
MTAT.07.003 Cryptology II
Spring 2009 / Exercise Session V

1. Pseudorandom permutation family F can be converted into a pseudoran-
dom generator by using a function f ←u F in the counter mode and output
f(0)‖f(1)‖ . . .‖f(n). Alternatively, we can use the following iterative out-
put feedback Ofbf scheme

c1 ← f(0), c2 ← f(c1), . . . , cn ← f(cn−1) ,

where c1, . . . , cn is the corresponding output. In both cases, the function
f is the seed of the pseudorandom function. Compare the corresponding
security guarantees. Which of them is better if we assume that F is
(n, t, ε)-pseudorandom permutation family?

Hint: To carry out the security analysis, formalise the hypothesis testing
scenario as a game pair and then gradually convert one game to another
by using the techniques introduced in Exercise Session IV. Pay a specific
attention to the cases when ci = ci+k for some k > 0.

2. Feistel cipher Feistelf1,...,fk
: {0, 1}

2n
→ {0, 1}

2n
is a classical block

cipher construction that consists of many rounds. In the beginning of the
first round, the input x is split into two halves such that L0‖R0 = x. Next,
each round uses a random function fi ← Fall to update both halves:

Li+1 ← Ri and Ri+1 ← Li ⊕ fi(Ri) .

The output of the Feistel cipher Feistelf1,...,fk
(L0‖R0) = Lk‖Rk.

(a) Show that the Feistel cipher is indeed a permutation.

(b) Show that the two-round Feistel cipher Feistelf1,f2
(L0‖R0) where

f1, f2 ← Fall is not a pseudorandom permutation. Give a corre-
sponding distinguisher that uses two encryption queries.

(c) Show the three-round Feistel cipher Feistelf1,f2,f3
(L0‖R0) where

f1, f2, f3 ← Fall is a pseudorandom permutation. For the proof, note
that the output of the three round Feistel cipher can be replaced with
uniform distribution if f2 and f3 are always evaluated at distinct in-
puts. Estimate the probability that the ith encryption query creates
the corresponding input collision for f2. Estimate the probability
that the ith encryption query creates an input collision for f3.

(?) Show that the tree-round Feistel cipher Feistelf1,f2,f3
(L0‖R0) is not

pseudorandom if the adversary can also make decryption queries.

(⋆) Show that the four-round Feistel cipher Feistelf1,f2,f3,f4
(L0‖R0)

where f1, f2, f3, f4 ← Fall is indistinguishable from Fprm even if the
adversary can make also decryption calls.
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(⋆) The counter mode converts any pseudorandom function into a pseudoran-
dom generator. Give a converse construction that converts any pseudo-
random generator into a pseudorandom function. Give the corresponding
security proof together with precise security guarantees.

Hint: Use a stretching function f : {0, 1}n → {0, 1}2n to fill a complete
binary tree with n-bit values.

3. Recall that the message space of the ElGamal cryptosystem is a (t, ε1)-
DDH group G. The latter is rather limiting, since normally one needs
to encrypt n-bit messages and not the group elements. The simplified
Elgamal cryptosystem is defined as follows:

• Gen returns sk = x and pk = y = gx for x←u Z|G|;

• Encpk(m) = (gk, h(yk)⊕m);

• Decsk(c1, c2) = c2 ⊕ h(cx
1);

where h : G → {0, 1}
n

is a almost regular hash function. That is, the
distribution h(y) for y ←u G is statistically ε2-close to the uniform distri-
bution over {0, 1}

n
. Prove that the simplified ElGamal cryptosystem is

also IND-CPA secure and give the corresponding security bounds.

Hint: Mofify the security proof for the ElGamal cryptosystem to acco-
modate the change. Where do you need almost regularity?

(⋆) In practice, it is difficult if not impossible to define almost regular
hash function h : G→ {0, 1}

n
. Relax the security requirements even

further so that the corresponding construction is also practical.

4. Let (Gen, Enc, Dec) be a public key cryptosystem and Gen◦, Enc◦, Dec◦) a
symmetric key cryptosystem. Then we can define a hybrid cryptosystem.

• Key generation. Run the key generation algorithm Gen and output
the corresponding secret and public key pair (sk, pk).

• Encryption. Given a message m, generate a session key sk◦ ← Gen◦

and output a pair c1 ← Encpk(sk◦) and c2 ← Enc◦sk◦(m).

• Decryption. To decrypt a ciphertext (c1, c2), first reconstruct the
session key sk◦ ← Decsk(c1) and then recover m← Dec◦sk◦(c2).

Prove the following facts about the hybrid encryption scheme.

(a) Hybrid encryption scheme is functional.

(b) If the public key cryptosystem is (t, ε1)-IND-CPA and the symmetric
key cryptosystem is (t, ε2)-IND-CPA secure, then the hybrid encryp-
tion scheme is (t, 2ε1 + ε2)-IND-CPA secure.

(c) If both cryptosystems are IND-CCA1 secure then the hybrid encryp-
tion scheme is IND-CC1 secure. Derive corresponding security guar-
antees. What about IND-CCA2 security?
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(d) Can one represent the ElGamal and the Goldwasser-Micali cryptosys-
tems as hybrid encryption schemes or not?

5. A cryptosystem is homomorphic if there exists an efficient multiplication
operation defined over the ciphertext space C such that for any valid en-
cryption c1 ← Encpk(m1) the distribution c1 ·Encpk(m2) coincides with the
distribution Encpk(m1 ⊗m2), where ⊗ is a binary operation defined over
the message spaceM. Show that

(a) the RSA cryptosystem is multiplicatively homomorphic;

(b) the ElGamal cryptosystem is multiplicatively homomorphic;

(c) the Goldwasser-Micali cryptosystem is XOR homomorphic;

6. Prove the following claims about public key cryptosystems

(a) A homomorphic cryptosystem cannot be non-malleable.

(b) NM-CPA security implies IND-CPA security.

(c) NM-CCA1 security implies IND-CCA1 security.

(d) NM-CCA2 security implies IND-CCA2 security.

(⋆) Show as many separations among the security properties of cryptosystem
as you can. For example, show that there are IND-CPA secure cryptosys-
tems that are not IND-CCA1 secure.
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