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Formal Syntax



Digital signature scheme

(sk, pk)← Gen
pk

m←M0

s← Signsk(m)(m, s) (m, s)

Verpk(m, s)
?
= 1

⊲ To establish electronic identity, Charlie must generate (pk, sk) ← Gen
and convinces others that the public information pk represents him.

⊲ A keyed hash function Signsk :M→ S takes in a plaintext and outputs
a corresponding digital signature.

⊲ A public verification algorithm Verpk :M×S → {0, 1} tries to distinguish
between altered and original message pairs.

⊲ The signature scheme is functional if for all (pk, sk)← Gen and m ∈M:
Verpk(m, Signsk(m)) = 1 .
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Example. RSA-1024 signature scheme

Key generation Gen:

1. Choose uniformly 512-bit prime numbers p and q.

2. Compute N = p · q and φ(N) = (p− 1)(q − 1).

3. Choose uniformly e← Z
∗
φ(N) and set d = e−1 mod φ(N).

4. Output sk = (p, q, e, d) and pk = (N, e).

Signing and verification:

M = ZN , S = ZN , R = ∅

Signsk(m) = md mod N

Verpk(m, s) = 1 ⇔ m = se mod N .
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Security definitions

Attack scenarios

⊲ Key only attack. The adversary has access only to the public key pk.

⊲ Chosen message attack. Besides the public key pk, the adversary can
adaptively query a list of valid signatures (m1, s1), . . . , (mn, sn).

Attack types

⊲ Universal forgery. The adversary must create a valid signature for a
prescribed message m that is chosen from a distribution M0.

⊲ Existential forgery. The adversary must create a valid signature for some
message m, i.e., there are no limitations on the choice of message.

One more signature attack = Chosen message attack + Existential forgery
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Security against one more signature attack

A signature scheme is (t, q, ε)-secure against one more signature attack if

Advforge(A) = Pr [GA = 1] ≤ ε

for any t-time adversary A where
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(pk, sk)← Gen

For i ∈ {1, . . . , q} do
"

mi ← A(si−1)

si ← Signsk(mi)

(m, s)← A

if (m, s) ∈ {(m1, s1), . . . , (mq, sq)} return 0

return Verpk(m, s)
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A conceptual description of digital signatures

A digital signature is a non-interactive and transferable counterpart of the
following extended identification protocol:

1. Verifier sends a message m to a prover.

2. The prover accepts the message m.

3. The prover authenticates him or herself by using sk.

Transferability means that signature must be verifiable by other parties that
did not participate in the creation of the signature.

As a result, digital signature is either

⊲ a non-interactive proof of possession that is linked to the message m.

⊲ a non-interactive proof of knowledge that is linked to the message m.

MTAT.07.003 Cryptology II, Digital Signatures, 8 April, 2009 5



Digital Signatures Based on

Proofs of Possession



Lamport one-time signatures

Public parameters:

Let {0, 1}n be the message space and f : X → Y a one-way function.

Key Generation:

Generate 2×n random elements xij ←u X and compute yij ← f(xij).
The secret key is sk = (xij) and the public key is pk = (yij).

Signing:

To sign a message m = mn . . .m1 release σ = (x1m1, . . . , xnmn).

Verification:

A signature (m,σ) is valid if f(σi) = yimi
for i = 1, . . . , n.
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Security of one-time signatures

Theorem. If f is (t, ε)-one-way function, then Lamport signature scheme
is (t, 1, 2nε)-secure against one more signature attack.

Proof. A successful forgery must reveal an inverse of yi¬mi
for some i.

B(y)


















Choose 2n− 1 elements of (xij)←u X .

Compute 2n− 1 entries yij ← f(xij).

Put y to the missing place and send pk to A.

Reveal n elements of (xij) to A if possible.

Return x if A reveals x such that f(x) = y.
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Merkle signature scheme

x00 x01 x10 x11

y00 y01 y10 y11

c0 c1

c∗ General description

⊲ Public key pk is a root hash c∗

⊲ Secret key sk consists of all leafs xij.

⊲ A signature σ is a minimal amount of
information needed to recompute c∗.

⊲ A secret key can be compressed by a
pseudoramndom function family.

Detailed description

⊲ All intermediate values cu are computed by hashing cu ← h(cu0, cu1).

⊲ The second level values yu are computed as before yu ← f(xu).

⊲ The secret key can be further compacted by computing xu ← g(u, k)
where g : I×K → X induces a pseudorandom function family G = {gk}.
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Trapdoor one-way permutations

A collection of trapdoor permutations Ftp is determined by three algorithms
(Gen, Map, Inv) such that

∀(pk, sk)← Gen, ∀m ∈Mpk : Invsk(Mappk(m)) = m

and both algorithms Mappk(·) and Invsk(·) are deterministic.
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OW-CPA security

A collection of trapdoor permutations Ftp is (t, ε)-secure if for any t-time
adversary A

Advinv-cpa(A) = Pr
[

GA = 1
]

≤ ε

where

GA















(pk, sk)← Gen

m←u Mpk

y ← Mappk(m)

return [A(pk, y)
?
= m]
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Full Domain Hash

Setup

Run (pk, sk) ← Gen to create an instance of trapdoor permutation.
Choose h :M→Mpk from a collision resistant function family H.

Signing

To sign m ∈M, compute x← h(m) and output s← Invsk(x).

Verification

A pair (m, s) is a valid signature if h(m) = Mappk(s).
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Random oracle model

Let us model the hash function by an oracle Opk(·) that evaluates h←u Hall

where Hall = {h :M→Mpk} is a set of all functions.

Thus, the advantage is now computed as average

Advforge
Hall

(A) =
1

|Hall|
·

∑

h∈Hall

Advforge
h (A) .

In reality, we substitute Hall with a suitable hash family H and hope

Advforge
H (A) =

1

|H|
·
∑

h∈H

Advforge
h (A) ≈ Advforge

Hall
(A)

for all relevant adversaries A ∈ A humans devise.
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Security in the random oracle model

Theorem. Let Ftp is (t, ε)-secure collection of trapdoor permutations
such that Mappk(·) is always τ -time computable. Then the FDH signature
scheme is (t− (qh + qs + 1) · τ, qs, (qh + qs + 1) · ε)-secure against one more
signature attack provided that the adversary can do up to qh hash queries.

Drawbacks

⊲ The result holds only in random oracle model.

⊲ The security bound increases linearly with qh and ds.

⊲ PSS signature scheme achieves a “sublinear” bound.

⊲ The proof cannot be generalised to the standard model [Pallier2007].
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The corresponding proof

⊲ We can always assume that A queries hash for the forgery.

⊲ The following evaluation strategies lead to identical results

Opk(m)








if H[m] = ⊥ then
[

H[m]←u Mpk

return H[m]

Opk(m)














if H[m] = ⊥ then
[

S[m]←u Mpk

H[m]← Mappk(S[m])

return H[m]

⊲ Let εi be the probability that forgery was successful and the ith hash
query corresponded to the message.

⊲ Then εi ≤ ε, since otherwise we would have a too efficient inverter.
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Digital Signatures Based on

Proofs of Knowledge



Sigma protocols

sk Vpk(α, β, γ)

β ← Bα← R α

β

γ = γsk(α, β)

A sigma protocol for an efficiently computable relation R ⊆ {0, 1}∗×{0, 1}∗

is a three move protocol that satisfies the following properties.

⊲ Σ-structure. A prover first sends a commitment, next a verifier sends
varying challenge, and then the prover must give a consistent response.

⊲ Functionality. The protocol run between an honest prover P(sk) and
verifier V(pk) is always accepting if (sk, pk) ∈ R.
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Security properties of sigma protocols

sk Vpk(α, β, γ)

β ← Bα← R α

β

γ = γsk(α, β)

⊲ Perfect simulatability. There exists an efficient non-rewinding simulator
S such that the output distribution of a semi-honest verifier V∗ in the
real world and the output distribution of SV∗ in the ideal world coincide.

⊲ Special soundness. There exists an efficient extraction algorithm Extr
that, given two accepting protocol runs (α, β0, γ0) and (α, β1, γ1) with
β0 6= β1 that correspond to pk, outputs sk∗ such that (sk∗, pk) ∈ R
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Fiat-Shamir heuristics

Fiat-Shamir heuristics converts any sigma-protocol to a signature scheme.

sk Vpk(α, β, γ)

β ← Bα← R
α

β

γ

Sigma protocols are

⇒ interactive

⇒ non-transferrable

and cannot be linked to

⇒ particular messages

sk,m Vpk(α, β, γ) ∧ h(m, α)
?
= β

α← R
α

β ← h(m, α)

s = (α, β, γ)

m

If β ← h(m, α) then
⇒ the signer cannot cheat

⇒ the protocol is non-interactive

⇒ the protocol is transferable
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Generic signature schemes

Let π be a sigma protocol specified by the prover and verifier algorithms
Psk and Vpk. Then the corresponding generic signature scheme is following.

Setup

Use output (pk, sk)← Gen of the sigma protocol setup.

Signing

To sign a message m, output (α, β, γ) as a signature where

α← Psk, β ← h(m, α), γ ← Psk(β) .

Verification

A tuple (m, α, β, γ) is a valid signature if

β = h(m, α) ∧ Verpk(α, β, γ) = 1 .
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Famous examples

Schnorr authentication protocol

⋄ Schnorr signature scheme

⋄ DSA algorithm

⋄ ElGamal signature scheme

⋄ Nyberg-Rueppel signature scheme

Fiat-Shamir identification protocol

⋄ Feige-Fiat-Shamir signature scheme

Guillou-Quisquater identification protocol

⋄ Guillou-Quisquater signature scheme
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Security in the random oracle model

Basic Forking Lemma. Let κ be the knowledge error of the sigma
protocol. If for a particular public key pk, a t-time adversary A manages to
output valid signature by making at most ℓ queries to the random oracle
and no queries to the signing oracle with probability ε, then there exist an
extraction algorithm K for that runs in expected time

E[τ ] = Θ

(

(ℓ + 2) · t

ε− κ

)

and returns the corresponding secret key sk.

Simulatability Lemma. Oracle calls to the signing oracle can be replaced
with the runs of the sigma protocol simulator. The probability of simulation
failures due to the contradicting assignments for O(·) are negligible.
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An encoding of the extraction task

Assume that A never queries the same value h(mi, αi) twice and that A

itself verifies the validity of the candidate signature (mn+1, sn+1).

Let ω0 denote the randomness used by A and let ω1, . . . ωℓ+1 be the replies
for the hash queries h(mi, αi). Now define

A(ω0, ω1, . . . , ωℓ+1) =

{

i, if the ith reply ωi is used in forgery ,

0, if A fails .

⊲ For any ω = (ω0, . . . , ωi−1, ωi, . . . , ωℓ+1), A behaves identically up to
the ith query as with the randomness ω.

⊲ To extract the secret key sk, we must find ω and ω such that A(ω) = i

and A(ω) = i and ωi 6= ωi.
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Classical algorithm

Rewind:

1. Probe random entries A(ω) until A(r, c) 6= 0.

2. Store the matrix location ω and the rewinding point i← A(ω).

3. Probe random entries A(ω) until A(ω) = i.

4. Output the location tuple (ω,ω).

Rewind-Exp:

1. Repeat the procedure Rewind until ωi 6= ωi.

2. Use the knowledge extraction lemma to extract sk.
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Average-case running time

Theorem. If a array A(ω) with entries in {0, . . . , ℓ} contains ε-fraction of
nonzero entries, then Rewind and Rewind-Exp make on average

E[probes|Rewind] =
2

ε

E[probes|Rewind-Exp] =
ℓ + 1

ε− κ

probes where the knowledge error

κ =
ℓ

∑

i=1

Pr [ωi = ωi] .

Proof. We prove this theorem in another lecture.
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Interpretation of the Results



Objective and subjective security

All forms of the Forking Lemma are stated with respect to a fixed key and
thus give only soundness guarantees.

If we believe that no human can devise an algorithm that for a particular

public key pk computes the corresponding secret key, then we also get the
corresponding subjective security guarantee.

For objective security guarantees, we have to consider average success
probability over all public keys. In this situation, the knowledge extraction
with high probability is overkill. Fixed number of probes together with
Jensen’s inequality give more tight bounds.

All these security guarantees hold in the random oracle model!
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Average case nature of advantages

General purpose
Weakly specialised

Trivial

h

Advforge(A|h)

1

ε

The limit on the average advantage over all functions means:

⊲ An attack algorithm A can be successful on few functions

⊲ For randomly chosen function family H the corresponding average
advantage is comparable with high probability over the choice of H.

Such argumentation does not rule out possibility that one can choose
adaptively a specialised attack algorithm A based on the description of h.
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Security against generic attacks

An adaptive choice of a specialised attack algorithm implies that the attack
depends on the description of the hash function and not the family H.

Often, it is advantageous to consider only generic attacks that depend on
the description of function family H and use only black-box access to the
function h. Therefore, we can consider two oracles OHall

and OH.

If H is pseudorandom function family then for any generic attack, we can
substitute H with the Hall and the success decreases marginally.

Theorem. Security in the random oracle model implies security against
generic attacks if H is a pseudorandom function family.

⊲ The assumption that attackers use only generic attacks is subjective.

⊲ Such an assumption are not universal, i.e., there are settings where this
assumption is clearly irrational (various non-instantiability results).
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Why the random oracle argument truly fails?

All currently used hash functions are iterative

h(m1, . . . , mk) = f(· · · f(f(iv, m1),m2), . . . , mk) .

Consequently, the class of generic attack Abb that treats h(·) as a black
box without internal structure is sub-optimal.

Instead, we should consider a wider class of attacks that treat f as a black
box, but still try to exploit iterative structure of the hash function.

However, the corresponding black box adversaries Af(·),h(·) can distinguish
H form Hall with high probability.

As a result, there might be a successful attack strategy Af(·),h(·) that works
for all possible iterative hash functions, although the signature scheme is
secure in the random oracle model.
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