Do Broken Hash Functions Affect the Security of
Time-Stamping Schemes?

Ahto Buldag 23> and Sven Laur**

! Cybernetica, Akadeemia tee 21, 12618 Tallinn, Estonia.
2 Tallinn University of Technology, Raja 15, 12618 TallinrstBnia.
3 University of Tartu, Liivi 2, 50409 Tartu, Estoniaht 0. Bul das@it . ee
4 Helsinki University of Technology, Laboratory for Thedosl Computer Science, P.O.Box
5400, FI-02015 TKK, Finlands| aur @ cs. hut . fi

Abstract. We study the influence of collision-finding attacks on theusiég
of time-stamping schemes. We distinguish betwebkent-side hash functions
used to shorten the documents before sending them to temepsig servers and
server-side hash functionsed for establishing one way causal relations between
time stamps. We derive necessary and sufficient conditionslient side hash
functions and show by using explicit separation technighasneither collision-
resistance nor 2nd preimage resistance is necessary faresgéme-stamping.
Moreover, we show that server side hash functions can evembene-way.
Hence, it is impossible by using black-box techniques todiarm collision-
finders into wrappers that break the corresponding timexsitag schemes. Each
such wrapper should analyze the structure of the hash amdtowever, these
separations do not necessarily hold for more specific dasthash functions.
Considering this, we take a more detailed look at the straatfi practical hash
functions by studying the Merkle-Damgard (MD) hash fuois. We show that
attacks, which are able to find collisions for MD hash funesiavith respect to
randomly chosen initial statealso violate the necessary security conditions for
client-side hash functions. This does not contradict tlaelebox separations re-
sults because the MD structure is already a deviation frenbthck-box setting.
As a practical consequence, MD5, SHA-0, and RIPEMD are ncemecom-
mended to use adient-side hash functionis time-stamping. However, there is
still no evidence against using MD5 (or even MD4)sasver-sideéhash functions.

1 Introduction

Cryptographic hash functions are intended for transfogr@rmessage&’ of an arbi-
trary length into a digest(X) of a fixed length, which, in a way, represents the orig-
inal message. Hash functions have several applicationh, &sl electronic signatures,
fast Message Authentic Codes (MACSs), secure registrig&-ttamping schemes, etc.
Without any doubt, modern information technology need#tiasctions as much as it
needs stream and block ciphers. Therefore, the importdmesearch on hash function
security can hardly be overestimated.

* Partially supported by Estonian SF grant no. 5870, and by E&-F5964: “AEOLUS".
** Partially supported by Finnish Academy of Sciences, and $tpritan Graduate School in
Information and Communication Technologies.

Unfortunately, the speed of developing suitable thecakébasis for hash function
security cannot be compared to the expansion rate of hastidnrapplications. Not
much is known about suitable design criteria, nor about hmviotmalize the secu-
rity requirements that originate from practical applioas. A remarkable fact which
characterizes the shortage of information in this field & th many cases when theo-
reticians are looking for ways of modeling hash functioreytfust replace them with
“random oracles”.

Theoretical models of hash functions often deal with a Baiihumber of “univer-
sal” security properties — collision-freedom, one-waymesc. —, which are possibly
neither sufficient nor necessary in the context of particpfactical applications. Re-
cent success in finding collisions for practical hash fuoni(MD4,MD5, RIPEMD,
SHA-0) by Wang et al [16,17, 19] and later improvements [B291 10] raise an im-
portant question: For which practical implementationstheecollisions a real threat?
Modifications in software are always expensive and it wolgdidy not be economical
to replace hash functions in all applications “just in case”

The problem addressed in this paper is to clarify and fozeahe security proper-
ties of hash functions which are necessary and sufficieheigontext of time-stamping
schemes, and more general in secure registries. Congidbgrnincreasing use of elec-
tronic registries and databases, it is important to know hatextent and how their
security depends on the security of hash functions:

— Which properties of hash functions would guarantee therig@f time-stamping
schemes?

— What kind of practical attacks (collisions, second preieggetc.) are a suitable
basis for replacing the hash functions in time-stampingsts?

Just a few years after the birth of the first practical haslktions, it was pointed out
that the specific security properties as well as their mutlationships should deserve
more attention. For example, Ross Anderson [1] listed s¢vineedom properties”
(different from collision-freedom) arising from cryptaghic constructions and appli-
cations. Rogaway and Shrimpton [13] presented an exhaustidy about “classical”
security properties of hash functions and their mutuaki@iahips. Hsiao and Reyzin
[7] pointed out a fundamental difference between so-cgll¢ulic-coinhash functions
andsecret-coirhash functions by showing that the former cannot be corstriufcom
the latter in a black-box way.

In the context of time-stamping, it has been shown [4] thatdhain-resistance
property, which is necessary in time-stamping schemesptismplied by classical
properties like collision-resistance or one-wayness. gggitive result, it was shown
recently [5] that if time-stamping schemes have an addifiandit functionality, then
even the strongest reasonahlaifersally composab)esecurity level is achievable if
the hash functions used are universally one-way, which isaker property than colli-
sion resistance.

Time-stamping schemes use hash functions for two diffegeats: (1) to shorten
the messages on the client side and (2) create one-way tahfpasual) relationships
on the server side. Hence, it is natural to think that thentlgéde hash function and the
server-side hash function have different security requénets. Thus far, the security
proofs of time-stamping schemes [4, 5] assume the collistsistance of client-side

hash functions. Hence, it is important to study if we canaeelcollision-resistance on
the client side with weaker requirements IRed preimage resistana@ one-wayness

In this paper, we derive necessary and sufficient condifrrdient side hash func-
tions and show by using explicit separation techniquesrtbiher collision-resistance
nor 2nd preimage resistance is necessary for secure tangstg. Moreover, we also
show that server side hash functions can even be not oneMuag.precisely, we prove
that if secure hash-based time-stamping (as used in pabstibemes like [15]) is pos-
sible at all, then we can replace client side hash functidtts mash functions that are
not 2nd preimage resistant and use server side hash fugctitiich are not one-way.
In spite of using two “insecure” hash functions, we are abladhieve a new and rather
strong security requirement for time-stamping schemeancklgt is impossible by us-
ing black-box techniques to transform collision-findermimrappers that break the
corresponding time-stamping schemes. Each such wrappeldsiinalyze the structure
of the hash function. Still, the results mentioned aboveatmecessarily apply to more
specific classes of hash functions.

Considering the above, we will take a more detailed lookasthucture of practical
hash functions by studying the Merkle-Damgard (MD) styestn functions. We will
show that the attacks which are able to find collisions to MBhfanctions with respect
torandomly chosen initial stat&so violate the necessary security conditions for client-
side hash functions. This still does not mean that the resttattks to MD hash functions
render the practical hash functions insecure, becausettdeks mostly consider the
fixed (standard) initial state (IV) of the hash function. Hmer, it is claimed by Klima
[9,10] that MD5 collisions can be find for random initial g8t which (when true)
would mean that MD5 cannot be used agliant-side hash functioim time-stamping
schemes. However, there are still no convincing argumeyaimat using MD5 (or even
MD4) as aserver-side hash function

This paper mainly focuses on the so calleash-based time-stampinm which
cryptographic (signature) keys are not used. Howevergbalts aboutlient-side hash
functionsalso apply to the so-callesignature-based time stamfikl] that consist of
client-computed hash values, time values, and digitaladignes of trusted servers.

The paper is organized as follows. Section 2 provides théeraaith necessary no-
tation and definitions. Section 3 outlines the basics ofigehash-based time-stamping
schemes. Section 4 introduces a new security requiremdrdenves sufficient condi-
tions for the client side and the server side hash functibastogether imply the new
condition. In Section 5, we show that 2nd preimage resigt@&wot necessary for client
side hash functions. Section 6 shows that server side hastidas are not necessarily
one-way. In Section 7, we show that certain multi-collisaitacks to MD hash func-
tions violate the necessary condition for client side hasictions. Section 8 presents
some open problems related to this work.

2 Notation and Definitions

By x «— D we mean that is chosen randomly according to a distributiBn If A is
a probabilistic function or a Turing machine, then— A(y) means that: is chosen
according to the output distribution & on an inputy. By U,, we denote the uni-

form distribution on{0,1}". If D4, ..., D,, are distributions and’(x1,...,z,,) is a
predicate, ther[z, <« D1,..., &y <« Dy F(x1,...,x,)] denotes the probability
that F'(z1, ..., x,,) is true after the ordered assignmentgf . . ., z,,. For functions
f,9: N = R, we write f(k) = O(g(k)) if there arec, ky € R, so thatf(k) < cg(k)

(Vk > ko). We write f(k) = w(g(k)) if lim % = 0. If f(k) = k<O, then

f is negligible A Turing machineM is polynomlal timg(poly-timg@ if it runs in time
kO wherek denotes the input size. LEP be the class of all probabilistic functions
f:{0,1}* — {0, 1}* computable by a poly-tims!.

A distribution family {Dj, } ren is poly-sampleabléf there isD € FP with output
distributionD(1*) equal toD;. A poly-sampleable distribution familyD;.} is unpre-
dictableif Pr[z’ « MN(1%),2 « Dy: 2 = 2] = k=« for every predictoiil € FP.
Two distribution familiesD™™) andD(? areindistinguishabléf for every distinguisher
A € FP:| Prlz — DV A(1F 2) = 1] — Prlz — DIP: ALK, 2) = 1] |= k),

Let {§x }ren be a distribution family such that evety — F. is a (deterministic)
function2: {0,1}¢ — {0,1}*, where/ is polynomial ink. We say that{g,} is a
function distribution familyFor everyr, 2’ € {0,1}* let C(z, ") denote the condition
that(x, 2’) is a collision forh, i.e.z # 2’ andh(x) = h(z’). By following the security
notions in [13] we say that a randomly choger- § is:

— Collision-Resistanif YA € FP: Pr[(z,2')—A(1¥, h): C(z,2")] = k=<1,
— Everywhere 2nd Preimage Resistéfiec) if VA € FP:

max Pr[x <—A(1k h): C(m,x')] = @)

x€{0,1}¢
— 2nd Preimage ResistaiftVA € FP: Pr[z«— U, ' —A(z): C(z,2")]=k~<W,
— One-Wayif YA € FP: Pr[z — Uy, 2/—A(h(z)): h(z') = h(z)] —k w(®),

If for every k there existsi;, so thatPr [h < §,.: h = hi] = 1 then we have a fixed
family of functions, i.e. for each we have a single unkeyed hash function, e.g. SHA-1.

3 Security of Time-Stamping Schemes

In this paper, we focus on the securityiash functionsised in time-stamping schemes.
The other primitives supporting the time stamping scheriles gignature schemes or
encryption schemes) are not studied in this paper. A timeyging procedure consists
of the following general steps:

— Client computes a hash= H(X) of a documeniX (whereH is called aclient-
side hash functiorand sends: to the Server.

— Server bindse with a time valuet (a positive integer), either by using a digital
signature or a hash-chain created by using another (ssideyhash function.

For the self-consistency of this paper, we outline the bfagits about hash-chains and
how they are used in time-stamping. In the definition of a hadshin we use the follow-
ing notation. We will follow the notation and definitionsiiatiuced in [4] except some
technicalities which we change in order to make the defimitimore usable for this
work. By || we mean the empty string.4f = (1, z2) € {0,1}2* andxzy, 2o € {0, 1}*
then byy € = we meary € {1, x2}.

Definition 1 (Hash-Chain). Let h: {0,1}?* — {0,1}* be a hash functioA.By an
h-chainfrom z € {0,1}* tor € {0,1}* we mean a (possibly empty) sequence
(c1,...,ce) Of pairse; € {0, 1}2*, such that the following two conditions hold:

(1) ife¢ = || thenz = r; and
(2) ifc # || thenz € ¢1, 7 = h(ce), andh(c;) € ci4q foreveryi € {1,...,¢0—1}.

We denote by}, (x; ¢) = r the proposition that is an h-chain fromz to r. Note that
Fy(x;])) = =« for everyzr € {0,1}*.

Time-stampinginvolves Server, Publisher, and two procedures faime-stampinga
bit-string and forverifying a time stamp. It is assumed thRtiblisher is write-once
and receives items frof®erver in an authenticated manner. Time-stamping procedure
is divided into rounds of equal duration. During each rousatyer receives requests
r1,...,2y5 € {0,1}* from the users. If the-th round is overServer computes a digest
re = Th(xy,...,ox) € {0,1}* by using a hash functioh: {0,1}?* — {0,1}* and

a tree-shaped hashing schefife After that,Server issues a hash chain(certificate
for each request, such thatFy,(z; ¢) = ;. In the scheme of Fig. 1, the time-certificate
for a9 is ((x1,x2), (y1,21)), wherey; = h(z1,xz2). Certificatec of a requestr is
verified by obtaining a suitable form Publisher and checking whethdr}, (x; ¢) = ry.
Intuitively, this proves that: existed at time whenr; was published.

Publisher Tt 7‘tf1
(trusted) 5 e

Server

(untrusted/ Y2
xr3 T4 s Te 7

T)
R |
| Request . Certificate
@ O ¢2 = ((a1.,@2). (y1.21))

Fig. 1. Time-stamping by using a hash-functifn

Security condition for time-stampinf] is inspired by the following simplistic attack-
scenario with a maliciouServer:

— Server computes: € {0, 1}* (not necessarily by using”) and publishes it.

5 Twice-compressing hash functions are sufficient in theeseside, and strictly for this purpose
it is not necessary to apply hash functions with long inpagte. Whenh is implemented by
using a practical hash function like MD5, it is sufficient ®ewnly one input block. This detail
is very important for the conclusions of this work.

— Alice, an inventor, creates a descripti@rny € {0, 1}* of her invention and (possi-
bly) obtains a certificate for the hash = H (X 4) of the description.

— Some time later, the invention is disclosed to the public eder tries to steal it
by showing that the invention was knownServer long before Alice time-stamped
it. He creates a slightly modified versict of X 4, i.e. changes invertor’s name,
modifies the creation time, and possibly rewords the doctimensuitable way (to
have a “desired” hash value).

— Finally, Server computes a hash = H(X), and back-dates, by finding a certifi-
catec, so thatF, (z;c) = r.

To formalize such a scenario, a two-staged adver8agy (A1, As) is used. The first
stageA; computes (and an advice string) after which the second stagg on input a
new bit-stringz € {0,1}* (modeled as an output of an unpredictable distribufipi
tries to findc, so thatFy, (x; ¢) = r. The second stage can also use the advice siring
if necessary. A4 is the only cryptographic primitive used in the formal scémathe
security condition can be represented as a general receirtdor a hash functions:

Definition 2 (Chain resistance —Chain). A function distribution family{F} of two-
to-one hash function's: {0, 1}2* — {0, 1}* is chain resistarif for every unpredictable
poly-sampleable distribution familyDy } ey on {0, 1}%:

Prlh—Fk, (r, a)<—A1(1k,h),m<—Dk,c<—A2(m,a): Fn(z,e)=7r] = e (1)

Remark. In the definition abovey denotesstate informatiorstored byA; when com-
puting the digest. The reason why is introduced is completely technical — we prefer
ordinary Turing machines, which (unlikenteractingmachines) cannot save the state
information between two calls. Informallyy; and A, are parts of a single adversary,
and hencall inputs and random coins &, are available toA;.

To be more practical, we should take into account that lgngtituments are shortened
by using another hash functidii: {0, 1}**) — {0, 1}*, which is not necessarily the
same hash function & which is used byerver. Let {35, } and{g?} } be the correspond-
ing function distribution families producing functionstgpes{0, 1}**) — {0, 1}* and
{0,1}2* — {0, 1}* respectively.

Definition 3 (Secure(H, h)-time-stamping). For everyA = (A1, As) € FP and for
every unpredictabl®;, on {0, 1}“*) the following probability is negligible:

PF[HHSE, h‘*S?c; (T‘, G)HAl(llevh)a X‘*Dkv CHAQ (Xv a) : Fh (H(X)v C) :T‘] . (2)

This security definition may seem confusing for those wheetgot used to a "folklore”
belief that collision-resistance is essential for timargping. What if the inventor cre-
ates two colliding files, time-stamps one, and later trieddaon credits for the other? It
is important here to notice th#tis is not an attack in terms of time-stampliiigdeed,
both colliding files were created by the inventor approxighaat the same time, and so
there is nothing wrong in proving that the other file also tdsat that time.

So far, security proofs exist only for time-stamping schemaich are “bounded”
somehow. For example, i andh are collision-resistant, then(&, h)-time-stamping

can be proven secure if the number of the allowed hash chhap&s” is restricted to
polynomial [4], or if there is an additional audit functiditaincluded into the scheme
[5]. Itis also known [4] that the claim# is collision-resistant=- h is chain-resistant”
cannot be proven in a black-box way. One of the main objestif¢his paper is to clar-
ify whether collision-resistance &f (and of H) is necessary for secure time-stamping.

4 New Security Condition

There are several concerns related to the security cond®ip First, chain-resistance
is anecessanproperty forh but it is not yet known whether it isufficient i.e. if H

is collision resistant and is chain-resistant, there are no known results for connydi
that the time-stamping scheme (that useandh) is secure.

Another concern about (2) is that the adversary does noicjpate in the gener-
ation of X, i.e. X is picked independent of the adversary. This does not matith w
the informal description of the back-dating attack, wh&revas created by the ad-
versary based on another documéht and hence it is quite natural to assume that
the adversary is able to “tune” the distributiéh, according to which the new docu-
mentX is chosen. Based on these ideas, we give a new strongertgamirdition for
(H, h)-time-stamping in whichX is chosen byA,. We still have to assume thaf is
unpredictable and hence we have to allow only those advessdrat produce unpre-
dictableX. It is also important to require th&, adds "his own randomness” inf§,
i.e. X should be unpredictable even if the output and the randonsadgid; are known.

We derive a necessary and sufficient security conditiorrfectient side hash func-
tion H. Roughly sayingH must not destroy the computational entropy in a catastoophi
way — unpredictable input distributions transform to umjictable output distributions.

We prove that the new condition is not weaker than (2). We plepose a new
stronger condition foh — Strong Chain-Resistan¢eChain), which is sufficient for se-
cure time-stamping. We prove thathf is unpredictability-preserving arfdis strongly
chain-resistant, then we have a seduile h)-time-stamping scheme in terms of (2).

4.1 New Security Definition

Let FPU be the class of all two-staged probabilistic poly-time adages(A1, Az),
such that the first output component is unpredictable, éttie ioutput ofA; is known
to the predictor, i.e. for every poly-time prediciar

Pr((r,a) « A1 (1%), 2" « N(r,a), (z,c) — Ay(a): o' = 2] = Eme@

Note that as the additional inputs a) of I are generated by a uniform machig(1%)
this definition does not imply unpredictability in th@n-uniformmodel. Note also that
is is reasonable to assume that the advice stringntains all internal random coins of
A; because concealing these coinsMycertainly would not make any attacks easier.
Moreover, as the main role 6f is to measure the capability éf; to predict the future,
then for this measure to be adequithas to know the random coins Af .

Definition 4 (Secure (H, h)-time-stamping). A (H, h)-time-stamping scheme is se-
cure if for every(A;, A2) € FPU the next probability is negligible:

Pr[H—FS, heF3, (r,a) — A1 (1K H, h), (X, c)—Aqx(a): F(H(X);c)=7] . (3)

It is easy to see that (3) implies the old condition (2). IrléE (A, A2) € FP breaks
(H, h)-time-stamping in terms of (2) with succedgk), then defineA,(a) that picks
x «— Dy, computes: — Ay(z,a), and outputgz, ¢). By definition, (A, A}) € FPU

breaks(H, h)-time-stamping in terms of (3) with succeg%).

Remark. It is insufficient to assume thaYt is unpredictable without advice, because
then the condition (3) would be not achievable. IndeedA|dbe an adversary who gen-
eratesX at random and outputd? (X), X) (whereH is the client-side hash function)
and letA, (1%, a) be an adversary who always outp(is ||). For such an adversary

Pr[H—3}, h—3}, (r,a) — Al(lk,H7 h), (z,¢) — Az(a): Fp(H(x),c)=71]=1.

4.2 Necessary and Sufficient Requirements Fai

Finding collisions forH does not mean that the time-stamping scheme is insecure ac-
cording to our definitions. A single collision is not suffinieto produce probability
distribution with high uncertainty. In a way, one singlelisibn allows one to backdate

a single document that is known before the digest is produeesting the majority

of temporal dependencies intact. It turns out that the ¥ahg entropy-preservation
property is necessary and sufficient for the client-sidé iasction H.

Definition 5 (Unpredictability preservation — uPre). A function distribution family
{§,} is unpredictability preservingf for every unpredictable poly-sampleable distrib-
ution family{D,.} and for every predictofl € FP:

PriH — Fp,y — ﬂ(1k7H),m —Dy:y=H(z)] = e

A fixedH : {0,1}4%) — {0,1}* is uPre iff it converts unpredictable poly-sampleable
distributionsDy, to unpredictable output distributiond (Dy,).

Remark: Poly-sampleability ofD;, is crucial, because iff;,: {0,1}*®) — {0,1}*
and/(k) = k + w(log k), then there exists a familp;, with Rényi entropyH;[Dy] =
w(logk), such thatHy[H (Dy)] = 0. Indeed, 3y € {0, 1}* for which | H=1(y) |=
(2k+w(logk)) /9k — () DefineDy, as the uniform distribution off ~*(y).

Theorem 1. Unpredictability preservation is a necessary requirenmentH: in every
secure(H, h)-time-stamping scheme, the client-side hash fundiiaes uPre.

Proof. Let D, be unpredictable anfl be a predictor fof{ (D) with success proba-
bility (k) = PrlH «— §5,y<N(1% H),z<Dy: H(x) = y]. DefineA,(1*, H,h) =
M(1*, H) and A, which on inputz outputs(z, ||). As Fj,(H(z);||) = H(z) =
wheneverfl is successful, the success(#¥, A2) in terms of (2) isr(k). Hence(k
must be negligible andl is uPre.

e |l

O

Definition 6 (Strong chain-resistance -sChain). A function distribution family{F, }
is strongly chain-resistant, if for evef;, As) € FPU:

e(k) = Prlh—3F,, (r,a) —AL (1%, h), (z,¢) —Ag(a): Fi(2;¢) =7] = k~W) |

Theorem 2. For secure(H, h)-time-stamping in terms of (3) it is sufficient thatis
sChain, H is uPre and the distributiond « g, is poly-sampleable.

Proof. Let (A1, A2) € FPU an adversary with success
e(k) = Pr{H—3S, he35,, (r,a) «— AL (1% H, h), (X, ¢)—Ax(a): Fy(H(X);c) =7] .

Define Ay (1%, h) that picksH « F¢, computesr,a) « A;(1*, H,h) and outputs
(r,a’), wherea’ = (a,H). Define A}(a’) that parses’ to obtaina and H, calls
(X, c)—As(a) and output§ H(X), c). We have(A], A}) € FPU, becausdd is uPre.
Obviously,(A], A}) breaksh in terms ofsChain with success (k). O

5 Unpredictability Preservation vs 2nd Preimage Resistare

It is known that every collision-resistant functionuBre [5]. However, it turns out that
2nd preimage resistance does not impRre andvice versawhich means that client-
side hash functions need not be 2nd preimage resistant.

Theorem 3. If uPre hash functions exist (i.e. if secure time-stamping witardliside
hashing is possible at all), then there are hash functiongklwhre uPre but not 2nd
preimage resistant.

Proof. Let H: {0,1}*®) — {0,1}* (chosen randomly fron§;) be uPre. Define
H'(X') = H(X'or1) for every X’ ¢ {0,1}*®), whereor denotes the logical bitwise
OR-operation. Le§j, denote the distribution a’. Obviously,H’ is not 2nd preimage
resistant. To show thaf’ is uPre, let us assume th@,, is an unpredictable distribution
andTll is a poly-time predictor fof’(Dy,). As the distributioriD), = (Dj or 1) is also
unpredictable, the success probabilitybis

W(k> - Pr[Hl — S;cv y%ﬂ(lk, Hl)v XI‘*DIC : HI(XI):y]
= Pr[H « Fi,y<T'(1* H), XD} : H(X)=y] = k<1 |
becausé is uPre. Herell’' (1%, H) just transformd{ to H' and returng1(1*, H'). O
On the other hand, it turns out that 2nd preimage resistanes ot implyuPre and is
thereby also insufficient for client side hash functionsc&llethat collision-resistance

was sufficient on the client side (but still not on the serige $4]).

Theorem 4. If there are hash functions which are 2nd preimage resisttir@n there
are hash functions that are 2nd preimage resistant butifet.

Proof. Let H: {0,1}¢®) — {0, 1}* be 2nd preimage resistant af{@) = k+w(log k).
We construct a functiod” : {0, 1}*® — {0,1}* which is 2nd preimage resistant but
notuPre. Let#' (k) = ¢(k — 1) forall k > 1, and for everyX € {0, 1}*():

HI(X) = 0* if X = _Ok—lﬂXl foranX; € {0, 1}f(k=1)—k+1
k 1||Hy—1(X) otherwise.

DefineD on {0, 1}**), so thatDy = 0¥~ |[Uy(x_1)_k+1. D is unpredictable because
it has Rényi entrop¥ls(Dy) = £(k—1) — k+1 = w(log k). As the output distribution
H'(D) has no entropy at all, we conclude tHat is notuPre. At the same timef’ is
2nd preimage resistant because the probability that thekfirs1 bits of a uniformly
chosenX « Uy, are all zeroes ig=(*=1 which is negligibly small. O

It is interesting to note that if in the everywhere secondmpagie-resistance$ec)
condition the adversary is prevented from abusing a smalbfspre-computed exis-
tential collisions (which do not affect the security of tiramping schemes) then we
obtain a weaker conditioneSec which turns out to be equivalent td’re. This shows
thateSec is a sufficient (but not necessary) condition for clientesichsh functions. In
this weaker requirement, the class of adversaries is ¢ctsdrby requiring that the sec-
ond pre-imageX’ produced by an adversary is distributed according to a bighepy
distribution. Though the following theorem holds for a fiadhily H, it is possible to
generalize the definition and the proof to arbitrary functiistribution families.

Theorem 5. For fixed familiesH = {H}}, uPre is equivalent to the followingveak
everywhere 2nd preimage resistaifweSec) condition: For every poly-sampleable un-
predictable distribution family4;, on {0, 1}¢):

P X/ A : X/ X7H X/ =H(X :kfw(l))
e, PX — Ap: XX, H(X)=H(X))

Proof. weSec = uPre: Let D;, be unpredictable and be a predictor foH (D;,) with
successr(k) = Prly «— M(1%), X’ « Dy: y = H(X")] # k<M. Hence, there is
y € {0,1}* such thaPr[X’ « Dy: y = H(X')] > =(k) and we have

Pr{X' «— D.: H(X\=H(X)] > n(k) # k@) |
e (X" = Dy: H(X")=H(X)] > (k) #

As Pr [H(X)=H(X)]= Pr [X'=X]+ Pr [X'AX,H(X')=H(X)]and

the first probability in the sum is negligible (becad3g is unpredictable), the second
one must be non-negligible and herfeg breaksH in the sense ofveSec.

uPre = weSec: Let A be a unpredictable distribution df, 1}**) and letX <
{0,1}®) be a bit-string such thai(k) = Pr [X'#X, H(X")=H(X)] # k=0
Ak

Therefore,XlPrA [H(X")=H(X)] > 6(k) # k=) and H(A) predicts itself with
Ak
successr(k) = Pr(X’ « Ay, X" «— Ay H(X")=H(X")] > 6%(k) # k=M. O

6 Strong Chain-Resistance vs One-Wayness

In this section, we show that the server side hash funétismot necessarily one-way.

Theorem 6. For every securé H, h)-time-stamping scheme, there is a seduteh’)-
time-stamping scheme, whetreis not one-way (and hence not collision-resistant and
not 2nd preimage resistant).

Proof. Defineh’ that behaves liké, except that/(z, z) = z for everyz € {0, 1}*.
The new functior’ is clearly not one-way. To show that is strongly chain-resistant,
let A; € FP andA; € FPU be an adversaries fa' with success

(k) = Pr[(r,a) — A1 (1%), (X, ¢) — As(a): Fi(H(X);¢) = r] # k<O

Define a newAl, that calls(z, ¢) < A and outputgz, ¢’), wherec is produced frone
by deleting all elements; of the form(y, y). It is easy to verify tha#),(H (X);) =
F/ (H(X);c) = r (which is true even it/ is empty) and hencéA,, A}) breaks the
(H, h)-time-stamping scheme. A contradiction. a

Note that the proof also shows that strong chain resistanttiions are not neces-
sarily one-way functions, i.e. the chain resistance priypequite separated from other
standard requirements for hash functions. Recall thaethex no black-box proofs [4]
for showing that collision-resistance implies chain resise.

7 Implications to Practical Iterated Hash Functions

In this section, we will study what kind of collision-findiragtacks to practical (client
side) hash functions would make them insecure for time-stagi We use the fact that
most of the practical hash functions use the Merkle-Damhganstruction, which (in

order to compute hash for long messages) iterates a fixedregsipn functiory.

Definition 7 (Merkle-Damgard Hash). Let fi : Si x M — Si be a family of
poly-time compression functions agg : Sy — 7, be a family of poly-time out-
put functions. Let the state update functibl : S, x M; — S be defined by
Fi(s,z1,...,20) = ful-- fu(s,21),...,2). Thenhy : S x M} — Ty, defined
by hi (s, z) = g(Fx(s,z)), is a family of iterative (Merkle-Danggd) hash functions.

Definition 8 (Collision-resistance w.r.t random initial state). A family {h,} of MD
hash functions isollision resistant (w.r.t. to random initial staiéjor everyA € FP:

Pr [s — Sk, (w0, 1) — A(1¥, 5, hy) : w0 # @1, ha(s,20) = hk(s,xl)] =k~

The internal state of i} is said to becollision resistant w.r.t. random initial staife
the state update function famify}, } is collision-resistant w.r.t. random initial state.

Definition 9 (Collision-resistance w.r.t fixed initial state s¢). A family of MD hash
functions{hy } is collision resistant (w.r.t. to a fixed initial statg) if for everyA € FP:

Pr [(wo, x1) — A(¥,) : w0 # a1, hu(s0,m0) = hi(s0,1)] = k=) .

The internal state ofh,} is said to becollision resistant w.r.t. fixed initial state, if
the state update function fami{y#}, } is collision-resistant w.r.t. fixed initial state.

7.1 Discussion on Practical Hash Functions

In practical MD-hash functions the initial stat¢g (so calledinitial Value — IV) is fixed
by standards and is not chosen randomly. In order to forndefne the collision-
resistance of such functions, we have to assume that theregsipn functionf is
chosen randomly in accordance to a distributjorOtherwise, an adversary can abuse
a single existential collision which always exists becawssh functions compress data.
It is important to distinguish between two kinds of collisifinding attacks: (1)
attacks that find collisions for a fixed (standard) initisdtst or more general, for a
limited number of “weak” initial states, and (2) attacksttfiad collisions for random
initial states (i.e. for a non-negligible fraction of irdtistates). In some sense these two
types of attacks are incomparable in strength. For exariiples standard initial value
so is weak but still almost all other values are strong, themettage attacks of the first
type but no attacks of the second type. If in turn the standaiid strong and a non-
negligible fraction of other states are weak, then therstattacks of the second type
but no attacks of the first type. However, these cases ard oueby the following
heuristic assumptions about the design of practical hasttifuns:

— Reasonable choice of the standard Widely used hash functions are designed by
specialists with good experience. Hence, it is reasonalibelieve thathe choice
of standard IV is at least as good as a random choltence, the situation where
the standard 1V is weak but almost all other IV-s are strorexisemely unlikely.

— Reasonably efficient encoding of the internal st#ttés reasonable to believe that
hash functions are designed quite efficiently, i.e. themoigonsiderable amount
of redundancy in the initial state. Hence, it is also unljkisat the standard IV is
strong but still a non-negligible fraction of other IV-s aveak. This is because the
output of the compression function (in case of random inpat&tuitively viewed
as a random value, which would mean that weak initial statbgwventually occur.
(See the Computational Uniformity assumption below)

Therefore, it is reasonable to believe that efficient coltidinders w.r.t. fixed 1V
imply the existence of efficient collision-finders w.r.tndbm IV. Still, this does not
mean that w&nowhow to find collisions for random 1V, though the heuristicasp-
tions above suggest that such attacks exist. The lateskattayainst MD5 by Wang
[16,17] and by Klima [10] are claimed to be able to find codliss for arbitrary IV.

We show thatollision-finding attacks w.r.t. random IV are sufficientremder the
client-side hash functio®/ insecure for time-stamping@e. H is no moreuPre. This
means that MD5 and MD4 are probably insecurelant-side hash functioria time-
stamping. However, as we show later, this still does not nileanMD5 (or even MD4)
are insecure aserver-side hash functions

The next property of MD hash function€¢mputational Uniformityis not an ex-
plicit design goal, but is often implicitly assumed in hestid discussions about hash
functions. Indeed, it has been shown [3] that hash functiouast be almost regular to
withstand birthday attacks. This suggests that some kirsdaistical uniformity must
hold for secure hash functions and hence the computatiodatinguishability from
uniform distribution is not a so far-fetched assumption.

Definition 10 (Computational uniformity). Let ¢ be a polynomial and/,(,, denote

uniform distribution on/\/lf;(k). We say that iterative hash function famfly; } is com-
putationally uniform w.r.t. length restrictiofy if 24, (s, Uy (i) is computationally indis-
tinguishable from uniform distribution ofy, for anys € Sy.

7.2 Collisions of MD-hash Functions AffectuPre

In the following, we will prove two results. First, if a cadiion finder has non-negligible
success probability for every initial state, then the tigeahash function violates the
uPre property. The second result states that the average-cdseast-case complexi-
ties for collision finding are roughly the same, if we asswrnmputational uniformity
from the compression function. Thus, it is quite likely th&te implies collision resis-
tance w.r.t. random initial value for all practical itexegihash functions.

Theorem 7. Let{h} be a fixed family of iterative hash functions. Then unpredhitt
ity preservation implies negligible worst-case succesbability for all collision find-
ers of{F.} , i.e. for everyA € FP:

gﬁréigk Pr[(zo,z1) < A(s0) : ®o # 21, Fr(s0,x0) = Fr(s0,21)] = ke
Proof. For the sake of contradiction, assume that there existsgamitim A that the
worst-case success probability is larger tlkari for infinitely many indices. Then run-
ning A sufficiently many times (polynomial ik) assures that we fail with negligible
probability. Denote this algorithm bg’. Then we starA’ on sy and get a collision
pair (29, 21) such thats; = Fy(so,2}) = Fy(so,21). Similarly, we can find the fol-
lowing collisionss; = Fi(si—1,29) = Fi(si—1,2}), i = 1,...,k. The total failure
probability is still negligible. Now, for any € {0, 1}*, the corresponding hash value
hi (28 .. 2l*) is the same. The distributioR = {z}* ...z : b € {0,1}*} is poly-
sampleable and has min-entrdgybut H (D) has no min-entropy. A contradiction

Theorem 8. Let{F},} be a fixed family of computationally uniform compressiorcfun
tions. Then the negligible worst-case success proballitgll collision finders of Fj, }
implies collision resistance w.r.t. random initial state.

Proof. Since{F}} is computationally uniform for a polynomid{ k), we know that
Fy(s, Ugxy) must be computationally indistinguishable from the unifadistribution
on Si.. The latter implies that the success probability of anyisiolh finder A that
works on the initial state = Fy(so,),z « Uyy) can differ from the average case
probability

Pr s « Sk, (xo,21) — A(S) : ®o # 21, Fi(s,20) = Fi(s, x1)]

by a negligible amount. Otherwise, we conv&rto an efficient distinguisher that out-
putsl if a collision was found, and otherwise. Hence, if . } is not collision resistant
(w.r.t. random IV), the worst-case success is not negkgibt all collision finders. O

Having an adversary that finds collisions for random IV, pdssible to construct a
poly-sampleable high-entropy distributi@hand launch the next back-dating attack:

1. Given1* as input,A; computes a list = [(29,21), (29, 23),..., (22, 21)] of
colliding pairs like in Theorem 7, computds= H (z{z9 ... z{) and outputsd, a).
2. Given(d, a) asinputA, picksby, . . ., by — {0,1} and outputgz? b2 ... b ||).

The adversaryA;, As) has success probabilityin terms of Definition 4, which means
that the time-stamping scheme is insecure. Note howevethisastill does not mean
one is able to back-dateeaningful documents practice.

7.3 MD-Hash Functions at the Server Side

If the server side hash functial: {0,1}?* — {0,1}* is implemented by using a
practical MD hash function, then it is sufficient to apply ttempression functiorf
only once:h(z1,29) = f(IV, x| z2||Padding), where IV denotes the standard initial
value. In the proof of Theorem 7 we needed multiple applicetiof f to construct the
high-entropy distributiof® that was mapped to a single output value. Hence, Theorem 7
does not have practical implications for server-side hastfons.

To breakh as a server-side hash function (i.e. to back-date "new” hakles), we
should be able to find collisions fgf, if one of the arguments; or x5 is randomly
fixed, i.e. an attackeh is successful if for randomly chosen « {0, 1}* itis able to
find a pairze # 24, such thatf (I'V, z1||z2||Padding) = f(IV, z1]||z5||Padding).

To our knowledge, no such attacks have been presented to MB&ea to MD4,
which means that there are no rational reasons not to use MEteaserver-side hash
function in a time-stamping scheme.

7.4 Separation of Collision Resistance and Computational tuformity

The proof above may raise the following concern. We assutm&tithe hash function
is broken in terms of collisions but still the compressiondtion is computationally
uniform. Hence, if collision-resistance is implied by camgtional uniformity, then the
proof above does not make any sense. We will show that thistithe case.

Theorem 9. There exist Merkle-Danggd hash functions that are not collision-resis-
tant w.r.t. random initial state but have computationalfiform compression functions.

Proof. Let M, = {0,1}**) and S, = {0,1}*, wherep(k) > k. Define the com-
pression functionfy: S x My — Sk, so thatfy.(s,z) = zyi k3, 1€ fr(s,),
independent of, returns the firsk bits of 2. Obviously, the corresponding MD-hash
functionh, and its internal staté&}, are not collision-resistant w.r.t. random initial state,
but the compression function is regular, which implies catafional uniformity. O

Just for interest, we will also prove a dual separation teaudiich shows that com-
putational uniformity does not follow from collision-resance (w.r.t. random initial
state) and hence it is not an ultimate design criterion fdiston-free hash functions.

Theorem 10. If there exist collision-resistant Merkle-Dargl (MD) hash functions,
then there exist collision-resistant MD-hash functionsvimch the compression func-
tion is not computationally uniform.

Proof. Let fi.: {0,1}* x {0,1}*®*) — {0,1}* be a compression function, so that the
corresponding MD hash functioky, is collision-resistant w.r.t. random initial state.
Define a new compression functigi: {0, 1}*+* x {0,1}?®) — {0,1}¥+1, so that
f1.(bl|s, z) = 1| fr(s,). The new compression function is collision-resistant dose
every collision forh’ w.r.t. initial stateb||s implies a collision forh w.r.t. initial states.
However,h’ is not computationally uniform, because the first outpubbify, is 1 with
probability 1, whereas in the case of uniform distributions this proligiia % a

8 Conclusions and Open Questions

Collision-resistance is unnecessary if the hash-funstiotime-stamping schemes are
viewed as black-box functions, i.e. without consideringtipalar design elements it
is impossible to prove that collision-resistance is nemgsir secure time-stamping.
This also means that not every collision-finding attack isggaous for time-stamping.

Still, we proved that for an important and wide class of gratthash functions
(MD hash functions) certain multi-collision attacks alsolate uPre, which we proved
is a necessary and sufficient condition for client-side Hasktions in time-stamping
schemes (both the hash-based and for the signature bas&d \Weeproved thaiiPre
implies collision resistance w.r.t. random initial statghenever the state function is
computationally uniformwhich is a natural (though, not ultimate) design criterion
practical MD hash-functions. Heuristic arguments show théhe standard IV of a
practical hash function turns out to be weak, then probalsty a randomly chosen IV
is weak. Still, in order to draw conclusions on the (in)ségusf time-stamping it is
important to check whether the collision-finding attackshia the case of random IV.

We also proved that in hash-based time-stamping, the seiderhash functions
may even be not one-way. Twice-compressing hash functiod$, 1}2* — {0,1}*in
the server side can be implemented with practical MD hasétioms (like MD4, MD5,
SHA-1, etc.) by calling the compression functigronly once. Although we proved
that the chain-resistance condition implié2re, we cannot apply Theorem 7 because
to construct a high-entropy input distributi@ (with no output entropy) in the proof,
we used multiple calls tg. So, it needs further research, whether there are efficient
attacks that are able to find preimages for ¢benpression functionsf practical hash
functions (MD4, MD5, SHA-1, etc.) in case a considerable banof input bits are
(randomly) fixed. Only such attacks would be dangerouséover-sidehash functions.

Considering very black scenarios it would be interestingttaly whether secure
time-stamping is possible in case hash function is collision-fre¢e. if all the known
practical hash functions have collisions or if one provex the collision-resistance is
not achievable. Recent results suggest that the formettisitucould be very likely. We
conjecture that even in such a situation, secure time-staynig still possible. Analo-
gous to the result by Simon [14], this can probably be provarovacle separation by
constructing an oracle that provides access to a univeoiigion-finder but relative to
which secure time-stamping schemes still exist.

References

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

. Ross Anderson. The classification of hash function®rét. of the Fourth IMA Conference

on Cryptography and Codingp. 83—93, 1993.

. Dave Bayer, Stuart Haber, and W.-Scott Stornetta. Impgahe efficiency and reliability of

digital time-stamping. Ir'equences II: Methods in Communication, Security, and Qtenp
Sciencepp.329-334, Springer-Verlag, New York 1993.

. Mihir Bellare and Tadayoshi Kohno. Hash Function Balaand Its Impact on Birthday

Attacks. InAdvances in Cryptology — EUROCRYPT 200K CS 3027 pp. 401-418. 2004.

. Ahto Buldas and Mart Saarepera. On Provably Secure Btamping Schemes. lkdvances

in Cryptology — Asiacrypt 2004.NCS 3329pp. 500-514. 2004.

. Ahto Buldas, Peeter Laud, Mart Saarepera, and Jan WiamUniversally Composable

Time-Stamping Schemes with Audit. Information Security Conference —1SC 2008ICS
3650, pp.359-373. 2005. (IACR ePrint Archive 2005/198,5)00

. Stuart Haber and W.-Scott Stornetta. Secure Names feBtBiigs. INACM Conference on

Computer and Communications Securftp. 28—-35, 1997.

. Chun-Yuan Hsiao and Leonid Reyzin. Finding CollisionssoRublic Road, or Do Secure

Hash Functions Need Secret CoinsAbivances in Cryptology — Crypto 2004NCS 3152
pp. 92—105. 2004.

. Antoine Joux. Multicollisions in Iterated Hash FuncgoApplication to Cascaded Construc-

tions. InAdvances in Cryptology — CRYPTO 2004CS 3152pp. 306316, 2004.

. Vlastimil Klima. Finding MD5 Collisions — a Toy For a Notebk. Cryptology ePrint

Archive Report 2005/075.

Vlastimil Klima. Finding MD5 Collisions on a Notebook R&sing Multi-message Modifi-
cations.Cryptology ePrint ArchiveReport 2005/102.

RFC 3161: Internet X.509 Public Key Infrastructure TiBtamp Protocol (TSP).

Vincent Rijmen and Elisabeth Oswald. Update on SHA-Tapics in Cryptology - CT-RSA
2005 LNCS 3376pp. 58—71. 2005.

Phillip Rogaway and Thomas Shrimpton. CryptographistHaunction Basics: Definitions,
Implications, and Separations for Preimage Resistanamr@ePreimage Resistance, and
Collision Resistance. |Rast Software Encryption — FSE 2Q@D04.

Daniel Simon. Finding Collisions on a One-Way Streetn Gzcure Hash Functions Be
Based on General Assumptions?Advances in Cryptology — Eurocrypt 1998NCS 1403
pp. 334-345. 1998.

Homepage of Suretyasw. sur et y. com

Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and/¥an Yu. Cryptanalysis of the
Hash Functions MD4 and RIPEMD. lAdvances in Cryptology — Eurocrypt 2QA5NCS
3494 pp. 1-18, 2005.

Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hastictions. IPAdvances
in Cryptology — Eurocrypt 2009-NCS 3494pp. 19-35, 2005.

Xiaoyun Wang, Yiqun Lisa Yin, Hongbo Yu. Finding Colbsis in the Full SHA-1Advances
in Cryptology — CRYPTO 2008NCS 3621 pp. 17-36, 2005.

Xiaoyun Wang, Hongbo Yu, Yiqun Lisa Yin. Efficient Colti& Search Attacks on SHA-O.
In Advances in Cryptology — CRYPTO 2005ICS 3621pp.1-16, 2005.

