⊲ Rewinding takes now place inside the coin-flipping block.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 16

Strengthening with OR-construction

x x, w

zka-pokx[(x,w) ∈ R]

(x, w)← GenR

x

pokw[(x, w) ∈ R]

pokw,w[(x, w) ∈ R ∨ (x, w) ∈ R]

If the relation R generated by GenR is hard, i.e., given x it is difficult to
find matching w, then the proof is computationally sound.

The hardness of R also guarantees that the second proof is witness hiding.
Thus, we can extract first w and use it to by-pass the second proof.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 17

Certified computations

Basic concept

f x

f(x)

f

halt/ok

How to guarantee that a participant P does not alter input x if the
description of the deterministic f is published?

1. P must first commit all input bits x1, . . . , xn.

2. The description of a circuit f is given to P.

3. P computes all intermediate values wi in the circuit.

4. P commits all intermediate values wi.

5. P constructs a sigma protocol that validity of all gate computations.

6. The aggregate sigma protocol is converted to zero-knowledge proof.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 18

Possible implementation

Consider the Pedersen commitment scheme. Then we need two proofs

⊲ pokd [(c, d) = Compk(0; r)] ≡ pokr [yr = c]

⊲ pokd [(c, d) = Compk(1; r)] ≡ pokr

[

yr = cg−1
]

to express more complex relations among commitments of u, v and w

⊲ w = u ≡ [w = 0] ∧ [u = 0] ∨ [w = 1] ∧ [u = 1]

⊲ w = ¬u ≡ [w = 0] ∧ [u = 1] ∨ [w = 1] ∧ [u = 0]

⊲ w = u∧ v ≡ [w = 0]∧ [u = 0]∧ [v = 0]∨ . . . [w = 1]∧ [u = 1]∧ [v = 1]

⊲ w = u∨ v ≡ [w = 0]∧ [u = 0]∧ [v = 0]∨ . . . [w = 1]∧ [u = 1]∧ [v = 1]

Thus, we get a computationally sound sigma proof that is witness hiding.

Randomised functions can be handled by committing also the randomness.

MTAT.07.003 Cryptology II, Zero Knowledge, May 2, 2008 19

