
1 First order logic and Peano arithmetics

In order to make this presentation more self-contained, we first quickly recap
some notions and results from formal logic. In the following, we use results and
formalism of first order logic and a standard axiomatisation of arithmetics—
Peano arithmetics.

First order logic The syntax of first order logic is determined by a signa-
ture σ = 〈C;F ;P〉 consisting of constant symbols C, function symbols F and
predicate symbols P . The formulas of first order logic is defined rather stan-
dard way by combining constants, free variables, quantifier, logic connectives
and braces. However, a priory none of the symbols or formulas have any kind
of semantics—only an interpretation can transform syntactic gibberish into a
meaningful mathematical proposition.

Definition 1. An interpretation I of a signature σ = 〈C;F ;P〉 consists of

nonempty domain D and a collection of mappings that:

• assign a domain element to each constant symbol,

• assign a n-ary function f : Un → U to each n-ary function symbol,

• assign a n-ary predicate p : Un → {0, 1} to each n-ary predicate symbol.

All well-formed formulas naturally split into three subclasses: consistent,
inconsistent and valid formulas. Valid formulas are true in every interpretation.
There are several formal techniques (proof systems) that allow to algorithmically
derive all valid formulas via infinite computing process, i.e. the set of all valid
formulas is recursively enumerable.

In order to use any proof system for deriving some nontrivial mathematical
facts, one has to provide a set of axioms T that define the mathematical struc-
ture in question. We slightly abjuse the notation and talk about theory T , as
all true stetements are determined by the axiom set T . We say that a formula
φ follows from the axioms T iff for all interpretations where axioms T are true
also the formula φ is true, and denote it by T |= φ. If the set of axioms T is
finite, then T |= φ iff the formula T ⊃ φ is valid, and thus also provable by the
proof system. However, for many practical theories, we use infinite system of
axioms T and latter opens a gap between provable statements and true state-
ments. Therefore, we use notation T ⊢ φ to state that exist a (finite) proof for
φ in theory T . Obviously, for any consistent theory T , the fact T ⊢ φ implies
T |= φ.

Sometimes adding axioms along with constant, function or predicate sym-
bols does not change the set of representable statements and the set of valid
statements in the theory. Then we talk about conservative extensions. In a way,
the conservative extension is just a more convenient reformulation of axioms.

Peano arithmetics A standard signature of arithmetics is σ = 〈0;+, ·;=〉,
where 0, 1 are the only constants, + and · denote standard arithmetical oper-
ations, and = stands for equality. The semantics of the Peano arithmetics is

1

captured by the following set PA of axioms

Equality Axioms Successor Axioms

∀x(x= x)

∀x∀y(x= y ⊃ y=x)

∀x∀y∀z((x= y ∧ y= z) ⊃ x= z)

∀x∀y(φ(. . . , x, . . .) ⊃ φ(. . . , y, . . .))

∀x¬(x+ 1 =x)

∀x∀y(x+ 1 = y+ 1 ⊃ y= x)

(φ(0) ∧ ∀x(φ(x) ⊃ φ(x+ 1)) ⊃ ∀xφ(x)

Addition axioms Multiplication Axioms

∀x(x+ 0 =x)

∀x∀y(x+(y+ 1)=(x+ y)+ 1)

∀x(x · 0 =x)

∀x∀y(x ·(y+ 1)=x · y+ x)

where φ can be any well-formed formula in the signature σ. However, the for-
malism is not precise enough—first order Peano axiomatics has infinite number
of different non-equivalent models. The latter underlines the fact that first or-
der logic is not too descriptive and mathematicians use implicitly more refined
logic. On the other hand, the set of axioms is infinite, and thus we loose the
completeness—some true formulas cannot be proved. The gap between true and
provable formulas emerges, as the Peano arithmetic PA is rich enough to embed
all primitively recursive relations, functions and predicates.

Clearly, one can express all natural numbers as a sum of ones, let n be the
shorthand of such a sum1. Now, we can formally specify, what the embedding
means.

Definition 2. Let r ⊆ N
k be a k-ary relation. Then a formula ρr(x1, . . . , xn)

with free variables x1, . . . , xk represents the relation R in theory T iff for for

any tuple (a1, . . . , ak) ∈ N
k

(a1, . . . , ak) ∈ r ⇒ T ⊢ ρr(a1, . . . , an) ,

(a1, . . . , ak) /∈ r ⇒ T ⊢ ¬ρr(a1, . . . , an) .

We call such relations representable in theory T .

Theorem 1 (Kurt Gödel). Every primitively recursive function or predicate

is representable in the Peano arithmetics.

Let f be a primitively recursive function and ρf a formula that represents f .
Then we can add a functional symbol f along with a defining axiom

∀x1∀x2 . . . ∀xkρf(x1, x2, . . . , xk, f(x1, x2, . . . , xk))

to PA without increasing the set of representable or provable formulas.

1Later we use more space efficient representation.

2

2 Turing machines. Polynomial-time proofs

There is nothing mystical about Turing machines—reader has probably even
seen several different formalisations. Nevertheless, we stress some aspects. First,
for each a machine M, let codeU(M) denote the natural number that codes
M. In particular, let U be the universal Turing machine that interpretes and
executes codeU(M), i.e. U(codeU(M), w) = M(w) for all inputs w ∈ N. Here,
we assume that codeU(M) is self-delimiting, i.e. the interpretator U can split its
single binary input into the code part codeU(M) and the argumentw. Therefore,
formally we have defined a computable function U : N → N. We use same
convention for multiargument functions, i.e. a tuple (w1, . . . , wn) is actually a
concatenation of self-delimiting descriptions of wi.

We also use a dedicated universal Turing machine Up for polynomial time
algorithms. The input of Up is a triple (codeU(M), c, w), where c is a time-bound
constant and w input of M. Given input the interpreter Up first computers a
time-bound t = size(w1, . . . , wn)c and then executes at most t instructions of
M and halts. W.l.o.g. we can assume that Up is foolproof, i.e. halts when the
input is invalid or time-bound is exceeded. The function size : N

k → N must be
a polynomial-time computable function that is hardwired into the description
of Up, for example it can be the summary bit-length of inputs.

Similarly, we introduce codes for the predicate formulas φ in Peano arith-
metics. Let codeP (φ) be an efficient (polynomial-time decodable) representation
of φ as natural number, for example a self-delimiting ASCII encoding of pred-
icate formula. Hence, we can also encode proofs and use a dedicated Tueing
machine V to verify formal proofs. We do not specify the proof system or the
format of proof. Though, implicitly we assume that proofs are represented as a
trees and a single Hilbert or Gentzen style rule is applied to derive parent from
child nodes. However, we impose a efficiency and soundness requirement to the
proof system.

Definition 3. The proof system is sound, if it allows to prove only true formu-

las. The proof system is polynomial-time verifiable iff there exists a polynomial

time algorithm V such that V(ρ, proof(ρ)) = 1 iff proof(ρ) is a valid proof of ρ.

It is curious fact that given a set formulas that have polynomial size proofs
w.r.t. the formula size, the proving itself is NP-hard problem. Still, for suitable
sub-classes of formulas one can device a polynomial-time prover. More formally,
we can talk about time-complexities of some language L of provable formulas.

Definition 4. A language L has a polynomial-time proofs iff there exists a

polynomial-time prover P that generates a valid proof for every problem instance

φ ∈ L. The time-complexity of P must O(size(codeP (φ))c), where size can be

defined in a problem specific way as long as size(w) = O(|w|). Let T ∧ P ⊢L
denote that P is a polynomial-time prover for the language L. Let T ∧ P ⊢φ
denote that P generates valid proof for φ, it may fail for other instances.

Especially interesting languages are generated by formulas φ(x1, . . . , xk),
namely let Lφ =

{

φ(a1, . . . , ak) : (a1, . . . , ak) ∈ N
k ∧ T ⊢ φ(a1, . . . , ak)

}

. Stan-

3

dard proof systems for the first order Peano arithmetics are very inefficient, thus
the set of polynomial-time provable languages is not very rich. It is conjectured
that no formula φ(n, x), that represents fact x = 2n, forms a polynomial-time
provable language. Hence, we have to optimise the basic proof system. We
consider such subtleties in the next section.

3 Representations with polynomial-time proofs

As said before, standard proof systems are too inefficient, therefore we consider
an extended signature for arithmetics σe = 〈0, 1;+, ·, exp;=〉. Let ρexp(x, y)
be a representation of 2x = y. Then the additional axiom ∀nρexp(n, exp(n))
fixes uniquely the value E (()n). We enchance our proof system so that all
ρexp(n, 2

n) are axioms. Moreover, we use more compact encoding for integers n =
n0 + n1 · exp(1)+ · · ·+ nk · exp(k), where nk . . . n0 is the binary representation of
n. Hence, |codeP (n)| = O(log2 n) and simple arithmetic realations x + y = z,
xy = z and xy = z have polynomial-time proofs. The change is only cosmetic,
the extended theory PAe is clearly a conservative extension of Peano arithmetics.
The functional symbol exp is just for convenience: we could drop it and use only
ρexp, the class of polynomially provable formulas would not change.

Definition 5. Let r ⊆ N
k be a k-ary relation. Then a formula ρr(x1, . . . , xn)

with free variables x1, . . . , xk polynomially represents the relation r in theory T
iff languages Lφ and L¬φ have polynomial-time proofs. We call such represen-

tation efficient.

Next, we give a proof sketch for the following profound theorem by intro-
ducing additional functional symbols.

Theorem 2. Any polynomial-time computable relation r ⊆ N
k can be efficiently

represented as ρr. Moreover, if r is a graph of (k − 1)-ary function, then

PAe ⊢ ∀x1 . . . ∀xk−1∃!yρr(x1, . . . , xk−1, y) .

Proof sketch We do not give the complete proof, we give only main ideas and
let reader to fill the missing gaps. The improved proof system is actually a very
efficient computational device. The latter allows us to use efficient analogue for
Gödel β-function and the rest follows straightforwardly.

First, we introduce additional functions len, bit and β
e
by adding axioms

∀x(exp(len(x))≤ 2 · x ∧ x < exp(len(x)))

∀x∀i∃y(ρrem(x, exp(i+ 1), y) ∧ ρdiv(y, exp(i), bit(x, i)))

∀x∀i∀k∃y(ρrem(x, exp((i+ 1) · k), y) ∧ ρdiv(exp(k + 1) · y, exp((i+ 1) · k), β
e
(x, i, k)))

where div and rem stand for integer quotient and reminder. In other words,
we enforce len(x) = |x|, bit(x, i) = xi and β

e
(x, i, k) = x(i+1)k . . . xik+1, where

xi denotes the ith bit of x. It is straightforward but tiresome to prove that

4

languages Llen, L¬len, Lbit, L¬bit, Lβe
, L¬βe

have polynomial-time proofs. Now,
for any Turing machine M, we get the following representation

∃a∃t(ρinit(βe(a, 0, t), x) ∧ ∀t1 < tρtran(βe(a, t1, t),βe(a, t1 + 1, t)) ∧ ρends(βe(a, t, t), y))

where ρtran(c0, x) = 1 iff the initial configuration of tape is x and M is in state
q1, ρtran(c1, c2) = 1 iff M moves from configuration c1 to c2 and ρends(c, y) = 1
iff c is final configuration of M with the output y. A configuration c must
capture the configuration of tape and the internal state of M. For example,
c = c1+c2·2t+c3·22t, where c1, c2, c3 are descritpions of the internal state q, head
location and tape configuration. Therefore, if M is a polynomial time algorithm,
then exists t that is polynomial in size(x) such that adequate description fits
into t-bit block and M does less than t steps.

Again, it is somewhat tedious to prove that ρinit, ρtran, ρends are polynomially
representable. Now, observe a crucial detail. If M is polynomial time algorithm,
then the prover can compute a by simulating the run of M. As the bit-length
of a is polynomial in size(x) and the prover can prove or disprove the formula
by considering only polynomial number of sub formulas

ρinit(βe
(a, 0, t), x)

ρtran(βe
(a, t1, t),βe

(a, t1 + 1, t)), t1 = 0, . . . , t− 1 .

ρends(βe
(a, t, t), y))

As each of those is a polynomial size formula, it has a polynomial size proof.
The first claim is proven.

We do not give a formal proof to the second claim. The idea is simple.
First, one devices a formula that says in each time step the Turing machine
M is in a unique state. Next, it proves it using induction axiom. Finally,
states additionally that after halting the state remains same. These two proofs
combined in proper way form a solid proof of required triviality.

4 Proofs of proofs

Now, it is time to raise to the meta-level. Following the footsteps of Gödel, we
formalise the notion of provability in the framework of polynomial proofs.

Definition 6. Let V be a polynomial-time verifier of a a first order theory T , L
be a class of well-formed true formulas and P a polynomial-time prover. Then

the predicate [[T ∧ P ⊢φ]] characterises correctness of proofs

[[T ∧ P ⊢φ]] =

{

1, if Up(m, c, codeP (φ)) produces a valid proof of φ,

0, otherwise.

Polynomial provability predicate has several interesting properties that are
worth mentioning. Basically, polynomial provability is closed under various
logical proving schemes, as long as we can compose provers to a polynomial-
time superprover. Note that the formula ∀x[[PAe∧P ⊢φ(x)]] actually means, that

5

given x we substitute x into φ and obtain φ(x) and then test [[PAe ∧ P ⊢φ(x)]],
i.e. [[PAe ∧ P ⊢φ(x)]] is a shorthand for more complicated predicate depending
on x.

Lemma 1. Let φ(x1, . . . , xk) be a well-formed formula in the extended Peano

arithmetics PAe and let P be a polynomial-time algorithm. Let ψ(x1, . . . , xk) =
[[PAe ∧P ⊢φ(x1, . . . , xk)]]. Then there exists a suitable repsresentation of ψ such

that there exists a polynomial-time prover P◦ and PAe ∧ P◦ ⊢Lψ.

Proof. Clearly, [[PAe ∧P ⊢φ(x1, . . . , xk)]] is a polynomial-time computable pred-
icate: one first runs P to get a proof π and then runs V(π) to test the proof.
Thus by Theorem 4, it is also polynomially-representable.

Lemma 2. Let φ(x) and ψ(x) be a well-formed formula in the extended Peano

arithmetics PAe and let P1 and P2 be a polynomial-time provers. Then there

exists a polynomial-time prover P3 such that

PAe ⊢∀x([[PAe ∧ P1 ⊢φ(x)]] ∧ [[PAe ∧ P2 ⊢φ(x) ⊃ ψ(x)]] ⊃ [[PAe ∧ P3 ⊢ψ(x)]]).

Proof. This is evident, but the formal proof is somewhat complicated. First,
the construction P3 is following, given input codeP (ψ(x))

• Runs P1(codeP (φ(x))) and stores the output proof π1.

• Runs P2(codeP (φ(x) ⊃ ψ(x))) and stores the output proof π2.

• If verification of proofs fails:

∗ V(codeP (φ(x)), π1) = 0 or

∗ V(codeP (φ(x) ⊃ ψ(x)), π2) = 0

then halts with failure.

• Otherwise uses Modus Ponens rule A,A ⊃ B ⊢ B to merge π1 and π2 into a
single proof π of ψ(x). Outputs π.

Informally, we know that for all inputs x1, . . . , xk either P1 or P2 fail or P3

produces a valid proof, however we need formal proof in PAe.
Let outP1

(x, y) be an efficient representation of P1(x) = y and outP2
(x, y)

be an efficient representation of P2(x) = y. Then form Theorem follows

PAe ⊢ ∀x1∀x2∃!y1∃!y2(outP1
(x1, y1) ∧ outP1

(x2, y2))

On the other hand, from the specification of V on can obtain

PAe ⊢ ∀a∀b(∃uV(a, u) ∧ ∃vV(b, v) ∧ areφ,φ⊃ψ(a, b)) ⊃ V(com(a, b),mp(u, v)),

where areφ,φ⊃ψ(a, b) = 1 iff a = codeP (φ(x)) and b = codeP (φ(x)) ⊃ ψ(x) for
some x ∈ N, com(a, b) = codeP (ψ(x)) iff areφ,φ⊃ψ(a, b) = 1 and mp combines
proofs using the Modus Ponents rule. Clearly, the proof is not trivial for V , but
it can be still proven by casting structural induction into PAe famework.

Combining this formulas gives exactly the required proof. Though, it is
completely straightforward it is far from trivial.

6

Corollary 1. Let φ and ψ be a well-formed formula in the extended Peano

arithmetics PAe and let P a polynomial-time prover that provides valid proofs

for Lφ. If there exists a proof

PAe ⊢ ∀x(φ(x) ⊃ ψ(x))

then there exists a polynomial-time prover P◦ such that

PAe ⊢ ∀x([[PAe ∧ P ⊢φ(x)]] ⊃ [[PAe ∧ P◦ ⊢ψ(x)]]) .

Proof. Direct corollary from the previous lemma. As PAe ⊢ ∀x(φ(x) ⊃ ψ(x))
is a finite proof, there exists another polynomial-time algorithm P2 such that
PAe ∧ P2 ⊢φ(x) ⊃ ψ(x). Now, from Lemma 2 we obtain

PAe ⊢∀x([[PAe ∧ P ⊢φ(x)]] ∧ [[PAe ∧ P2 ⊢φ(x) ⊃ ψ(x)]] ⊃ [[PAe ∧ P◦ ⊢ψ(x)]]).

Since [[PAe ∧ P2 ⊢φ(x) ⊃ ψ(x)]] = 1, we can omit it.

Corollary 2. Let φ and ψ be a well-formed formula in the extended Peano

arithmetics PAe and let P1 and P2 be polynomial-time provers. Then exists a

polynomial-time prover P3 such that

PAe ⊢ ∀x([[PAe ∧ P1 ⊢φ(x)]] ∧ [[PAe ∧ P2 ⊢ψ(x)]] ⊃ [[PAe ∧ P3 ⊢φ(x) ∧ φ(x)]])

Proof. The proof is analogous to Lemma2. Alternatively, it can be obtained
from Corollary 1 by using tautology

PAe ⊢ ∀x(φ(x) ⊃ (ψ(x) ⊃ (φ(x) ∧ ψ(x))))

Corollary 3. Let φ be a well-formed formulas in the extended Peano arithmetics

PAe and let P be a polynomial-time prover. Then exists a polynomial-time prover

P◦ such that

PAe ⊢ ∀x∀y([[PAe ∧ P ⊢φ(x)]] ∧ [[PAe ∧ P ⊢φ(y)]] ⊃ [[PAe ∧ P◦ ⊢φ(x) ∧ φ(y)]] .

Proof. Simple corollary of Corollary 5.

Lemma 3. Let r ⊆ N be a polynomial-time computable relation and ρr corre-

sponding polynomial representation in theory PAe. Then there exists a polynomial-

time prover P such that

PAe ⊢ ∀x(ρr(x) ∼ [[PAe ∧ P ⊢ ρr(x)]] .

Proof. Actually, this is a clear tautology. The relation is defined via a polynomial-
time Turing machine M and we can take the representation ρr from Theorem 4.
The prover P is just the same as in proof of Theorem 4. Therefore, we have to
formally prove that simulation of M gives always the same results as running
M. The proof is fairly straightforward, however non-trivial. The proper way to
formally prove this is to define sematics of instructions and then prove that for
any Turing machine such formal proof exists by a structural induction.

7

5 Incompleteness theorems

In order to postulate Gödel-style incompleteness theorems for polynomial time
proofs, we have to sharpen the Kleene’s recursion theorem. Still, lets start from
additional notation before stating the both form of recursion theorems. Also,
recall that by our convention universal Turing machines work with all inputs.

Definition 7. Let ρu-ptm : N × N → {0, 1} be a polynomial representation of a

universal polynomial Turing machine Up : N → N. Let ρp-utm-p : N → {0, 1} be a

polynomial representation of a universal polynomial Turing machine restricted

to Boolean outputs Up : N → {0, 1}.

Theorem 3 (Kleene). For any self-delimiting argument m ∈ N there exist

k ∈ N such that U(k, w) = U(m, k,w) for all input values w ∈ N.

Theorem 4 (Polynomial-time Recursion Theorem). For any m ∈ N and

c1 ∈ N there exist a code-constant k and a time-bound constant c2 > c1 such

that

PAe ⊢ ∀w∀y(ρu-ptm(k, c2, w, y) ∼ ρu-ptm(m, k, c1, w, y)).

Proof. Let M be a Turing machine such that m = codeU(M). First, lets give
an explicit description of a Turing machine K such that k = codeU(K) and

∀w ∈ N : Up(k, c1, w) = Up(m, k,w) .

Recall that constants c1 and c2 determine the time-bounds for M and K. The
algorithm K executes following steps:

1. Write t to the working tape.

2. Copy its own code k to the working tape.

3. Copy the inputs w to the working tape.

4. Interptete the input (t, k, c1, w) as Up.

Clearly, the code of K is finite and thus the second step requires only constant
amount of time. Therefore, the interpeting the input (t, k, c1, w) requires only
a polynomial time and thus we can specify the time-bound constant c2.

To complete the proof, we must formally show that interpreting the code
and running the Turing machine produce the same result for every input. We
omit the proof, as it is straightforward but non-trivial.

And now, we are in good shape to construct the classical Gödel sentences: the
sentence is true, when it is not provable in polynomial time. In order to avoid
obscure and esoteric relational notation, we consider only accepting-rejecting
universal Turing machine.

Corollary 4 (Reformulation of Polynomial-time Recursion Theorem).
For any m ∈ N and c1 ∈ N there exist a code-constant k and a time-bound

constant c2 > c1 such that

PAe ⊢ ∀w(ρp-utm-p(k, c2, w) ∼ ρp-utm-p(m, k, c1, w)).

8

Proof. Direct conclusion from Polynomial-time Recursion Theorem.

Lemma 4 (Gödel Sentence). For any polynomial-time accepting-rejecting

Turing machine M there exist a formula ρM such that

PAe ⊢ ∀w(ρM(w) ∼ ¬[[PAe ∧M⊢ ρM(w)]]

For all x the formula ρM is called a Gödel sentence with respect to M.

Proof. First consider a two-argument Turing machine T that given input (k, w)

• Construct the formula ρp-utm-p(k, c1, w)

• Run M(codeP (ρp-utm-p(k, c1,w))) and thest wheter the output π is a valid
proof of ρp-utm-p(k, c1, w, y).

• Return ¬[[PAe ∧M⊢ ρp-utm-p(k, c1,w)]].

By Polynomial-time Recursion Theorem there are values k and c2 such that

PAe ⊢ ∀w(ρp-utm-p(k, c2, w) ∼ ρp-utm-p(t, k, c1, w))

and thus by construction

PAe ⊢ ∀w(ρp-utm-p(k, c2, w) ∼ ¬[[PAe ∧M⊢ ρp-utm-p(k, c1,w)]] .

Since T is a polynomial-time algorithm there exists a value c such that

PAe ⊢ ∀w(ρp-utm-p(t, k, c, w) ∼ ρp-utm-p(t, k, c1, w)), c < c1 .

Hence, we can set ρM(w) = ρp-utm-p(k, c2, w), where c2 corresponds to suffi-
ciently large c, and the claim is proved.

Theorem 5 (First Incompleteness Theorem). Let M be a polynomial-

time Turing machine and ρM(w) the corresponding Gödel sentence. Then for

all inputs w ∈ N

PAe ∧M 6 ⊢ ρM(w)

and

PAe ∧M 6 ⊢¬[[PAe ∧M⊢ ρM(w)]]

unless PAe is inconsistent.

Proof. We know that

PAe ⊢ ∀w(ρM(w) ∼ ¬[[PAe ∧M ⊢ ρM(w)]]

and thus for all w ∈ N such that ρM(w) = 1, the prover M produces invalid
proof for ρM(w). On the other hand, if PAe is consistent then M cannot provide
a valid proof when ρ(w) = 0.

9

For a shake of contradiction, assume that

PAe ∧M⊢¬[[PAe ∧M⊢ ρM(w)]] .

Then from the consistency follows [[PAe ∧M⊢ ρM(w)]] = 1 that is

PAe ∧M⊢ ρM(w)

and we have contradiction with the first claim.

Theorem 6 (Second Incompleteness Theorem). Let φ(w) be a well-formed

formula with a single free variable w and M a polynomial-time Turing machine.

Then there exists a Turing machine M◦ such that for all w ∈ N

PAe ∧M 6 ⊢¬[[PAe ∧M◦ ⊢φ(w)]]

unless PAe is inconsistent.

Proof. We start with the Gödel sentence ρM(w) for M. And in a long run, we
want to construct M◦ such that

PAe ⊢ ∀w([[PAe ∧M ⊢ ρM(w)]] ⊃ [[PAe ∧M◦ ⊢φ(w)]]) (1)

as it gives an immediate contradiction. More precisely, if we have

PAe ∧M⊢¬[[PAe ∧M◦ ⊢φ(w)]] (2)

then combining formal proof (1), we can construct a polynomial-time prover
M⋆ such that if condition (2) is satisfied, then

PAe ∧M⋆ ⊢¬[[PAe ∧M⊢ ρM(w)]] .

But this is impossible accoding to First Incompleteness Theorem.
To give a proof for line (1), we have to give an explicit construction to M◦

and the corresponding formal proof. Nevertheless, we give only a traditional
handwritten proof and leave it to the reader to completely formalise it. From
Lemma 3, we get that exist a polynomial-time prover P1 such that

PAe ⊢ ∀w([[PAe ∧M ⊢ ρM(w)]] ⊃ [[PAe ∧ P1 ⊢[[PAe ∧M⊢ ρM(w)]]]])

From Lemma 4, we get

PAe ⊢ ∀w([[PAe ∧M⊢ ρM(w)]] ⊃ ¬ρM(w))

and thus exists a polynomial-time prover P2 such that

PAe ⊢ ∀w([[PAe ∧M⊢ ρM(w)]] ⊃ [[PAe ∧ P2 ⊢¬ρM(w)]]) .

Combining provers M and P2, Lemma assures existance of a polynomial-time
prover P3 that can prove falsum

PAe ⊢ ∀w([[PAe ∧M⊢ ρM(w)]] ⊃ [[PAe ∧ P3 ⊢ ρM(w) ∧ ¬ρM(w)]] .

10

Since

PAe ⊢ ∀w(φM(w) ∧ ¬ρM(w) ⊃ φ(w))

is a tautology, Corollary 1 assures existance of a polynomial-time prover M◦

such that

PAe ⊢ ∀w([[PAe ∧M ⊢ ρM(w)]] ⊃ [[PAe ∧M◦ ⊢φ(w)]]

and this completes our proof.

6 The formalization of SAT problem

Before considering the P = NP problem, we follow the traditional path and
define 3-SAT problem. Though, formally we do not have explicit propositional
variables in the formulas of first order logic, we can circumvent the restriction
and use xi = 1 for each propositional variable. Hence, it is rather straightforward
to define language L3CNF of 3-CNF formulas in PA. By a standard convention
all ill-formed or non-3-CNF formulas are considered unsatisfiable.

Definition 8 (3SAT relation). Let r3SAT ⊆ N be a relation such that x ∈ r3SAT

only if there exist a satisfiable formula φ ∈ L3CNF and x = codeP (φ). Let ρ3SAT

denote an inefficient representation of r3SAT as a formula in the first order Peano

arithmetics.

Definition 9 (Language of satisfiable formulas). We denote the set of sat-

isfiable formulas by LSAT = {ρ3SAT(a) : ρ3SAT(a) ∧ PA ⊢ ρ3SAT(a)} and its com-

plement by Lco-SAT = {ρ3SAT(a) : ρ3SAT(a) ∧ PA ⊢ ¬ρ3SAT(a)}. For all x ∈ N

that have corresponding 3CNF formulas, let size(x) = 2n, where n is the num-

ber of free variables in the 3CNF formula. Let size(x) = 2 · |x| otherwise.

Wheter to include incorrect formulas into Lco-SAT is a matter of choice.
The main main motivation behind our choice is conceptual simplicity. If such
incorrect formulas are excluded, then there is an explicit need for efficient
(polynomial-time in size(φ)) enumeration of correct formulas. Though, it is
clearly doable, it just complicates the matters.

To formalise the guestion P = NP or not, we need a efficient representation
of such a test. We provide actually two such tests: binary predicates solve-sat
and prove-sat.

Definition 10. A predicate ρprove-sat : N × N → {0, 1} characterises the ability

of Turing machines to prove φ ∈ LSAT, i.e. ρsolve-sat(m,w) is an efficient repre-

sentation of [[PAe ∧M⊢ ρ3SAT(w)]] where m = codeU(M) and w = codeP (φ). A

predicate ρsolve-sat : N × N → {0, 1} characterises the ability of Turing machines

to recognise the language LSAT, i.e. ρsolve-sat(m,w) = ρp-utm-p(m,w) ∼ ρ3SAT(w).

Theorem 7 (Main Negative Result). For all polynomial-time provers M
there exist a polynomial-time Turing machine M◦ such that for all w ∈ N

PAe ∧M 6 ⊢¬ρsolve-sat(m◦,w) ,

11

where m◦ = codeU(M◦).

In the first version of the article, authors claimed that Second Incompleteness
theorem is sufficient to prove the claim. Shortly put, there is a polynomial-time
Turing machine M◦ such that

PAe ∧M 6 ⊢¬[[PAe ∧M◦ ⊢ ρ3SAT(w)]]

but this is not enough for contradiction, as inability of M to prove something
about M◦ proofs does not lead to anywhere. Hence, we need stronger incom-
pleteness theorems that deal with inability to proove correct polynomial-time
descisions.

7 Polynomial-time descisions

Formalising correctness of polynomial-time descisions is strickingly simple. Nev-
ertheless, it is possible to obscure matters beyound recognition by introducing
complex notation. Therefore, we take anoter and more simple path. Consider
a Turing machine M that given an input codeP (φ) accepts or rejects input.
Clearly, M correctly accepts φ if PAe |= φ or alternatively

PA |= ρp-utm-p(codeU(M), codeP (φ)) ∧ φ .

Still, the notation is to cumbersome and hence, we use

PA |= M(φ) ∧ φ .

To stress the meaning and separate from other formulas, let [[M(φ) ∧ φ]] be the
corresponding predicate, i.e.

[[M(φ) ∧ φ]] =

{

1, if PA |= M(φ) ∧ φ,

0, otherwise.

Therefore, the proof of [[M(φ) ∧ φ]] in PA is actually

PA ⊢ M(φ) ∧ φ .

The following definition summarises the notation and extends it to rejections
and descisions.

Definition 11 (Absolute corretness). Let L be a set of formulas in PAe

and let M be a polynomial-time Turing machine. Then M correctly accepts

φ ∈ L iff PA |= M(φ)∧φ, correctly rejects iff PA |= ¬M(φ)∧¬φ, and correctly

descides iff PA |= M(φ) ∼ φ. The corresponding notations are [[M(φ) ∧ φ]],
[[¬M(φ) ∧ ¬φ]] and [[M(φ) ∼ φ]].

12

Definition 12 (Relative correctness). Let L be a set of formulas in PAe and

let M be a polynomial-time Turing machine and V a descision verifier. Then

with respect to V M correctly accepts φ ∈ L iff PA |= M(φ) ∧ V(φ), correctly

rejects iff PA |= ¬M(φ) ∧ ¬V(φ), and correctly descides iff PA |= M(φ) ∼
V(φ). The corresponding notations are [[M(φ) ∧ V(φ)]], [[¬M(φ) ∧ ¬V(φ)]] and

[[M(φ) ∼ V(φ)]].

Let r be the primitively recursive relation and M corresponding Turing
machine that evaluates ρ. then the representation theorem assures that there is
a formula ρ that simulates the run of M. Let us call ρ to canonic representation

of r. Then there exists a universal prover that for each canonic representation
produces proof PA ⊢ ρ(x), whenever ρ(x) is true.

Lemma 5. Let φ be a primitively recursive predicate in a canonic form. Then

there exist a descision verifier Vφ such that

[[M(φ(x)) ∧ Vφ(φ(x))]] ⇔ [[M(φ(x)) ∧ φ(x)]]

[[¬M(φ(x)) ∧ ¬Vφ(φ(x))]] ⇔ [[¬M(φ(x)) ∧ ¬φ(x)]]

Proof. Obvious, since we can use universal prover to test φ(x).

Lemma 6. Let φ(x) be a primitively recursive predicate in a canonical form.

Then there exists a primitively recursive upper bound fφ for proof of descisions,

i.e.

∃y < fφ(size(φ(a))) ∧ Vpa(φ(a), y) = 1 ⇔ PA ⊢ φ(a)

∃y < fφ(size(φ(a))) ∧ Vpa(¬φ(a), y) = 1 ⇔ PA ⊢ ¬φ(a)

provided that size majories primitively recursive monotonically growing function

that is unbounded.

Proof. Obvious, since we can list all proofs for all formulas with fixed size and
then take the maximum from proofs.

Now, by some reason—still unknown to author of tis review—we consider a
dedicated verifiers.

Definition 13 (Dedicated verifier for acceptance).

Definition 14 (Dedicated verifier for rejection).

Definition 15 (Soundness). We say that verifier V soundly accepts iff

PA |= V(φ) ⊃ φ

and soundly rejects

PA |= ¬V(φ) ⊃ ¬φ.

13

Lemma 7. Deticated acceptance verifier V+
φ and rejection verifier V−

φ are cor-

rect, i.e.

PA |= ∀a(V+
φ (φ(a) ∼ φ(a))

PA |= ∀a(¬V−

φ (φ(a) ∼ ¬φ(a))

and also satisfy

PA ⊢ ∀x(V+
φ (φ1(x) ∧ φ2(x)) ∼ V+

φ (φ1(x)) ∧ V+
φ (φ2(x)))

PA ⊢ ∀x(V+
φ ([[M(ψ(x)) ∧ V+

φ (ψ(x)]]) ∼ [[M(ψ(x)) ∧ V+
φ (ψ(x))]]

PA ⊢ ∀x(¬V−

φ (φ1(x) ∨ φ2(x)) ∼ ¬V−

φ (φ1(x)) ∧ ¬V−

φ (φ2(x)))

PA ⊢ ∀x(¬V−

φ ([[M(ψ(x)) ∧ V−

φ (ψ(x)]]) ∼ ¬[[M(ψ(x)) ∧ V−

φ (ψ(x))]]

Proof. Nothing to proove, follows from the constructions of verifiers.

Lemma 8. Let φ be a primitively recursive predicate in a canonic form. Then

it is sufficient to test descisions w.r.t. the deticated verifiers V+
φ and V−

φ , i.e.

[[M(φ(x)) ∧ V+
φ (φ(x))]] ⇔ [[M(φ(x)) ∧ φ(x)]]

[[¬M(φ(x)) ∧ ¬V−

φ (φ(x))]] ⇔ [[¬M(φ(x)) ∧ ¬φ(x)]]

Proof. Nothing to prove.

Lemma 9. Let φ and ψ be a primitively recursive predicates in a canonic form.

Then for any polynomial-time Turing machine M, we have

PA ⊢ ∀x([[M(φ(x)) ∧ V+
ψ (φ(x)]] ⊃ [[M(φ(x)) ∧ V+

φ (φ(x)]])

PA ⊢ ∀x([[¬M(φ(x)) ∧ ¬V−

ψ (φ(x)]] ⊃ [[¬M(φ(x)) ∧ ¬V−

φ (φ(x)]])

Proof. Nothing to proove.

8 Descisions about descisions

Lemma 10. Let φ(x) be a well-formed formula in Peano Arithmetics. Then

for any polynomial-time Turing machine M and for any a ∈ N, we have

[[M(φ(a)) ∧ V(φ(a))]] ⇒ PA ⊢ [[M(φ(a)) ∧ V(φ(a))]]

[[¬M(φ(a)) ∧ ¬V(φ(a))]] ⇒ PA ⊢ [[¬M(φ(a)) ∧ ¬V(φ(a))]]

Proof. Nothing to proove.

Lemma 11. Let φ(x) and ψ(x) be a well-formed formulas in Peano Arithmetics.

Then for any polynomial-time Turing machines M1 and M2 there exist a poly-

nomial time turing machine M3 such that and for any a ∈ N, we have

PA ⊢ ∀x([[M1(φ(x)) ∧ V+
Ω (φ(x))]] ∧ [[M2(ψ(a)) ∧ V+

Ω (ψ(a))]] ⊃ [[M3(φ(a) ∧ ψ(a)) ∧ V+
Ω (φ(a) ∧ ψ(a))]]

PA ⊢ ∀x([[¬M1(φ(x)) ∧ ¬V+
Ω (φ(x))]] ∧ [[¬M2(ψ(a)) ∧ ¬V+

Ω (ψ(a))]] ⊃ [[¬M3(φ(a) ∨ ψ(a)) ∧ ¬V+
Ω (φ(a) ∨ ψ(a))]

14

Proof. Nothing to proove, follows from constructions of dedicated verifiers.

Lemma 12. Let φ(x) and ψ(x) be a well-formed formulas in Peano Arith-

metics. Assume that PA ⊢ ∀x(φ(x) ⊃ ψ(x)) is installed into V+
Ω . Then for

any polynomial-time Turing machines M1 there exist a polynomial time turing

machine M2 such that and for any a ∈ N, we have

PA ⊢ ∀x([[M1(φ(x)) ∧ V+
Ω (φ(x))]] ⊃ [[M1(ψ(a)) ∧ V+

Ω (ψ(a))]]

Proof. Nothing to proove, follows from constructions of dedicated verifiers.

Lemma 13. Let φ(x) and ψ(x) be a well-formed formulas in Peano Arith-

metics. Assume that PA ⊢ ∀x(¬φ(x) ⊃ ¬ψ(x)) is installed into V−

Ω . Then for

any polynomial-time Turing machines M1 there exist a polynomial time turing

machine M2 such that and for any a ∈ N, we have

PA ⊢ ∀x([[¬M1(φ(x)) ∧ ¬V+
Ω (φ(x))]] ⊃ [[¬M1(ψ(a)) ∧ ¬V+

Ω (ψ(a))]]

Proof. Nothing to proove, follows from constructions of dedicated verifiers.

Lemma 14. Let φ(x) and ψ(x) be a well-formed formulas in Peano Arith-

metics. Assume that PA ⊢ ∀x(φ(x) ⊃ ψ(x)) is installed into V+
Ω . Then for

any polynomial-time Turing machines M1 there exist a polynomial time turing

machine M2 such that and for any a ∈ N, we have

PA ⊢ ∀x([[M1(φ(x)) ∧ V+
Ω (φ(x))]] ⊃ [[M2([[M1(φ(x)) ∧ V+

Ω (φ(x))]])) ∧ V+
Ω ([[M1(φ(x)) ∧ V+

Ω (φ(x))]])]]

Proof. Nothing to proove, follows from constructions of dedicated verifiers.

Lemma 15. Let φ(x) and ψ(x) be a well-formed formulas in Peano Arith-

metics. Assume that PA ⊢ ∀x(φ(x) ⊃ ψ(x)) is installed into V+
Ω . Then for

any polynomial-time Turing machines M1 there exist a polynomial time turing

machine M2 such that and for any a ∈ N, we have

PA ⊢ ∀x([[¬M1(φ(x)) ∧ ¬V−

Ω (φ(x))]] ⊃ [[¬M2([[¬M1(φ(x)) ∧ ¬V+
Ω (φ(x))]])) ∧ ¬V+

Ω (¬[[M1(φ(x)) ∧ ¬V+
Ω (φ(x))]

Proof. Nothing to proove, follows from constructions of dedicated verifiers.

9 Gödel sentemces about descisions

Lemma 16 (Gödel sentences for accepting descisions). For any polynomial-

time Turing machine M and unbounded verifier V, there exist a formula ρM,V(x)+

such that

PA ⊢ ∀x(ρ+
M,V(x) ∼ ¬[[M(ρ+

M,V(x)) ∧ V(ρ+
M,V(x))]]) .

15

Proof. First consider a two-argument Turing machine T that given input (k, w)

• Construct a formula ρutm-p(k, w).

• Output ¬(M(ρutm-p(k,w)) ∧ V(ρutm-p(k,w))).

By Kleene Recursion Theorem there is a value k such that

PAe ⊢ ∀w(ρutm-p(k, w) ∼ ρutm-p(t, k, w))

and thus by construction

PAe ⊢ ∀w(ρutm-p(k, w) ∼ ¬[[M(ρutm-p(k,w)) ∧ V(ρutm-p(k,w))]]) .

Hence, the claim is proved for ρ+
M,V(w) = ρutm-p(k, w).

Lemma 17 (Gödel sentences for rejecting descisions). For any polynomial-

time Turing machine M and unbounded verifier V, there exist a formula ρ−
M,V(x)

such that

PA ⊢ ∀x(ρ−
M,V (x) ∼ ¬[[¬M(ρ−

M,V (x)) ∧ ¬V(ρ−
M,V(x))]]) .

Proof. First consider a two-argument Turing machine T that given input (k, w)

• Construct a formula ρutm-p(k, w).

• Output ¬(¬M(ρutm-p(k,w)) ∧ ¬V(ρutm-p(k,w))).

By Kleene Recursion Theorem there is a value k such that

PAe ⊢ ∀w(ρutm-p(k, w) ∼ ρutm-p(t, k, w))

and thus by construction

PAe ⊢ ∀w(ρutm-p(k, w) ∼ ¬[[¬M(ρutm-p(k,w)) ∧ ¬V(ρutm-p(k,w))]]) .

Hence, the claim is proved for ρ−
M,V(w) = ρutm-p(k, w).

Theorem 8 (First Incompleteness Theorem). For any polynomial-time

Turing machine M and unbounded sound verifier V, M cannot correctly accept

Gödel sentences ρ+
M,V(x), i.e. for all x ∈ N

PA |= ¬[[M(ρ+
M,V(x)) ∧ V(ρ+

M,V(x))]]

unless PA is inconsistent.

Proof. For a shake of contradiction, assume that M correctly accepts, then
Lemma 10

PA ⊢ [[M(ρ+
M,V(a)) ∧ V(ρ+

M,V(a))]]

As V soundly accepts, we get

PA |= ρ+
M,V(a) ⇒ PA |= ¬[[M(ρ+

M,V(x)) ∧ V(ρ+
M,V(x))]]

and thus we have a proof of a false claim.

16

Theorem 9 (First Incompleteness Theorem). For any polynomial-time

Turing machine M and unbounded sound verifier V, M cannot correctly reject

Gödel sentences ρ−
M,V(x), i.e. for all x ∈ N

PA |= ¬[[¬M(ρ−
M,V (x)) ∧ ¬V(ρ−

M,V(x))]]

unless PA is inconsistent.

Proof. For a shake of contradiction, assume that M correctly rejects, then
Lemma 10

PA ⊢ ¬[[¬M(ρ−
M,V(a)) ∧ ¬V(ρ−

M,V(a))]]

As V soundly rejects, we get

PA |= ¬ρ−
M,V(a) ⇒ PA |= [[M(¬ρ−

M,V(x)) ∧ ¬V(ρ−
M,V(x))]]

and thus we have a proof of a false claim.

10 Towards second incompleteness theorem

Lemma 18. Fix two dedicated verifiers V+
Ω and V−

Ω . Then for any Turing

machine M and φ(x), there exists another M◦ such that

PA ⊢ ∀x(¬[[M◦(φ(x)) ∧ V+
Ω (φ(x))]] ⊃ ρ+

M,VΩ
(x)

PA ⊢ ∀x(¬[[¬M◦(φ(x)) ∧ ¬V−

Ω (φ(x))]] ⊃ ¬ρ−
M,VΩ

(x))

Proof. For brevity let ψ+ = ρ+
M,VΩ

(x) and ψ− = ρ−
M,VΩ

(x).
Lemma 14/15 we get that there is M1 such that

PA ⊢ ∀x([[M(ψ+(x)) ∧ V+
Ω (φ(x))]] ⊃ [[M1([[M(φ(x)) ∧ V+

Ω (φ(x))]])) ∧ V+
Ω ([[M(φ(x)) ∧ V+

Ω (φ(x))]])]]

PA ⊢ ∀x([[¬M(ψ−(x)) ∧ ¬V+
Ω (φ(x))]] ⊃ [[¬M1([[¬M(φ(x)) ∧ ¬V+

Ω (φ(x))]])) ∧ ¬V+
Ω ([[¬M(φ(x)) ∧ ¬V+

Ω (φ(x))]])]

Next, recursiverly install definitions of Gödel sentences2

PA ⊢ ∀x(ρ+
M,V(x) ∼ ¬[[M(ρ+

M,V(x)) ∧ V(ρ+
M,V(x))]])

PA ⊢ ∀x(ρ−
M,V(x) ∼ ¬[[¬M(ρ−

M,V(x)) ∧ ¬V(ρ−
M,V(x))]]) .

into the verifiers. Hence Lemma 12/13 allows to build

2See wether such Verifier can be built at all

17

