Is Cryptography Going to Be
an Engineering Discipline?

Sven Laur
University of Tartu

swen@math.ut.ee

What is a cryptographic proof?

Cryptographic proof manipulates objects with abstract properties

/0<7T177T2>

> Does the proof provide an optimal upper bounds?
> Is the construction itself optimal?
> Are there any alternative solutions with different primitives?

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

What is a cryptographic primitive?

Gen)
| o

f Enc > Abstract
| Dec encryption primitive

/

V(pk,sk) <« Gen,Vm € M : Decs(Encp(m)) =m

> A primitive is a black-box object that provides certain services.
> Objects returned by the primitive are from an abstract (algebraic) domain.

> Only way to convert outputs to something useful is to use the functions
of the primitive to convert inputs from one domain to the other.

> These restrictions do not apply to potential adversaries.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 2

A security game

(pkg, skg) < Gen
(pky,ski) <« Gen
(mg,my) «— A
bo, b1 — {0,1}

co — Encpk, (e,) Advg, (A) = Pr [G' = 1]
c1 + Encpi, (ms,)
q + Alco,c1)
iseq «— A(sk,)

return [(bg = b1) = iseq]

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

Security of a primitive

Theore]

tical estimate

/

e(t)

Actual

= 1maj
Ael

' behaviour

x Advr(A
< F(A)

A cryptographic primitive is characterised by a time-success profile £(¢) that
is quantified as a maximal success probability in a certain game.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 4

Proofs by reductions

A classical way to prove security of a derived primitive is to transform a
successful adversary A against the primitive to a new adversary B against
one of the primary primitives.

Ar— B

e1 > ple2)
tl S T(tg)

Usually, we need to do a lengthy and detailed probability calculations in
order to find the quantitative properties of a reduction.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 5

Drawbacks of direct reductions

Direct probability computations

> Analysis of randomised algorithms is technical.
> Most of us cannot correctly operate with probabilities.
> Verification of these calculations is equivalent to the derivation of them.

Proofs are unstructured

> To verify a proof, one must debug a complex algorithm.
> Proofs are several pages long even for simple problems.

> Analysis of a full-blown system could be hundreds of pages long.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

Game-playing proofs = Structured proofs

Complex proofs can be represented by game trees.

Go

91/ -]\‘
93/1\9’4 :
P 5
£]

¢ Structured proof reveals many repeated arguments.

Go

E

¢ Probability calculations can be automated.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

Proof compaction = Reduction schemata

We can use a single meta-proof and instantiate for every possible sub-proof.

Gs Gi (Gy) L (Gy)

| | P — a precondition on a source game
| 5(Fs) || S(Ga) 7T — a code transformation rule
S — the resulting closeness guarantee

Gs U7

> Construction and analysis of randomised algorithms is abstracted away.

> It is possible to support parametrised reductions.
> Application of reduction schemata happens on the syntactical level.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

A final compacted proof

The final compacted proof tree can be checked syntactically, except for
preconditions of reduction schemata. These must be verified separately.

Ge Gr
‘ ‘ Gs
g3 % G4 } T
G1 Golr Gol-r Go
G
\go/

Proof phases

¢ Primitive elimination phase — few well-documented reduction schemata.

¢ Analysis of combinatorial games — many informal code transformations.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 9

Primitive elimination

It must be possible to eliminate all primitives.

> For each abstract function there must be an elimination rule.
> Usually, there are many rules for an abstract function.
> All preconditions can be formalised through reachability and dependencies

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 10

Example. IND-CPA reduction schema

(pk, sk) «— Gen
mo < ...

myq < ...

¢ < Encpk(myg)

Reduction is applicable when:

IND-CPrA

(pk, sk) «— Gen
mo < ...

mq < ...

c <+ Encpk(m1)

> No variables accessible by the adversary A depend on sk.

> No Decg(+) calls are made during the game.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

11

Example. IND-CcCA2 reduction schema

(pk, sk) «— Gen (pk, sk) «— Gen

mgo <— ... mgo <— ...
IND-CcCA2

mq <— ... mq <— ...

c < Encpk(myg) c < Encpk(m1)

Reduction is applicable when:

> No variables accessible by the adversary A depend on sk.
> No Decg(c) calls are made after reaching line ¢ « Encp(mo).

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

Why branching is unavoidable

(pkg, sko) < Gen
(pkg, sko) < Gen
(mo, my1) — A

bo, b1 «— {0,1}

co « Encpy, (myp,)
c1 < Encpi, (mp,)
q < Alco, c1)
iseq «— A(sk,)

\

co « Encpy, (my,)
c1 < Encpy, (my,)

iseq — ‘A(Sk()? Co, Cl)
T —

co + Encpy, (mp,)
c1 « Encpy, (my,)

iseq — ‘A(Sk07 Co, Cl)
T —

=1

i)

(pkg, sko) < Gen
(pky,sky) < Gen
(mg,mq1) «— A
bo, b1 < {0, 1}
co « Encpy, (ma,)

c1 + Encpy, (mp,)

iseq «— A(ski, co, c1)
—

=1

L

(pkg, sko) < Gen
(pky,sky) < Gen
(mg,mq) «— A
bo, by < {0, 1}
co + Encpy, (M,)

c1 + Encpy, (mp,)

iseq «— A(ski, co, c1)
S ——

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008

13

Benefits and hurdles

What does such a proof system give?

> Eliminates need for probability calculations.
> Eliminates need for creative steps.
> Makes error-free analysis of asynchronous systems tractable.

Why do not we have such a proof system?

> Exact implementation details matter a lot.
> Most current solutions do not preserve high-level description of games.
> Most of the reduction schemata belong to combinatorial phase.

> Formal proofs for reachability and independence are tedious.

Centre of Excellence in Computer Science meeting, kick-off meeting, 18 September, 2008 14

Help needed!

Questions and answers are welcome!

