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Abstract. Gathering and processing sensitive data is a difficult task. In fact, there
is no common recipe for building the necessary information systems. In this pa-
per, we present a provably secure and efficient general-purpose computation sys-
tem to address this problem. Our solution—SHAREMIND—is a virtual machine
for privacy-preserving data processing that relies on share computing techniques.
This is a standard way for securely evaluating functions in a multi-party computa-
tion environment. The novelty of our solution is in the choice of the secret sharing
scheme and the design of the protocol suite. We have made many practical de-
cisions to make large-scale share computing feasible in practice. The protocols
of SHAREMIND are information-theoretically secure in the honest-but-curious
model with three computing participants. Although the honest-but-curious model
does not tolerate malicious participants, it still provides significantly increased
privacy preservation when compared to standard centralised databases.

1 Introduction

Large-scale adoption of online information systems has made both the use and abuse of
personal data easier than before. This has caused an increased awareness about privacy
issues among individuals. In many countries, databases containing personal, medical or
financial information about individuals are classified as sensitive and the corresponding
laws specify who can collect and process sensitive information about a person.

On the other hand, the use of sensitive information plays an essential role in medical,
financial and social studies. Thus, one needs a methodology for conducting statistical
surveys without compromising the privacy of individuals. Privacy-preserving data min-
ing techniques try to address such problems. So far the focus has been on randomised
response techniques [2,1,13]. In a nutshell, recipients of the statistical survey apply a
fixed randomisation method on their responses. As a result, each individual reply is
erroneous, whereas the global statistical properties of the data are preserved. Unfortu-
nately, such transformations can preserve privacy only on average and randomisation
reduces the precision of the outcomes. Also, we cannot give security guarantees for in-
dividual records. In fact, the corresponding guarantees are rather weak and the use of
extra information might significantly reduce the level of privacy.

Another alternative is to consider this problem as a multi-party computation task,
where the data donors want to securely aggregate data without revealing their private
? This research has been supported by Estonian Science Foundation grant number 7081.



inputs. However, the corresponding cryptographic solutions quickly become practically
intractable when the number of participants grows beyond few hundreds. Moreover,
data donors are often unwilling to stay online during the entire computation and their
computers can be easily taken over by adversarial forces.

As a way out, we propose a hierarchical solution, where all computations are done
by dedicated miner parties who are less susceptible to external corruption. Conse-
quently, we can assume that only a few miner parties can be corrupted during the com-
putation. Thus, we can use secret sharing and share computing techniques for privacy-
preserving data aggregation. In particular, data donors can safely submit their inputs by
sending the corresponding shares to the miners. As a result, the miners can securely
evaluate any aggregate statistic without further interaction with the data donors.

Our contribution. The presented theoretical solution does not form the core of this
paper. Share computing techniques have been known for decades and thus all impor-
tant results are well established by now, see [3,7] for further references. Hence, we
focused mainly on practical aspects and developed the SHAREMIND framework for
privacy-preserving computations. The SHAREMIND framework is designed to be an
efficient and easily programmable platform for developing and testing various privacy-
preserving algorithms. It consists of the computation runtime environment and a pro-
gramming library for creating private data processing applications. As a result, one can
develop secure multi-party protocols without the explicit knowledge of all implementa-
tion details. On the other hand, it is also possible to test and add your own protocols to
the library, since the source code of SHAREMIND is freely available [17].

We have made some non-standard choices to assure maximal efficiency. First, the
SHAREMIND framework uses additive secret sharing scheme over the ring Z232 . Be-
sides the direct computational gains, such a choice also simplifies many share comput-
ing protocols. When a secret sharing protocol is defined over a finite field Zp, then any
overflow in computations causes modular reductions that corrupt the end result. In the
SHAREMIND framework, all modular reductions occur modulo 232 and thus results al-
ways coincide with the standard 32-bit integer arithmetic. On the other hand, standard
share computing techniques are not applicable for the ring Z232 . In particular, we were
forced to roll out our own multiplication protocol, see Sect. 4.

Second, the current implementation of SHAREMIND supports the computationally
most efficient setting, where only one of three miner nodes can be semi-honestly cor-
rupted. As discussed in Sect. 3, the corresponding assumption can be enforced with a
reasonable practical effort. Also, it is possible to extend the framework for other set-
tings. For example, one can implement generic methodology given in [9].

To make the presentation more fluent, we describe the SHAREMIND framework step
by step through Sect. 2–5. Performance results are presented and analysed in Sect. 6.
In particular, we compare our results with other implementations of privacy-preserving
computations [16,6,18]. Finally, we conclude our presentation with some improvement
plans for future, see Sect. 7.

Some of the details of this work have been omitted because of space limitations. The
full version of this article that covers all these details can be found on the homepage of
SHAREMIND project [17] and in the IACR ePrint Archive [5].



2 Cryptographic Preliminaries

Theoretical attack model. In this article, we state and prove all security guarantees
in the information-theoretical setting, where each pair of participants is connected with
a private communication channel that provides asynchronous communication. In other
words, a potential adversary can only delay or reorder messages without reading them.
We also assume that the communication links are authentic, i.e., the adversary cannot
send messages on behalf of non-corrupted participants. The adversary can corrupt par-
ticipants during the execution of a protocol. In the case of semi-honest corruption, the
adversary can only monitor the internal state of a corrupted participant, whereas the
adversary has full control over maliciously corrupted participants. We consider only
threshold adversaries that can adaptively corrupt up to t participants. Such an attack
model is well established, see [4,14] for further details.

Secondly, we consider only self-synchronising protocols, where the communication
can be divided into distinct rounds. A protocol is self-synchronising if the adversary
cannot force (semi-)honest participants to start a new communication round until all
other participants have completed the previous round. As a result, this setting becomes
equivalent to the standard synchronised network model with a rushing adversary.

Secure multi-party computation. Assume that participants P1, . . . ,Pn want to com-
pute outputs yi = fi(x1, . . . , xn) where x1, . . . , xn are corresponding private inputs.
Then the security of a protocol π that implements the described functionality is defined
by comparing the protocol with the ideal implementation π◦, where all participants sub-
mit their inputs x1, . . . , xn securely to the trusted third party T that computes the neces-
sary outputs yi = fi(x1, . . . , xn) and sends y1, . . . , yn securely back to the respective
participants. A malicious participant Pi can halt the ideal protocol π◦ by submitting
xi = ⊥. Then the trusted third party T sends ⊥ as an output for all participants. Now
a protocol π is secure if for any plausible attack A against the protocol π there exists a
plausible attack A◦ against the protocol π◦ that causes comparable damage.

For brevity, let us consider only the stand-alone setting, where only a single protocol
instance is executed and all honest participants carry out no side computations. Let
φi = (σi, xi) denote the entire input state of Pi and let ψi = (φi, yi) denote the entire
output state. Similarly, let φa and ψa denote the inputs and outputs of the adversary
and φ = (φ1, . . . , φn, φa), ψ = (ψ1, . . . , ψn, ψa) the corresponding input and output
vectors. Then a protocol π is perfectly secure if for any plausible τre-time real world
adversary A there exists a plausible τid-time ideal world adversary A◦ such that for any
input distribution φ ← D the corresponding output distributions ψ and ψ◦ in the real
and ideal world coincide and the running times τre and τid are comparable.

In the asymptotic setting, the running times are comparable if τid is polynomial in
τre. For fixed time bound τre, one must decide an acceptable time bound τid by him-
or herself. All security proofs in this article are suitable for both security models, since
they assure that τid ≤ c · τre where c is a relatively small constant.

In our setting, a real world attack A is plausible if it corrupts up to t participants.
The corresponding ideal world attack A◦ is plausible if it corrupts the same set of par-
ticipants as the real world attack. Further details and standard results can be found in
the manuscripts [3,11,7,8].



Universal composability. Complex protocols are often designed by combining several
low level protocols. Unfortunately, stand-alone security is not enough to prove the se-
curity of the compound protocol and we must use more stringent security definitions.
More formally, let %〈·〉 be a global context that uses the functionality of a protocol π.
Then we can compare real and ideal world protocols %〈π〉 and %〈π◦〉.

Let φ, ψ, ψ◦ denote the input and output vectors of the compound protocols %〈π〉
and %〈π◦〉. Then a protocol π is perfectly universally composable if for any plausible
τre-time attack A against %〈π〉 there exists a plausible τid-time attack A◦ against %〈π◦〉
such that for any input distribution φ← D the output distributions ψ and ψ◦ coincide
and the running times τre and τid are comparable. We refer to the manuscript [8] for a
more formal and precise treatment.

Secret sharing schemes. Secret sharing schemes are used to securely distribute private
values to a group of participants. More precisely, letM be the set of possible secrets
and let S1, . . . ,Sn be the sets of possible shares. Then shares for the participants are
created with a randomised sharing algorithm Deal :M→ S1 × . . .× Sn. Participants
can use a recovery algorithm Rec : S1× . . .×Sn →M∪{⊥} to restore the secret form
shares. For brevity, we use a shorthand [[s]] to denote the shares [s1, . . . , sn] generated
by the sharing algorithm Deal(s).

Secret sharing schemes can have different security properties depending on the ex-
act details of Deal and Rec algorithms. The SHAREMIND framework uses additive shar-
ing over Z232 , where a secret value s is split to shares s1, . . . , sn ∈ Z232 such that

s1 + s2 + · · ·+ sn ≡ s mod 232

and any n − 1 element subset {si1 , . . . , sin−1} is uniformly distributed. As a result,
participants cannot learn anything about s unless all of them join their shares.

3 Privacy-Preserving Data Aggregation

As already emphasised in the introduction, organisations who collect and process data
may abuse it or reveal the data to third parties. As a result, people are unwilling to reveal
sensitive information without strong security guarantees. Although proper legislation
and auditing reduces the corresponding risks, data donors must often unconditionally
trust institutions that gather and process data. In the following, we show how to use
cryptographic techniques to avoid such unconditional trust.

The SHAREMIND framework for privacy-preserving computations uses secret shar-
ing to split confidential information between several nodes (miners). By sending the
shares of the data to the miners, data donors effectively delegate all rights over the data
to the consortium of miners. Let t be the prescribed corruption threshold such that no
information can be learnt about the inputs if the number of collaborating corrupted par-
ties is below t. We allow some miner nodes to be corrupted, but require that the total
number of corrupted nodes is below the threshold t. The latter can be achieved with
physical and organisational security measures such as dedicated server rooms and soft-
ware auditing. This is achievable, since the framework needs only a few miner nodes.
In practice, each miner node should be hosted by a separate respected organisation.
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Fig. 1. In SHAREMIND, input data and instructions are sent to miner nodes that use multi-party
computation to execute the algorithm. The result is returned when the computation is complete.

The high level description of the SHAREMIND framework is depicted in Fig. 1. Es-
sentially, one can view SHAREMIND as a virtual processor that provides secure storage
for shared inputs and performs privacy-preserving operations on them. Each miner node
Pi has a local database for persistent storage and a local stack for storing intermediate
results. All values in the database and stack are shared among all miners P1, . . . ,Pn by
using an additive secret sharing over Z232 . The framework provides efficient protocols
for basic mathematical operations so that one could easily implement more complex
tasks. In particular, one should be able to construct such protocols without any knowl-
edge about underlying cryptographic techniques. For that reason, all implementations of
basic operations in the SHAREMIND framework are perfectly universally composable.

The current version of SHAREMIND framework is based on three miner nodes and
tolerates semi-honest corruption of a single node, i.e., no information is leaked unless
two miner nodes collaborate. The latter is a compromise between efficiency and secu-
rity. Although a larger number of miner nodes increases the level of tolerable corruption,
it also makes assuring semi-honest behaviour much more difficult. Secondly, the com-
munication complexity of multi-party computation protocols is roughly quadratic in the
number of miners n and thus three is the optimal choice. Besides, it is difficult to find
more than a handful of independent organisations that can provide adequate protection
measures and are not motivated to collaborate with each other.

To achieve maximal efficiency, we also use non-orthodox secret sharing and share
computing protocols. Recall that most classical secret sharing schemes work over finite
fields. As a result, it is easy to implement secure addition and multiplication modulo
prime p or in the Galois field F2k . However, the integer arithmetic in modern computers
is done modulo 232. Consequently, the most space- and time-efficient solution is to use
additive secret sharing over Z232 . There is no need to implement modular arithmetic
and we do not have to compensate the effect of modular reductions. On the other hand,
we have to use non-standard methods for share computing, since Shamir secret sharing
scheme does not work over Z232 . We discuss these issues further in Sect. 4.

Initially, the database is empty and data donors have to submit their inputs by send-
ing the corresponding shares privately to miners who store them in the database. We
describe this issue more thoroughly in Sect. 4.2. After the input data is collected, a data



analyst can start privacy-preserving computations by sending instructions to the miners.
Each instruction is a command that either invokes a share computing protocol or just
reorders shares. The latter allows a data analyst to specify complex algorithms without
thinking about implementation details. More importantly, the corresponding complex
protocol is guaranteed to preserve privacy, as long as the execution path in the program
itself does not reveal private information. This restriction must be taken into account
when choosing data analysis algorithms for implementation on SHAREMIND.

Each arithmetic instruction invokes a secure multi-party protocol that provides new
shares. These shares are then stored on the stack. For instance, a unary stack instruction
f takes the top shares [[u]] of the stack and pushes the resulting shares [[f(u)]] to the
stack top. Analogously, a fixed binary stack instruction⊗ takes two top most shares [[u]]
and [[v]] and pushes [[u ⊗ v]] to the stack. For efficiency reasons, we have also imple-
mented vectorised operations to perform the same protocol in parallel. This significantly
reduces the number of rounds required for applying similar operations on many inputs.

The current implementation of SHAREMIND framework provides privacy preserv-
ing addition, multiplication and greater-than-or-equal comparison of two shared values.
It can also multiply a shared value with a constant and extract its bits as shares. Share
conversion from Z2 to Z232 and bitwise addition are mostly used as components in
other protocols, but they are also available to the programmer. We emphasise here that
many algorithms for data mining and statistical analysis do not use other mathematical
operations and thus this instruction set is sufficient for many applications. Moreover,
note that bit extraction and arithmetic primitives together are sufficient to implement
any Boolean circuit with a linear overhead and thus the SHAREMIND framework is also
Turing complete. We acknowledge here that there are more efficient ways to evaluate
Boolean circuits like Yao circuit evaluation (see [15]) and we plan to include protocols
with similar properties in the future releases of SHAREMIND.

We analyse the security of all share manipulation protocols in the information-
theoretical attack model that was specified in Sect. 2. How to build such a network form
standard cryptographic primitives is detailed in Sect. 5. Also, note that the next section
provides only a general description of all protocols, detailed technical description of all
protocols can be found in the full version of this article [5].

4 Share Computing Protocols

All computational instructions in the SHAREMIND framework are either unary or binary
operations over unsigned integers represented as elements of Z232 or their vectorised
counterparts. Hence, all protocols have the following structure. Each miner Pi uses
shares ui and vi as inputs to the protocol to obtain a new share wi such that [[w]] is a
valid sharing of f(u) or u⊗v. In the corresponding idealised implementation, all miners
send their input shares to the trusted third party T who restores all inputs, computes
the corresponding output w and sends back newly computed shares [[w]] ← Deal(w).
Hence, the output shares [[w]] are independent of input shares and thus no information
is leaked about the input shares if we publish all output shares.

Although share computing protocols are often used as elementary steps in more
complex protocols, they themselves can be composed from even smaller atomic oper-



1. Each party Pi sends a random mask ri ← Z232 to the right neighbour Pi+1.
2. Each party Pi uses the input share ui to compute the output wi ← ui + ri−1 − ri.

Fig. 2. Re-sharing protocol for three parties.

ations. Many of these atomic sub-protocols produce output shares that are never pub-
lished. Hence, it makes sense to introduce another security notion that is weaker than
universal composability. We say that a share computing protocol is perfectly simulat-
able if there exists an efficient universal non-rewinding simulator S that can simulate all
protocol messages to any real world adversary A so that for all input shares the output
distributions of A and S〈A〉 coincide. Most importantly, perfect simulatability is closed
under concurrent composition. The corresponding proof is straightforward.

Lemma 1. If all sub-protocols of a protocol are perfectly simulatable, then the protocol
is perfectly simulatable.

Proof (Sketch). Since all simulators Si of sub-protocols are non-rewinding, we can
construct a single compound simulator S∗ that runs simulators Si in parallel to provide
the missing messages to A. As each simulator Si is perfect, the final view of A is also
perfectly simulated. ut

However, perfect simulatability alone is not sufficient for universal composability.
Namely, output shares of a perfectly simulatable protocol may depend on input shares.
As a result, published shares may reveal more information about inputs than necessary.
Therefore, we must often re-share the output shares at the end of each protocol.

The corresponding ideal functionality is modelled as follows. Initially, the miners
send their shares [[u]] to the trusted third party T who recovers the input u ← Rec([[u]])
and sends new shares [[w]] ← Deal(u) back to the miners. The simplest universally
composable re-sharing protocol is given in Fig. 2. Indeed, we can construct a non-
rewinding interface I0 between the ideal world and a real world adversary A such that
for any input distribution the output distributions ψ and ψ◦ coincide. The correspond-
ing interface I0 forwards the input share ui of a corrupted miner Pi to T, provides
randomness ri ← Z232 to Pi, and given wi form T sends ri−1 ← wi − ui + ri to Pi.

The next lemma shows that perfect simulatability together with re-sharing assures
universal composability in the semi-honest model. In the malicious model, one needs
additional correctness guarantees against malicious behaviour.

Lemma 2. A perfectly simulatable share computing protocol that ends with perfectly
secure re-sharing of output shares is perfectly universally composable.

Proof. Let S be the perfect simulator for the share computing phase and I0 the interface
for the re-sharing protocol. Then we can construct a new non-rewinding interface I for
the whole protocol:

1. It first submits the inputs of the corrupted miners Pi to the trusted third party T and
gets back the output shares wi.



2. Next, it runs, possibly in parallel, the simulator S and the interface I0 with the
output shares wi to simulate the missing protocol messages.

Now the output distributions ψ and ψ◦ coincide, since the sub-routines S and I0 per-
fectly simulate protocol messages and I0 assures that the output shares of corrupted par-
ties are indeed wi. The latter assures that the adversarial output ψ◦a is correctly matched
together with the outputs of honest parties. Since the interface I is non-rewinding, the
claim holds even if the protocol is executed in a larger computational context %〈·〉. ut

4.1 Protocols for Atomic Operations

Due to the properties of additive sharing, we can implement share addition and multi-
plication by a public constant c with local operations only, as [u1 + v1, . . . , un + vn]
and [cu1, . . . , cun] are valid shares of u+ v and cu. However, these operations are only
perfectly simulatable, since the output shares depend on input shares.

A share multiplication protocol is another important atomic primitive. Unfortu-
nately, we cannot use the standard solutions based on polynomial interpolation and
re-sharing. Shamir secret sharing just fails in the ring Z232 . Hence, we must roll out our
own multiplication protocol. By the definition of the additive secret sharing scheme

uv =
n∑

i=1

uivi +
n∑

j 6=i

uivi mod 232 (1)

and thus we need sub-protocols for computing shares of uivj . For clarity and brevity,
we consider only a sub-protocol, where P1 has an input x1, P2 has an input x2 and
the miner P3 helps the others to obtain shares of x1x2. Du and Atallah were the first
to publish the corresponding protocol [12] although similar reduction techniques have
been used earlier. Fig. 3 depicts the corresponding protocol. Essentially, the correctness
of the protocol relies on the observation

x1x2 = −(x1 + α1)(x2 + α2) + x1(x2 + α2) + (x1 + α1)x2 + α1α2 .

The security follows from the fact that for uniformly and independently generated
α1, α2 ← Z232 the sums x1 + α1 and x2 + α2 have also uniform distribution.

1. P3 generates α1, α2 ← Z232 and sends α1 to P1 and α2 to P2.
2. P1 computes x1 + α1 and sends the result to P2.

P2 computes x2 + α2 and sends the result to P1.
3. Parties compute shares of x1x2:

(a) P1 computes its share w1 = −(x1 + α1)(x2 + α2) + x1(x2 + α2).
(b) P2 computes its share w2 = (x1 + α1)x2.
(c) P3 computes its share w3 = α1α2.

Fig. 3. Du-Atallah multiplication protocol.



Execute the following protocols concurrently:
1. Compute locally shares u1v1, u2v2 and u3v3.
2. Use six instances of the Du-Atallah protocol for computing shares of uivj where i 6= j.
3. Re-share the final sum of all previous sub-output shares.

Fig. 4. High-level description of the share multiplication protocol.

Lemma 3. The Du-Atallah protocol depicted in Fig. 3 is perfectly simulatable.

Proof. Let us fix inputs x1 and x2. Then P1 receives two independent uniformly dis-
tributed values and P2 receives two independent uniformly distributed values. P3 re-
ceives no values at all. Hence, it is straightforward to construct a simulator S that sim-
ulates the view of a semi-honest participant. ut

Fig. 4 depicts a share multiplication protocol that executes six instances of the Du-
Atallah protocol in parallel to compute the right side of the equation (1). Since the
protocols are executed concurrently, the resulting protocol has only three rounds.

Theorem 1. The multiplication protocol is perfectly universally composable.

Proof. Lemma 1 assures that the whole protocol is perfectly simulatable, as local com-
putations and instances of Du-Atallah protocol are perfectly simulatable. Since the out-
put shares are re-shared, Lemma 2 provides universal composability. ut

4.2 Protocol for Input Gathering

Many protocols can be directly built on the atomic operations described in the previous
sub-section. As the first example, we discuss methods for input validation. Recall that
initially the database of shared inputs is empty in the SHAREMIND framework and
the data donors have to fill it. There are two aspects to note. First, the data donors
might be malicious and try to construct fraudulent inputs to influence data aggregation
procedures. For instance, some participants of polls might be interested in artificially
increasing the support of their favourite candidate. Secondly, the data donors want to
submit their data as fast as possible without extra work. In particular, they are unwilling
to prove that their inputs are in the valid range.

There are two principal ways to address these issues. First, the miners can use multi-
party computation protocols to detect and eliminate fraudulent entries. This is compu-
tationally expensive, since the evaluation of correctness predicates is a costly operation.
Hence, it is often more advantageous to use such an input gathering procedure that guar-
antees validity by design. For instance, many data tables consist of binary inputs (yes-no
answers). Then we can gather inputs as shares over Z2 to avoid fraudulent inputs and
later use share conversion to get the corresponding shares over Z232 .

Let [u1, u2, u3] be a valid additive sharing over Z2. Then we can express the shared
value u through the following equation over integers:

f(u1, u2, u3) := u1 + u2 + u3 − 2u1u2 − 2u1u3 − 2u2u3 + 4u1u2u3 = u .



1. Generate random bit shares [[r(31)]], . . . , [[r(0)]] over Z232 .
2. Compute the corresponding shares [[r]] = 231 · [[r(31)]] + · · ·+ 20 · [[r(0)]].
3. Compute and publish the shares of the difference [[a]] = [[u]]− [[r]].
4. Mimic bitwise addition algorithm to compute bit shares [[u(31)]], . . . , [[u(0)]]

from the known bit representation of a and the bit shares [[r(31)]], . . . , [[r(0)]].

Fig. 5. High-level description of the bit extraction protocol.

Consequently, if we treat u1, u2, u3 as inputs and compute the shares of f(u1, u2, u3)
over Z232 , then we obtain the desired sharing of u. More precisely, we can use the
Du-Atallah protocol to compute the shares [[u1u2]], [[u1u3]], [[u2u3]] over Z232 . To get
the shares [[u1u2u3]], we use the share multiplication protocol to multiply [[u1u2]] and
the shares [[u3]] created by P3. Finally, all parties use local addition and multiplication
routines to obtain the shares of f(u1, u2, u3) and then re-share them to guarantee the
universal composability. The resulting protocol has only four rounds, since we can start
the first round of all multiplication protocols simultaneously.

Theorem 2. The share conversion protocol is perfectly universally composable.

Proof. The proof follows again directly from Lemmata 1 and 2, since all sub-protocols
are perfectly simulatable and the output shares are re-shared at the end. ut

Note that input gathering can even be an off-line event, if we make use of public-
key encryption. If everybody knows the public keys of the miners, they can encrypt the
shares with the corresponding keys and then store the encryptions in a public database.
Miners can later fetch and decrypt their individual shares to fill their input databases.

4.3 Protocols for Bit Extraction and Comparison

Various routines for bit manipulations form another set of important operations. In par-
ticular, note that for signed representation of Z232 = {−231, . . . , 0, . . . , 231 − 1} the
highest bit indicates the sign and thus the evaluation of greater-than-or-equal (GTE)
predicate can be reduced to bit extraction operations. In the following, we mimic the
generic scheme proposed by Damgård et al [10] for implementing bit-level operations.
As this construction is given in terms of atomic primitives, it can be used also for set-
tings where there are more than three miners, see Fig. 5.

For the first step in the algorithm, miners can create random shares over Z2 and
then convert them to the shares over Z232 . The second step can be computed locally.
The third step is secure, since the difference a = u − r has uniform distribution over
Z232 and thus one can always simulate the shares of a. For the final step, note that
addition and multiplication protocols are sufficient to implement all logic gates when all
inputs are guaranteed to be in the range {0, 1}. Hence, we can use the classical bitwise
addition algorithm to compute [[u(31)]], . . . , [[u(0)]]. However, the number of rounds in
the corresponding protocol is linear in the number of bits, since we cannot compute
carry bits locally. To minimise the number of rounds, we used standard look-ahead
carry construction to perform the carry computations in parallel. The latter provides



logarithmic round complexity. More precisely, the final bitwise addition protocol has 8
rounds and the corresponding bit extraction protocol has 12 rounds. Both protocols are
also universally composable, since all sub-protocols are universally composable.

Theorem 3. The bitwise addition protocol is perfectly universally composable. The bit
extraction protocol is perfectly universally composable.

As a simple extension, we describe how to implement greater-than-or-equal predi-
cate if both arguments are guaranteed to be in Z231 ⊆ Z232 . This allows us to define

GTE(x, y) =

{
1, if the highest bit of the difference x− y is 0,
0, otherwise.

It is straightforward to see that the definition is correct for unsigned and signed inter-
pretation of the arguments as long as both arguments are in the range Z231 . Since the
range Z231 is sufficient for most practical computations, we have not implemented the
extended protocol for the full range Z232 × Z232 , yet.

Theorem 4. The greater-than-or-equal protocol is perfectly universally composable.

Proof. The protocol is universally composable, since the bit extraction protocol that is
used to split x− y into bit shares is universally composable. ut

5 Practical Implementation

The main goal of the SHAREMIND project is to provide an easily programmable and
flexible platform for developing and testing various privacy preserving algorithms based
on share computing. The implementation of the SHAREMIND framework provides a lib-
rary of the most important mathematical primitives described in the previous section.
Since these protocols are universally composable, we can use them in any order, pos-
sibly in parallel, to implement more complex algorithms. To hide the execution path
of the algorithm, we can replace if-then branches with oblivious selection clauses. For
instance, we can represent if a then x← y else x← z as x← a · y + (1− a) · z.

The software implementation of SHAREMIND is written in the C++ programming
language and is tested on Linux, Mac OS X and Windows XP. The “virtual processor”
of SHAREMIND consists of the miner application which performs the duties of a se-
cure multiparty computation party and the controller library for developing controller
applications that work with the miners. Secure channels between the miners are im-
plemented using standard symmetric encryption and authentication algorithms. As a
result, we obtain only computational security guarantees in the real world. The latter
is unavoidable if we want to achieve a cost-efficient and universal solution, as building
dedicated secure channels is currently prohibitively expensive.

One of the biggest advances of the framework is its modularity. At the highest abst-
raction level, the framework behaves as a virtual processor with a fixed set of com-
mands. However, the user can design and experiment with new cryptographic protocols.
On this level, the framework hides all technical details, such as network setup and exact



details of message delivery. Finally, the user can explicitly change networking details at
the lowest level, although we have put a lot of effort into optimising network behaviour.

To facilitate fast testing and algorithm development, we implemented the most ob-
vious execution strategy, where the controller application executes a program by asking
the miners to sequentially execute operations described by the program. When a com-
putational operation is requested from the miner, it is scheduled for execution. When
the operation is ready to be executed, the miners run the secure multi-party computation
protocols necessary for completing the operation. Like in a standard stack machine, all
operations read their input data from the stack and write output data to the stack upon
completion. The shares of the final results are sent back to the controller.

Of course, such a simplistic approach neglects many practical security concerns.
In particular, the controller has full control over the miners and thus we have a single
point of failure. Therefore, real-world applications must be accompanied with auxiliary
mechanisms to avoid such high level attacks. For instance, the miners must be config-
ured with the identities of each other and all possible controllers to avoid unauthorised
commands. This can be achieved by using public-key infrastructure. Similarly, the com-
plete code should be analysed and signed by an appropriate authority to avoid unautho-
rised data manipulation. However, the time-complexity of these operations is constant
and thus our execution strategy is still valid for performance testing.

6 Performance Results

We have measured the performance of the SHAREMIND framework on two computa-
tional tasks—scalar product and vectorised comparison. These tests are chosen to cover
the most important primitives of SHAREMIND: addition, multiplication and compar-
ison. More importantly, it also allowed us to compare SHAREMIND to other secure
multi-party computation systems [16,6,18].

The input datasets were randomly generated and the corresponding shares were
stored in local databases. For each vector size, we ran the computation many times
and measured the results for each execution. To identify performance bottlenecks, we
measured the local computation time, the time spent on sending data, and the time spent
on waiting. The time was measured at the miners to minimise the impact of overhead
from communication with the controller. The tests were performed on four computers
in a computing cluster. Each machine had a dual-core Opteron 175 processor and 2 GB
of RAM, and ran Scientific Linux CERN 4.5. The computers were connected by a local
switched network allowing communication speeds up to 1 gigabit per second.

As one would expect, the initial profiling results showed that network roundtrip
time has significant impact on the performance. Consequently, it is advantageous to
execute many operations in parallel and thus the use of vectorised operations can lead to
significant performance gains. The latter is a promising result, since many data mining
algorithms are based on highly parallelisable matrix operations.

Nevertheless, we also observed that sometimes data vectors become too large and
this starts to hinder the performance of the networking layer. To balance the effects of
vectorisation, we implemented a load balancing system. We fixed a certain threshold
vector size after which the miners start batch processing of large vectorised queries. In
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Fig. 6. Performance of the SHAREMIND framework. Left and right pane depict average running
times for test vectors with 10, 000–100, 000 elements in 10, 000-element increments.

each sub-round, a miner processes a fragment of its inputs and sends the results to the
other miners before continuing with the next fragment of input data.

Fig. 6 shows the impact of our optimisations on the waiting time caused by net-
work delays. In particular, note that the impact of network delays is small during scalar
product computation—the miners do not waste too many CPU cycles while waiting for
inputs. Consequently, further optimisations can only lead to marginal improvements.
The same is true for the multiplication protocol, since the performance characteristics
of the scalar product operation practically coincide with the multiplication protocol: ad-
dition as a local operation is very fast. For the parallel comparison, the effect of network
delays is more important and further scheduling optimisations may decrease the time
wasted while waiting for messages. In both benchmarks, the time required to send and
receive messages is significant and thus the efficiency of networking layer can signifi-
cantly influence performance results.

Besides measuring the average running time, we also considered variability of tim-
ings. For the comparison protocol, the running times were rather stable. The average
standard deviation was approximately 6% from the average running time. The scalar
computation execution time was significantly more fluctuating, as the average standard
deviation over all experiments was 24% of the mean. As most of the variation was in
the network delay component of the timings, the fluctuations can be attributed to low-
level tasks of the operating system. This is further confirmed by the fact that all scalar
product timings are small, so even relatively small delays made an impact on our execu-
tion time. We remind here that the benchmark characterises near-ideal behaviour of the
SHAREMIND framework, since no network congestion occurred during the experiments
and the physical distance between the computers was small. In practice, the effect of
network delays and the variability of running times can be considerably larger.

We also compared the performance of SHAREMIND with other known implemen-
tations of privacy-preserving computations. Our first candidate was the FAIRPLAY sys-
tem [16], which is a general framework for secure function evaluation with two parties
that is based on garbled circuit evaluation. According to the authors, a single compar-
ison operation for 32-bit integers takes 1.25 seconds. A single SHAREMIND compari-



son takes, on average, 500 milliseconds. If we take into account the improvements in
hardware we can say that the performance is similar when evaluating single compar-
isons. The authors of FAIRPLAY noticed that parallel execution gives a speedup factor
of up 2.72 times in a local network. Experiments with SHAREMIND have shown that
parallel execution can increase execution up to 27 times. Hence, SHAREMIND can per-
form parallel comparison more efficiently. The experimental scalar product implemen-
tation in [18] also works with two parties. However, due to the use of more expensive
cryptographic primitives, it is slower than SHAREMIND even with precomputation. For
example, computing the scalar product of two 100000-element binary vectors takes a
minimum of 5 seconds without considering the time of precomputation.

The SCET system used in [6] is similar to SHAREMIND as it is also based on share
computing. Although SCET supports more than three computational parties, our com-
parison is based on results with three parties. The authors have presented performance
results for multiplication and comparison operations as fitted linear approximations.
The approximated time for computing products of x inputs is 3x + 41 milliseconds
and the time for evaluating comparisons is 674x+ 90 milliseconds (including precom-
putation). The performance of SHAREMIND can not be easily linearly approximated,
because for input sizes up to 5000 elements parallel execution increases performance
significantly more than for inputs with more than 5000 elements. However, based on
the presented approximations and our own results we claim that SHAREMIND achieves
better performance with larger input vectors in both scalar product and vectorised com-
parison. A SHAREMIND multiplication takes, on the average, from 0.006 to 57 mil-
liseconds, depending on the size of the vector. More precisely, multiplication takes less
than 3 milliseconds for every input vector with more than 50 elements. The timings for
comparison range from 3 milliseconds to about half a second which is significantly less
than 674 milliseconds per operation.

7 Conclusion and Future Work

In this paper, we have proposed a novel approach for developing privacy-preserving ap-
plications. The SHAREMIND framework relies on secure multi-party computation, but
it also introduces several new ideas for improving the efficiency of both the applications
and their development process. The main theoretical contribution of the framework is
a suite of computation protocols working over elements in the ring of 32-bit integers
instead of standard finite fields.

We have also implemented a fully functional prototype of SHAREMIND and showed
that it offers enhanced performance when compared to other similar frameworks. Be-
sides that, SHAREMIND also has an easy to use application development interface al-
lowing the programmer to concentrate on the implementation of data mining algorithms
without worrying about the details of cryptographic protocols.

However, the current implementation has several restrictions. Most notably it can
use only three computing parties and can deal with just one semi-honest adversary.
Hence the main direction for future research is relaxing these restrictions by develop-
ing computational primitives for more than three parties. We will also need to study
the possibilities for providing security guarantees against active adversaries. Another



aspect needing further improvement is the application programmer’s interface. A com-
piler from a higher-level language to our current assembly-like instruction set is defi-
nitely needed. Implementing and benchmarking a broad range of existing data-mining
algorithms will remain the subject for further development as well.
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