MTAT.07.003 Cryptology II Spring 2009 / Exercise Session V

1. Pseudorandom permutation family \mathcal{F} can be converted into a pseudorandom generator by using a function $f \leftarrow \mathcal{F}$ in the counter mode and output $f(0) \| f(1) \| \dots \| f(n)$. Alternatively, we can use the following iterative output feedback OFB_f scheme

 $c_1 \leftarrow f(0), c_2 \leftarrow f(c_1), \dots, c_n \leftarrow f(c_{n-1})$,

where c_1, \ldots, c_n is the corresponding output. In both cases, the function f is the seed of the pseudorandom function. Compare the corresponding security guarantees. Which of them is better if we assume that \mathcal{F} is (n, t, ε) -pseudorandom permutation family?

Hint: To carry out the security analysis, formalise the hypothesis testing scenario as a game pair and then gradually convert one game to another by using the techniques introduced in Exercise Session IV. Pay a specific attention to the cases when $c_i = c_{i+k}$ for some k > 0.

2. Feistel cipher $\text{FEISTEL}_{f_1,\ldots,f_k}$: $\{0,1\}^{2n} \to \{0,1\}^{2n}$ is a classical block cipher construction that consists of many rounds. In the beginning of the first round, the input x is split into two halves such that $L_0 || R_0 = x$. Next, each round uses a random function $f_i \leftarrow \mathcal{F}_{\text{all}}$ to update both halves:

$$L_{i+1} \leftarrow R_i$$
 and $R_{i+1} \leftarrow L_i \oplus f_i(R_i)$.

The output of the Feistel cipher $\text{FEISTEL}_{f_1,\ldots,f_k}(L_0||R_0) = L_k||R_k.$

- (a) Show that the Feistel cipher is indeed a permutation.
- (b) Show that the two-round Feistel cipher $\text{FEISTEL}_{f_1, f_2}(L_0 || R_0)$ where $f_1, f_2 \leftarrow \mathcal{F}_{\text{all}}$ is not a pseudorandom permutation. Give a corresponding distinguisher that uses two encryption queries.
- (c) Show the three-round Feistel cipher $\text{FEISTEL}_{f_1, f_2, f_3}(L_0||R_0)$ where $f_1, f_2, f_3 \leftarrow \mathcal{F}_{\text{all}}$ is a pseudorandom permutation. For the proof, note that the output of the three round Feistel cipher can be replaced with uniform distribution if f_2 and f_3 are always evaluated at distinct inputs. Estimate the probability that the *i*th encryption query creates the corresponding input collision for f_2 . Estimate the probability that the *i*th encryption for f_3 .
- (?) Show that the tree-round Feistel cipher $\text{FEISTEL}_{f_1, f_2, f_3}(L_0 || R_0)$ is not pseudorandom if the adversary can also make decryption queries.
- (*) Show that the four-round Feistel cipher $\text{FEISTEL}_{f_1, f_2, f_3, f_4}(L_0 || R_0)$ where $f_1, f_2, f_3, f_4 \leftarrow \mathcal{F}_{\text{all}}$ is indistinguishable from \mathcal{F}_{prm} even if the adversary can make also decryption calls.

(*) The counter mode converts any pseudorandom function into a pseudorandom generator. Give a converse construction that converts any pseudorandom generator into a pseudorandom function. Give the corresponding security proof together with precise security guarantees.

Hint: Use a stretching function $f : \{0,1\}^n \to \{0,1\}^{2n}$ to fill a complete binary tree with *n*-bit values.

- 3. Recall that the message space of the ElGamal cryptosystem is a (t, ε_1) -DDH group \mathbb{G} . The latter is rather limiting, since normally one needs to encrypt *n*-bit messages and not the group elements. The simplified Elgamal cryptosystem is defined as follows:
 - Gen returns $\mathsf{sk} = x$ and $\mathsf{pk} = y = g^x$ for $x \leftarrow_u \mathbb{Z}_{|\mathbb{G}|}$;
 - $\operatorname{Enc}_{\operatorname{pk}}(m) = (g^k, h(y^k) \oplus m);$
 - $\mathsf{Dec}_{\mathsf{sk}}(c_1, c_2) = c_2 \oplus h(c_1^x);$

where $h : \mathbb{G} \to \{0,1\}^n$ is a almost regular hash function. That is, the distribution h(y) for $y \leftarrow_u \mathbb{G}$ is statistically ε_2 -close to the uniform distribution over $\{0,1\}^n$. Prove that the simplified ElGamal cryptosystem is also IND-CPA secure and give the corresponding security bounds.

Hint: Mofify the security proof for the ElGamal cryptosystem to accomodate the change. Where do you need almost regularity?

- (*) In practice, it is difficult if not impossible to define almost regular hash function $h : \mathbb{G} \to \{0, 1\}^n$. Relax the security requirements even further so that the corresponding construction is also practical.
- 4. Let (Gen, Enc, Dec) be a public key cryptosystem and Gen[°], Enc[°], Dec[°]) a symmetric key cryptosystem. Then we can define a hybrid cryptosystem.
 - Key generation. Run the key generation algorithm Gen and output the corresponding secret and public key pair (sk, pk).
 - Encryption. Given a message m, generate a session key sk° ← Gen° and output a pair c₁ ← Enc_{pk}(sk_o) and c₂ ← Enc_{sk^o}(m).
 - **Decryption.** To decrypt a ciphertext (c_1, c_2) , first reconstruct the session key $\mathsf{sk}^\circ \leftarrow \mathsf{Dec}_{\mathsf{sk}}(c_1)$ and then recover $m \leftarrow \mathsf{Dec}_{\mathsf{sk}^\circ}^\circ(c_2)$.

Prove the following facts about the hybrid encryption scheme.

- (a) Hybrid encryption scheme is functional.
- (b) If the public key cryptosystem is (t, ε_1) -IND-CPA and the symmetric key cryptosystem is (t, ε_2) -IND-CPA secure, then the hybrid encryption scheme is $(t, 2\varepsilon_1 + \varepsilon_2)$ -IND-CPA secure.
- (c) If both cryptosystems are IND-CCA1 secure then the hybrid encryption scheme is IND-CC1 secure. Derive corresponding security guarantees. What about IND-CCA2 security?

- (d) Can one represent the ElGamal and the Goldwasser-Micali cryptosystems as hybrid encryption schemes or not?
- 5. A cryptosystem is homomorphic if there exists an efficient multiplication operation defined over the ciphertext space C such that for any valid encryption $c_1 \leftarrow \mathsf{Enc}_{\mathsf{pk}}(m_1)$ the distribution $c_1 \cdot \mathsf{Enc}_{\mathsf{pk}}(m_2)$ coincides with the distribution $\mathsf{Enc}_{\mathsf{pk}}(m_1 \otimes m_2)$, where \otimes is a binary operation defined over the message space \mathcal{M} . Show that
 - (a) the RSA cryptosystem is multiplicatively homomorphic;
 - (b) the ElGamal cryptosystem is multiplicatively homomorphic;
 - (c) the Goldwasser-Micali cryptosystem is XOR homomorphic;
- 6. Prove the following claims about public key cryptosystems
 - (a) A homomorphic cryptosystem cannot be non-malleable.
 - (b) NM-CPA security implies IND-CPA security.
 - (c) NM-CCA1 security implies IND-CCA1 security.
 - (d) NM-CCA2 security implies IND-CCA2 security.
- (*) Show as many separations among the security properties of cryptosystem as you can. For example, show that there are IND-CPA secure cryptosystems that are not IND-CCA1 secure.