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Formal Syntax



Symmetric message authentication

Gen

sk sk

m ∈M0

t← Macsk(m) m, t m, t

Versk(m, t)
?
= 1

⊲ A randomised key generation algorithm outputs a secret key sk ∈ K that
must be transferred privately to the sender and to the receiver.

⊲ A keyed hash function Macsk :M→ T takes in a plaintext and outputs
a corresponding digest (also known as hash value or tag).

⊲ A verification algorithm Versk : M × C → {0, 1} tries to distinguish
between altered and original message pairs.

⊲ The authentication primitive is functional if for all sk← Gen and m ∈M:
Versk(m, Macsk(m)) = 1
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Two main attack types

Substitution attacks. An adversary substitutes (m, t) with a different
message pair (m, t). An adversary succeeds in deception if

Versk(m, t) = 1 and m 6= m .

Impersonation attacks. An adversary tries to create a valid message pair
(m, t) without seeing any messages from the sender. An adversary succeeds
in deception if

Versk(m, t) = 1 .
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Maximal resistance against substitutions

For clarity, assume thatM = {0, 1}, K = {0, 1, 2, 3} and the key is chosen
uniformly sk←u K. Then the keyed hash function can be viewed as a table.

0 1 2 3
0 a b c d
1 e f g h

If a, b, c and d are all different, then the pair (0, t) reveals the key sk and
substitution becomes trivial. Hence, the optimal layout is following.

0 1 2 3
0 a a b b
1 a b a b
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Maximal resistance against impersonation

Again, assume that M = {0, 1}, K = {0, 1, 2, 3} and sk ←u K. Then the
following keyed hash function achieves maximal impersonation resistance.

0 1 2 3
0 a b c d
1 a b c d

However, this keyed hash function is insecure against substitution attacks.

Conclusion. Security against substitution attacks and security against
impersonation attacks are contradicting requirements.
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Information Theoretical

Security



Authentication as hypothesis testing

The procedure Versk(·) must distinguish between two hypotheses.

H0: The pair c = (m, t) is created by the sender.

H1: The pair c = (m, t) is created by the adversary A.

Let C0 and C1 be the corresponding distributions of messages.

Since the ratio of false negatives Pr [Versk(m, t) = 0] must be zero, the
optimal verification strategy is the following

Versk(c) = 1 ⇔ c ∈ supp(C0)

To defeat the message authentication primitive, the adversary A must chose
the distribution C1 such that the ratio of false positives is maximal.

MTAT.07.003 Cryptology II, Message Authenitcation, 18 March, 2009 5



Kullback-Leibler divergence

Let (px)x∈{0,1}∗ and (qx)x∈{0,1}∗ be probability distributions corresponding
to hypotheses H0 and H1. Then Kullback-Leibler divergence is defined as

d(p‖q)
.
=

∑

x:px>0

px · log2

px

qx

,

Note that Jensen’s inequality assures

−d(p‖q) =
∑

x:px>0

px · log2

qx

px

≤ log2





∑

x:px>0

qx





and consequently

∑

x:px>0

qx ≥ 2−d(p‖q) .
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Lower bound on false positives

Fix a target message m. Then by construction

Pr
[

Versk(m, t) = 1
]

=
∑

pt,sk>0

qt,sk ≥ 2−d(p‖q)

where

pt,sk = Pr
[

sk← Gen : sk ∧ The sender creates t for m
]

qt,sk = Pr
[

sk← Gen : sk ∧ The adversary creates t for m
]
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Simplest impersonation attack

Consider the following attack

Am








sk← Gen

t← Macsk(m)

return (m, t)

Then obviously

Pr
[

t
]

=
∑

sk

Pr
[

sk← Gen : sk = sk
]

· Pr
[

t← Macsk(m)
]

is a marginal distribution of t generated by the sender.
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Success probability

As qsk,t = psk · pt the Kullback-Leibler divergence can be further simplified

d(p‖q) =
∑

sk,t

pt,sk · log2

pt,sk

psk · pt

=
∑

sk,t

pt,sk · log2 pt,sk −
∑

sk,t

pt,sk log2 psk −
∑

sk,t

pt,sk · log2 pt

= −H(sk, t) + H(sk) + H(t)

and thus

Pr [Successful impersonation] ≥ 2H(sk,t)−H(sk)−H(t) = 2−I(sk:t)

for a fixed target message m.
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An obvious substitution attack

To replace m with m, we can use the following strategy:

A(m, t, m)










sk∗← argmax
sk

Pr
[

sk← Gen : sk = sk|m, t
]

t← Macsk∗(m)

return (m, t)

Obviously, the adversary A succeeds if it guesses the key sk

Pr [Success] ≥ Pr [sk← Gen : sk = sk∗]

≥
∑

t

Pr [t = Macsk(m)] ·max
sk

Pr
[

sk = sk|t
]

.
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Properties of conditional entropy

Note that for any distribution (px)x∈{0,1}∗

H∞(X) = − log2

(

max
x:px>0

px

)

= min
x:px>0

(− log2 px)

≤
∑

x:px>0

px · (− log2 px) = H(X) .

Now for two variables

∑

y

Pr [y] ·max
x

Pr [x|y] =
∑

y

Pr [y] · 2−H∞(X|y) ≥
∑

y

Pr [y] · 2−H(X|y)

≥ 2

P

y
Pr[y]·(−H(X|y))

= 2−H(X|Y ) ,

where the second inequality follows from Jensen’s inequality.
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Lower bound on success probability

As the success probability of our impersonation attack is

Pr [Success] = Pr [sk← Gen : sk = sk∗]

=
∑

t

Pr [t = Macsk(m)] ·max
sk

Pr
[

sk = sk|t
]

,

we can rewrite in terms of conditional entropy

Pr [Success] ≥ 2−H(sk|t) .

MTAT.07.003 Cryptology II, Message Authenitcation, 18 March, 2009 12



Simmons’s lower bounds

For any message authentication primitive

Pr [Successful impersonation] ≥ max
m∈M

{

2−I(sk:t)
}

Pr [Successful substitution] ≥ max
m∈M

{

2−H(sk|t)
}

and thus

Pr [Successful attack] ≥ max
m∈M

{

2−min{I(sk:t),H(sk|t)}
}

≥ max
m∈M

{

2−
H(sk)

2

}

since I(sk : t) = H(sk) + H(t)−H(sk, t) = H(sk)−H(sk|t).
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Examples



Universal hash functions

A universal hash function h : M×K → T is a keyed hash function such
that for any two different inputs m0 6= m1, the corresponding hash values
h(m0, k) and h(m1, k) are independent and have a uniform distribution
over T when k is chosen uniformly from K.

Corollary. An authentication protocol that uses a universal hash function
h achieves maximal security against impersonation and substitution attacks

Pr [Successful deception] ≤
1

|T |

Example. A function h(m,k0‖k1) = k1 ·m+k0 is a universal hash function
ifM = GF(2n), K = GF(2n)×GF(2n) and operations are done in GF(2n).
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Polynomial message authentication code

Let m1, m2, . . . ,mℓ be n-bit blocks of the message and k0, k1 ∈ GF(2n)
sub-keys for the hash function. Then we can consider a polynomial

f(x) = mℓ · x
ℓ + mℓ−1 · x

ℓ−1 + · · ·+ m1 · x

over GF(2n) and define the hash value as

h(m, k) = f(k1) + k0 .

If k0 is chosen uniformly over GF(2n) then the hash value h(m, k) is also
uniformly distributed over GF(2n):

Pr [Successful impersonation] ≤ 2−n .
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Security against substitution attacks

Let A be the best substitution strategy. W.l.o.g. we can assume that A is
a deterministic strategy. Consequently, we have to bound the probability

max
m∈M

Pr
[

k ← K, (m, t)← A(m,h(m, k)) : h(m, k) = t ∧m 6= m
]

.

Since A outputs always the same reply for k ∈ K such that h(m, k) = t,
we must find cardinalities of the following sets:

⊲ a set of all relevant keys Kall = {k ∈ K : h(m, k) = t}

⊲ a set of good keys Kgood =
{

k ∈ K : h(m, k) = t ∧ h(m, k) = t
}

.
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Some algebraic properties

For each m, t and k1, there exists one and only one value of k0 such that
h(m, k) = t. Therefore, |Kall| = 2n for any m and t.

If h(m, k) = t and h(m, k) = t then

h(m, k)− h(m, k)− t + t = 0

m

fm(k1)− fm(k1)− t + t = 0

m

fm−m(k1)− t + t = 0

This equation has at most ℓ solutions k1 ∈ GF(2n), since degree of fm−m(x)
is at most ℓ. Since k1, m, t uniquely determine k0, we get |Kgood| ≤ ℓ.
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The corresponding bounds

Hence, we have obtained

Pr
[

k ← K : h(m,k) = t|m 6= m, t
]

=
|Kgood|

|Kall|
≤

ℓ

2n
.

Since

Pr
[

k ← K, (m, t)← A(m, h(m, k)) : h(m,k) = t ∧m 6= m
]

≤
∑

t

Pr [k ← K : h(m, k) = t] ·max
m 6=m

t∈T

Pr
[

h(m,k) = t|m 6= m, t
]

≤
∑

t

Pr [k ← K : h(m, k) = t] ·
ℓ

2n
≤

ℓ

2n
,

we also have a success bound on substitution attacks.
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Computational Security



Authentication with pseudorandom functions

Consider following authentication primitive:

⊲ secret key f ←u Fall where Fall = {f :M→ T };

⊲ authentication code Macf(m) = f(m)

⊲ verification procedure Verf(m, t) = 1⇔ f(m) = t.

This authentication primitive is 1
|T | secure against impersonation and

substitution attacks, since Mac is a universal hash function.

As this construction is practically uninstantiable, we must use (t, q, ε)-
pseudorandom function family F instead of Fall. As a result

Pr [Successful attack] ≤
1

|T |
+ ε

against all t-time adversaries if q ≥ 1.
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Formal security definition

A keyed hash function h : M × K → T is a (t, q, ε)-secure message

authentication code if any t-time adversary A:

Advmac
h (A) = Pr

[

GA = 1
]

≤ ε ,

where the security game is following

GA





















k ←u K

For i ∈ {1, . . . , q} do
[

Given mi ← A send ti ← h(mi, k) back to A

(m, t)← A

return [t
?
= h(m,k)] ∧ [(m, t) /∈ {(m1, t1), . . . , (mq, tq)}]
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Problems with multiple sessions

All authentication primitives we have considered so far guarantee security
if they are used only once. A proper message authentication protocol can
handle many messages. Therefore, we use additional mechanisms besides
the authentication primitive to assure:

⊲ security against reflection attacks

⊲ message reordering

⊲ interleaving attacks

Corresponding enhancement techniques

⊲ Use nonces to defeat reflection attacks.

⊲ Use message numbering against reordering.

⊲ Stretch secret key using pseudorandom generator.
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