
Is Cryptography Going to Be

an Engineering Discipline?

Sven Laur
University of Tartu

swen@math.ut.ee

What is a cryptographic proof?

Cryptographic proof manipulates objects with abstract properties

π1

π2

ρ〈π1, π2〉

?

⊲ Does the proof provide an optimal upper bounds?

⊲ Is the construction itself optimal?

⊲ Are there any alternative solutions with different primitives?

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 1

What is a cryptographic primitive?

∀(pk, sk) ← Gen,∀m ∈ M : Decsk(Encpk(m)) = m

f

Gen

Enc

Dec















Abstract

encryption primitive

⊲ A primitive is a black-box object that provides certain services.

⊲ Objects returned by the primitive are from an abstract (algebraic) domain.

⊲ Only way to convert outputs to something useful is to use the functions
of the primitive to convert inputs from one domain to the other.

⊲ These restrictions do not apply to potential adversaries.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 2

A security game

AdvG0
(A) = Pr

[

GA

0 = 1
]

(pk0, sk0) ← Gen

(pk1, sk1) ← Gen

(m0, m1) ← A

b0, b1 ← {0, 1}

c0 ← Encpk
0
(mb0)

c1 ← Encpk
1
(mb1)

q ← A(c0, c1)

iseq ← A(skq)

return [(b0

?
= b1)

?
= iseq]

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 3

Security of a primitive

t

ε

Theoretical estimate

Actual behaviour

ε(t) = max
A∈A(t)

Advf (A)

A cryptographic primitive is characterised by a time-success profile ε(t) that
is quantified as a maximal success probability in a certain game.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 4

Proofs by reductions

A classical way to prove security of a derived primitive is to transform a
successful adversary A against the primitive to a new adversary B against
one of the primary primitives.

A !→ B :
{

ε1 ≥ ρ(ε2)

t1 ≤ τ(t2)

Usually, we need to do a lengthy and detailed probability calculations in
order to find the quantitative properties of a reduction.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 5

Drawbacks of direct reductions

Direct probability computations

⊲ Analysis of randomised algorithms is technical.

⊲ Most of us cannot correctly operate with probabilities.

⊲ Verification of these calculations is equivalent to the derivation of them.

Proofs are unstructured

⊲ To verify a proof, one must debug a complex algorithm.

⊲ Proofs are several pages long even for simple problems.

⊲ Analysis of a full-blown system could be hundreds of pages long.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 6

Game-playing proofs ≡ Structured proofs

Complex proofs can be represented by game trees.

G0

G1 G2

G3 G4

G5

G6 G7

⋄ Structured proof reveals many repeated arguments.

⋄ Probability calculations can be automated.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 7

Proof compaction ≡ Reduction schemata

We can use a single meta-proof and instantiate for every possible sub-proof.

G3

G6

G4

G7

〈Gs〉 =⇒T 〈Gt〉
P – a precondition on a source game
T – a code transformation rule
S – the resulting closeness guarantee

S〈G3〉 S〈G4〉

⊲ Construction and analysis of randomised algorithms is abstracted away.

⊲ It is possible to support parametrised reductions.

⊲ Application of reduction schemata happens on the syntactical level.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 8

A final compacted proof

The final compacted proof tree can be checked syntactically, except for
preconditions of reduction schemata. These must be verified separately.

G0

G1 G2

G3 G4

G5

G6 G7

G1|Ĥ,G1|¬Ĥ

G1

G0|H,G0|¬H

G1

T1 T1

T2

Proof phases

⋄ Primitive elimination phase – few well-documented reduction schemata.

⋄ Analysis of combinatorial games – many informal code transformations.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 9

Primitive elimination

It must be possible to eliminate all primitives.

⊲ For each abstract function there must be an elimination rule.

⊲ Usually, there are many rules for an abstract function.

⊲ All preconditions can be formalised through reachability and dependencies

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 10

Example. Ind-Cpa reduction schema

(pk, sk) ← Gen

· · ·

m0 ← . . .

· · ·

m1 ← . . .

c ← Encpk(m1)

· · ·

(pk, sk) ← Gen

· · ·

m0 ← . . .

· · ·

m1 ← . . .

c ← Encpk(m0)

· · ·

Ind-Cpa

Reduction is applicable when:

⊲ No variables accessible by the adversary A depend on sk.

⊲ No Decsk(·) calls are made during the game.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 11

Example. Ind-Cca2 reduction schema

(pk, sk) ← Gen

· · ·

m0 ← . . .

· · ·

m1 ← . . .

c ← Encpk(m1)

· · ·

(pk, sk) ← Gen

· · ·

m0 ← . . .

· · ·

m1 ← . . .

c ← Encpk(m0)

· · ·

Ind-Cca2

Reduction is applicable when:

⊲ No variables accessible by the adversary A depend on sk.

⊲ No Decsk(c) calls are made after reaching line c← Encpk(m0).

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 12

Why branching is unavoidable

q = 1

(pk0, sk0) ← Gen

(pk1, sk1) ← Gen

(m0, m1) ← A

b0, b1 ← {0, 1}

c0 ← Encpk
0
(mb0)

c1 ← Encpk
0
(mb1)

iseq ← A(sk1, c0, c1)

q = 1

(pk0, sk0) ← Gen

(pk1, sk1) ← Gen

(m0, m1) ← A

b0, b1 ← {0, 1}

c0 ← Encpk
0
(mb1)

c1 ← Encpk
0
(mb1)

iseq ← A(sk1, c0, c1)

q = 0

(pk0, sk0) ← Gen

(pk1, sk1) ← Gen

(m0, m1) ← A

b0, b1 ← {0, 1}

c0 ← Encpk
0
(mb0)

c1 ← Encpk
1
(mb1)

iseq ← A(sk0, c0, c1)

q = 0

(pk0, sk0) ← Gen

(pk1, sk1) ← Gen

(m0, m1) ← A

b0, b1 ← {0, 1}

c0 ← Encpk
0
(mb0)

c1 ← Encpk
1
(mb0)

iseq ← A(sk0, c0, c1)

(pk0, sk0) ← Gen

(pk0, sk0) ← Gen

(m0, m1) ← A

b0, b1 ← {0, 1}

c0 ← Encpk
0
(mb0)

c1 ← Encpk
1
(mb1)

q ← A(c0, c1)

iseq ← A(skq)

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 13

Benefits and hurdles

What does such a proof system give?

⊲ Eliminates need for probability calculations.

⊲ Eliminates need for creative steps.

⊲ Makes error-free analysis of asynchronous systems tractable.

Why do not we have such a proof system?

⊲ Exact implementation details matter a lot.

⊲ Most current solutions do not preserve high-level description of games.

⊲ Most of the reduction schemata belong to combinatorial phase.

⊲ Formal proofs for reachability and independence are tedious.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 14

Help needed!

Questions and answers are welcome!

