
MTAT.07.003 Cryptology II
Spring 2009 / Exercise Session II

1. There are many ways how to attack a standard e-banking system. First, an
attacker can distribute malware that logs all kinds of passwords. Secondly,
an attacker can send out forged e-mails that instruct bank customers to
send passwords to a certain mail account. Thirdly, an attacker can attack
the underlying cryptographic protection mechanism. When the attacker
has a control over the account, he or she has to withdraw the money
through an auxiliary account belonging to a mule. This poses a risk as
mules do not always deliver the money to attacker’s account.

Compute a success probabilities of all attack scenarios and find the one
with highest expected gain, given only some estimates of conditional prob-
abilities. Namely, let Malware, Phishing and CryptoBreak denote success
in the first attack step. Let Detect denote the event that an unauthorised
bank transfer or the attack itself is detected. Finally, let Cheat denote the
event that mule cheats and the attacker does not get the money. Then

Pr [Malware] = 10−3

Pr [Phishing] = 10−2

Pr [CryptoBreak] = 10−27

Pr [Detect|Draw 100] = 10−2

Pr [Detect|Draw 1000] = 10−1

Pr [Detect|Draw 10000] = 1

Pr [Detect|Malware] = 10−4

Pr [Detect|Phishing] = 1

Pr [Detect|CryptoBreak] = 0

Pr [Cheat|Draw 100] = 0

Pr [Cheat|Draw 1000] = 10−1

Pr [Cheat|Draw 1000] = 10−2

What is probability that the corresponding attacks remain unnoticed?

2. Bob has a biased coin such that in each throw the probability of getting
a tail is α. Additionally, assume that all coin tosses are independent.

(a) How many throws are needed on average to see the first tail?

(b) How many throws are needed on average to see k tails?

Now consider a scenario, where Bob must see at least two tails to succeed.

(c) How many throws are needed to succeed with probability at least 1

2
?

Give a simple and safe upper bound on the number of throws.

(d) Show that Bob must make at least Ω( 1

α
) throws to achieve constant

success probability in the process α→ 0.

(e) How many throws are needed to achieve exponentially small failure
probability ε?

Hints: Use Markov’s and Chebyshev’s inequalities. Answers of the ques-
tions (c) and (e) are tightly connected.
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3. A cryptosystem is a triple of algorithms (K, E ,D) such that the equality
D(E(m, k), k) = m holds for all messages m ∈ M and keys k ← K. Cryp-
tosystem is perfectly secure if a ciphertext c reveals nothing about the
corresponding message m, i.e., Pr [m|c] = Pr [m].

(a) Prove that cryptosystem is perfectly secure only if H(m|c) = H(m).
What about the implication to the other direction?

(b) Show that H(k, m, c) ≥ H(m|c) + H(c). For which enciphering algo-
rithms does the equality H(k, m, c) = H(m|c) + H(c) hold?

(c) Show that H(k, m, c) = H(k)+H(c|k). Conclude that cryptosystem
is perfectly secure only if H(k) ≥ H(m).

(d) Show that H(k|c) = H(m) + H(k) + H(c|m, k) −H(c). What does
the result mean in practise?

4. Estimate how much time is needed to break the following three file en-
cryption methods without using cipher-specific attacks.

(a) The file is encrypted with 128-bit AES cipher and the key is stored
in a special file that is protected with a password. Namely, the key
is encrypted with another key that is derived form the password.

(b) The file is encrypted with old 56-bit DES cipher and the key is stored
in the special file that is encrypted with a public key. The correspond-
ing secret key is stored in the ID card.

(c) The file is encrypted with 80-bit IDEA cipher and the key is stored in
the special file that is encrypted with a public key. The corresponding
secret key is stored in the TPM chip.

5. Let X0 be a uniform distribution over Z16 and let X1 be a uniform distri-
bution over {0, 2, 4, 6, 8, 10, 12, 14}.

(a) What is the statistical difference between X0 and X1?

(b) Find an distinguishing strategy A that minimises the ratio of false
positives β(A) and achieves false negative rate α(A) = 0%.

(c) Find an distinguishing strategy A that minimises the ratio of false
positives β(A) and achieves false negative rate α(A) ≤ 50%.

(d) Generalise the distinguishing strategy and find minimal ratio of false
positives β(A) for all bounds α(A) ≤ α0.

6. Normally, it is impossible to compute computational distance between
two distributions directly since the number of potential distinguishing al-
gorithms is humongous. However, for really small time-bounds it can be
done. Here, we assume that all distinguishers A : Z16 → {0, 1} are im-
plemented as Boolean circuits consisting of Not, And and Or gates and
the corresponding time-complexity is just the number of logic gates. For
example, A(x3x2x1x0) = x1 has time-complexity 0 and A(x3x2x1x0) =
x1 ∨ ¬x3 ∧ x2 has time-complexity 3.
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(a) Let X0 be a uniform distribution over Z16 and let X1 be a uniform
distribution over {0, 2, 4, 6, 8, 10, 12, 14}. What is cd1

x
(X0,X1)?

(b) Find a uniform distribution X2 over some 8 element set such that
cd1

x
(X0,X2) is minimal. Compute cd2

x
(X0,X2) and cd3

x
(X0,X2).

(c) Find a uniform distribution X3 over some 8 element set such that
cd1

x
(X0,X3) + cd1

x
(X0,X3) is minimal.

(d) Estimate for which value of t the distances cdt

x
(X0,X1) and sdx(X0,X1)

coincide for all distributions over Z16.

(⋆) Let the time-complexity of distinguishing algorithms be defined as in the
previous exercise. Find disjoint distributions X0 and X1 over Z256 such
that their computational distance is minimal. Tabulate the results for
time-bounds 0, 1, . . . , 16. More precisely, find the optimal distribution pair
for each time-bound and their computational distance for all time-bounds.
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