
Overview of recent claims about P �= NP

Sven Laur
swen@math.ut.ee

Helsinki University of Technology

†The text in orange represents author’s personal opinion and thus might be slightly subjective.



Is the question P = NP really important?

Most mathematicians seem to belive that the proof of P = NP would have
a big practical impact. However, the latter is not true:

The class of polynomial algorithms P is rather an artifact of complexity
theory than a conceptual description of feasible algorithms.

– The class P is just the first “reasonable” complexity class that is closed
under superposition—one can freely use sub-routines.

– Due to the limited physical resources one can never implement a Turing
machine. All computing devices are finite automatons.

– Asymptotic complexity is just an approximation. For large k, the
exponential working time 2n � nk for all feasible instances of n.

– All feasible alforithms have working time O(n6) and for many areas
already Ω(n2) is infeasible.

T-79.515 Cryptography: Special Topics, March 21, 2005 1



Could the proof of P = NP be useful?

There are three possible levels of ignorance.

• The proof itself is non-constructive.

– Has no practical implications, only motivates “smart” people.

• The problem P = NP is independent from Peano Arithmetics.

– The question becomes just a matter of taste.

• The proof is constructive, but the algorithm complexity is Ω(n6).

– The for sufficient n ≥ 10000 the problems still remain intractable.

– The non-existance of non-trivial polynomial-time algorithms with a
complexity Ω(n6) is rather an artifact of limited intellectual capabilities
of mankind than a “general” law.

T-79.515 Cryptography: Special Topics, March 21, 2005 2



Could the proof of P �= NP be useful?

There are three possible levels of ignorance.

• The proof does not change the status quo.

– The result has no practical implications, exept some lower bounds for
approximations factors of NP-hard problems become provable.

– Still it may be difficult to find hard problem instances.

• The factorization problem is belived to be non-NP-complete.

– Thus P �= NP does not apriori give a complexity guarantee.

• No guarantees for practical cryptographic primitives.

– The size and structure of problem instance is fixed.

– Lower bounds on scheme complexity are required.

T-79.515 Cryptography: Special Topics, March 21, 2005 3



General remarks about the article

Tatsuaki Okamoto and Ryo Kashima, Resource Bounded Unprovability of
Computational Lower Bounds.

Submitted to Cryptology ePrint archive on 9th September 2003. Last time
revised on 6th January 2005.

The difference between two versions is substantial:

– Roughly twenty pages of a new material.

– Obvious flaws have been fixed, but the essential problems are still
unaddressed.

– The mistake is implicitly hidden among assumptions.

– The readability has not been improved rather the things have gone
worse: misuse and abjuce of formal notation, incorrectly stated theorems,
incoherent and hard-to-follow proofs.

T-79.515 Cryptography: Special Topics, March 21, 2005 4



Historical development of the argument

• 2003 Concept of polynomial-time provable languages:
– First and Second Incompleteness Theorems.
– Sketchy and flawed connection with the P = NP problem.

• Somewhere in 2004 authors refined their arguments:
– Concept polynomially decidable predicates in Peano Arithmetics.
– First and Second Incompleteness Theorems.
– Poly-time provable languages become obsolete.

• Questionable and unlinked poly-time ω-consistency assumption:
– Non-existance of P = NP proof under poly-time ω-consistency.

True result: There are no prover that for any poly-time SAT decider D
could produce an example, where D fails, in poly-time w.r.t. instance size.

T-79.515 Cryptography: Special Topics, March 21, 2005 5



Outline of the talk

• Basic concepts of formal logic

• Introduction to Peano Arithmetics

• Polynomial-time proofs for languages of decidable formulas

• Meta-level proofs and their properties

• Polynomial-time descisions for languages of canonic decidable formulas

• Why the proof of unprovability of P �= NP is not convincing.

T-79.515 Cryptography: Special Topics, March 21, 2005 6



Duality between programs and proofs

Programs

Formally

documented

programs

Ad hock

programs

Formal proofs

Constructive

proofs

Classical

non-constructive

proofs

Proofs of correctness

Automatic syntesis

Automatic syntesis

• Each constuctive formal proof gives a rise to a program.

• But the converse is not true—correctness proofs are hard.

T-79.515 Cryptography: Special Topics, March 21, 2005 7



Signatures and interpretation

The syntax of first order logic is determined by a signature σ = 〈C;F ;P〉.

• C contains all constant symbols such as 0, 1, . . ..

• F contains all function symbols such as +, ·, exp, rem, div.

• P contains all predicate symbols such as =,<,≤.

• Defining additional function or predicates is not allowed. Still one can
use macro constructions to represent functions and predicates.

Interpretation I assigns meaning to formulas.

• A universe M �= ∅ is fixed.

• Constants, functions and predicates are instantiated.

T-79.515 Cryptography: Special Topics, March 21, 2005 8



Theories. True and provable statements

A theory T is determined by set of axioms T . An interpretation I is
consistent with T iff all axioms are satisfied.

Definition. A formula φ follows from axioms T if for all consistent
interpetations I the evaluation I(φ) is true. We denote it by T |= φ.

Definition. A proof-system V is a set of formal rules that allows to derive
only a (sub)set of true formulas.

Definition. A formula φ is provable w.r.t. T if φ is derivable with the
proof-system V. We denote it by T � φ.

The set of provable formulas may be considerable smaller than the set of
true formulas. The opposite is impossible.

T-79.515 Cryptography: Special Topics, March 21, 2005 9



Gödel’s Theorems

Theorem (Completeness Theorem). Let a theory T be a finitely
axiomatiable. Then the set of true formulas is recursively enumerable
and every true formula is provable.

Theorem (Incompleteness theorem). There are true but not provable
formulas in Peano Arithmetics, unless it is inconsisent.

Corollary. Arithmetics is not a finite axiomatiable as a theory in the first
order logic.

Theorem (Chaitin). The fact that formula is not provable is not itselt
provable in general.

Okamoto and Kashima tried to prove that P �= NP statement is not
provable statements by a sketching similar framework as Gödel.

T-79.515 Cryptography: Special Topics, March 21, 2005 10



Axiom scheme for Peano Arithmetics

Let φ be any well-formed formula in the signature σ = 〈0, 1; +, ·; =〉.

Equality Axioms Successor Axioms

∀x(x=x)

∀x∀y(x= y ⊃ y=x)

∀x∀y∀z((x= y ∧ y= z) ⊃ x= z)

∀x∀y(φ(. . . , x, . . .) ⊃ φ(. . . , y, . . .))

∀x¬(x+ 1 =x)

∀x∀y(x+ 1 = y+ 1 ⊃ y=x)

(φ(0) ∧ ∀x(φ(x) ⊃ φ(x+ 1)) ⊃ ∀xφ(x)

Addition axioms Multiplication Axioms

∀x(x+ 0 =x)

∀x∀y(x+(y+ 1)=(x+ y) + 1)

∀x(x · 0 =x)

∀x∀y(x ·(y+ 1)=x · y+x)

T-79.515 Cryptography: Special Topics, March 21, 2005 11



Why do we need induction scheme?

First order Peano Arithmetics has many models.

N• • • • · · ·
0 1 2 3

N + N

• • • • · · ·
0 1 2 3

• • • • · · ·
ω + 0 ω + 1 ω + 2 ω + 3

Induction axiom states that we do not care about non-successors of 0.

T-79.515 Cryptography: Special Topics, March 21, 2005 12



Introducing lists with variable length

Gödel originally proposed a β-function to get a grip over lists

∀k ∀a1, . . . , ak ∈ N ∃a, b ∈ N : β(a, b, i) = ai, i = 1, . . . , k

The latter allows to write Turing machine M as a predicate ρM(x, y)

∃t∃a∃b( ρinit(β(a, b, 0), x
)︸ ︷︷ ︸

Fix initial configuration

∧∀(t1 < t) ρtran(β(a, b, t1), β(a, b, t1 + 1))︸ ︷︷ ︸
Force transitions of M

∧ ρends(β(a, b, t), y)︸ ︷︷ ︸
Fix end configuration

)

The construction is computationally inefficient—Gödel just did not care.

T-79.515 Cryptography: Special Topics, March 21, 2005 13



Optimising the proof-system

The proof of 2x = y has exponential in size of x if we use Gödels β-function.

It is not known wheter 2x = y has an alternative representation in signature
σ = 〈0, 1; +, ·; =〉 so that the proofs have polynomial size.

Hence, we need to extend the sigature and proof-system by a adding
function exp(x) = 2x. For convenience, we use also

len(x) = |x| bit(x, i) = xi βe(a, b, t) = ai

where x = xn · · ·x0 and a = ak2b(k−1) + · · · + a0

Okamoto and Kashima fail to grasp that subtlety in their article.

T-79.515 Cryptography: Special Topics, March 21, 2005 14



Formulas and proofs as numbers

Consider an efficent encoding of formulas and proofs

F 
 φ �→ codeP(φ) ∈ N

P 
 π �→ codeP(π) ∈ N

Then we can device a verifying Turing machine V such that

V(codeP(φ), codeP(π)) =

{
1, if π is valid proof of φ,

0, otherwise.

For clarity, we skip the details and use V(φ, π) instead.

T-79.515 Cryptography: Special Topics, March 21, 2005 15



Polynomial-time provable languages

A language of formulas L ⊆ F is polynomially provable iff there exists a
polynomial-time Turing machine P such that for any φ ∈ L

P(codeP(φ)) = codeP(π) ∧ V(codeP(φ), codeP(π)) = 1.

The prover P must be polynomial w.r.t. to each input x ∈ N.

• The latter is not restrction when L is polynomially decidable.

• The complexity measure size(x) can be specified in a language specific
way as long size(x) = O(|x|).

• The prover P may fail for some or all instances ψ /∈ L.

• The verifier V must be also polynomial w.r.t. the input size.

T-79.515 Cryptography: Special Topics, March 21, 2005 16



Restriction to a single instance

An instance φ from a language of formulas L ⊆ F is polynomially provable
by a polynomial-time Turing machine P iff

P(codeP(φ)) = codeP(π) ∧ V(codeP(φ), codeP(π)) = 1.

The corresponding notation T ∧ P �φ.

We can treat it as a two argument predicate [[T ∧ � ]] that maps

(
codeU(P), codeP(φ)

)
�→ V(φ,P(φ))

For clarity, we use [[T ∧ P �φ]] instead of [[T ∧ codeU(P) � codeP(φ)]].

T-79.515 Cryptography: Special Topics, March 21, 2005 17



Efficient representations

Let ρr(x1, . . . , xk) be a formula that represents a relation r ⊆ N
k. Then ρr

is an efficient representation of r iff languages

Lφ = { ρr(x1, . . . , xk) : (x1, . . . , xk) ∈ r}
L¬φ = {¬ρr(x1, . . . , xk) : (x1, . . . , xk) /∈ r}

are polynomial-time provable.

Theorem. Any poly-time computable predicate is efficiently representable.

Proof. Extension of Gödel β-function approach with computationally
efficient βe is sufficient. The fact was already noted by Cook 1971 in the
NP-completeness proof of SAT, however Okamoto and Kashima provide
an unreadable proof which uses circuit evaluation instead.

T-79.515 Cryptography: Special Topics, March 21, 2005 18



How to grow a proof tree?

P3(φ(x) ∧ ψ(y))

T � φ(x) ∧ ψ(y)

��

P1(φ(x))

T � φ(x)
��

T � ψ(y)

P2(ψ(y))

Lemma. If there are polynomial-time provers P1 and P2 then there exists
a polynomial-time prover P3 such that

PAe � ∀x∀y[[T ∧ P1 �φ(x)]] ∧ [[T ∧ P2 �ψ(y)]] ⊃ [[T ∧ P3 �φ(x) ∧ ψ(x)]].

T-79.515 Cryptography: Special Topics, March 21, 2005 19



Further conclusions

Theorem. Polynomial provability is closed under elementary proof steps.

Lemma. For any formula φ(x1, . . . , xk) ∈ F and for any polynomial-time
prover P, the predicate

[[T ∧ P �φ(x1, . . . , xk)]]

has an efficient representation w.r.t. input parameters x1, . . . , xk.

Lemma. Let ρr be a canonical efficient representation of a relation r ⊆ N.
Then there exists a polynomial-time prover P such that

PAe � ∀x(ρr(x) ∼ [[PAe ∧ P � ρr(x)]]).

Proof. We must prove that correct code interpretaton is possible.

T-79.515 Cryptography: Special Topics, March 21, 2005 20



Polynomial-time Recursion Theorem

Theorem. For any m ∈ N and c1 ∈ N there exist a code-constant k and
a time-bound constant c2 > c1 such that

PAe � ∀w(ρp-utm-p(k, c2,w) ∼ ρp-utm-p(m, c1, k,w)).

Proof. Let k = codeU(K) where K executes following steps:

1. Write m to the working tape.

2. Copy its own code k to the working tape.

3. Copy the inputs w to the working tape.

4. Interptete the input (m, c1, k, w) as universal Turing machine Up.

Tatsuaki and Kashima fail to recognise the differnce in degrees c2 > c1.

T-79.515 Cryptography: Special Topics, March 21, 2005 21



Gödel sentences

Lemma. For any polynomial-time Turing machine M there exist a
formula ρM such that

PAe � ∀w(ρM(w) ∼ ¬[[PAe ∧M� ρM(w)]]

For all x the formula ρM is called a Gödel sentence with respect to M.

Proof. Consider a Turing machine K(w):
• Construct the formula ρp-utm-p(k, c1,w) for a cleverly chosen c1.

• Test V(ρp-utm-p(k, c1,w),M(ρp-utm-p(k, c1,w))=1.

• Return ¬[[PAe ∧M� ρp-utm-p(k, c1,w)]].

The lemma can be proven, althought it must be done more carefully than
in the article—explicit degree bounds are a big nuisance.

T-79.515 Cryptography: Special Topics, March 21, 2005 22



Incompleteness theorems

Theorem (First Incompleteness Theorem). Let M be a polynomial-time
Turing machine and ρM(w) the corresponding Gödel sentence. Then for
all inputs w ∈ N

PAe ∧M � � ρM(w)

unless PAe is inconsistent.

Theorem (Second Incompleteness Theorem). Let φ(w) ∈ F with a single
free variable w and M a polynomial-time Turing machine. Then there
exists a Turing machine M◦ such that for all w ∈ N

PAe ∧M � �¬[[PAe ∧M◦ �φ(w)]]

unless PAe is inconsistent.

These theorems are completely useless for proving P �= NP.

T-79.515 Cryptography: Special Topics, March 21, 2005 23



Language of satisfiable 3CNF formulas

Introducing propositional variables Xi ≡ xi = 1 and ¬Xi ≡ ¬(xi = 1).

Language L3SAT of 3CNF formulas is a subset of F, and we define

x ∈ r3SAT ⇐⇒ x = codeP(φ) ∧ φ ∈ L3CNF

size(x) =

{
2n, if φ ∈ L3SAT,

2 · |x| otherwise.

Let ρ3SAT be the canonical but inefficient representation of r3SAT.

Now, we have to gear our theory towards polynomial-time descisions instead
of proofs.

T-79.515 Cryptography: Special Topics, March 21, 2005 24



Polynomially descidable predicates

A Turing machine M correctly accepts, rejects or decides predicate φ iff

Condition

PA |= M(φ) ⊃ φ

PA |= ¬M(φ) ⊃ ¬φ
PA |= M(φ) ∼ φ

Predicate

[[PA |= M(φ) ⊃ φ]]

[[PA |= ¬M(φ) ⊃ ¬φ]]

[[PA |= M(φ) ∼ φ]]

Equivalent

M(φ) ⊃ φ

¬M(φ) ⊃ ¬φ
M(φ) ∼ φ

Consider only descidable predicates in canonical form—(efficient) predicate
encoding that corresponds to a distingusher. Lets call them simple formulas.

Theorem. All polynomially descidable predicates have efficient simple
representation.

T-79.515 Cryptography: Special Topics, March 21, 2005 25



How to grow a descision tree?

D3(φ(x) ∧ ψ(y))

T � φ(x) ∧ ψ(y)

��

D1(φ(x))

T � φ(x)
��

T � ψ(y)

D2(ψ(y))

Lemma. If there are polynomial-time distinguishers D1 and D2 then there
exists a polynomial-time distinguisher D3 such that

PAe � ∀x∀y([[D1(φ(x)) ∼ φ(x)]] ∧ [[D2(ψ(y)) ∼ ψ(y)]]

⊃ [[D3(φ(x) ∧ ψ(y)) ∼ φ(x) ∧ ψ(x)]]).

T-79.515 Cryptography: Special Topics, March 21, 2005 26



Further conclusions

Lemma. There exists a universal prover P◦ for a simple predicate ρ(x)
always outputs either a proof of ρ(x) or a proof of ¬ρ(x).

Remark. If the simple predicate is in an efficient representation, the
working time of P◦ is polynomial.

Theorem. Polynomial-time descidability is closed under elementary proof
steps.

Theorem. If the predicate is simple, then correctness of descisions is
provable in PAe. For efficient simple predicates, the working time of the
prover is polynomial.

T-79.515 Cryptography: Special Topics, March 21, 2005 27



Gödel sentences

Lemma. For any polynomial-time accepting-rejecting Turing machine M
there exist an efficient simple predicate ρM such that

PAe � ∀w( ρM(w) ∼ ¬[[ M(ρM(w))]])

PAe � ∀w(¬ρM(w) ∼ ¬[[¬M(ρM(w))]])

For all x the formula ρM is called a Gödel sentence with respect to M.

Proof. Consider a Turing machine K:

• Loads its own code k.

• Constructs the formula ρutm-p(k,w).

• Outputs ¬M(ρp-utm-p(k,w)).

T-79.515 Cryptography: Special Topics, March 21, 2005 28



Incompleteness theorems

Theorem (First Incompleteness Theorem). A polynomial-time Turing
machine M cannot correctly descide any instance ρM(w) of the
corresponding Gödel sentence.

PAe � ¬[[ M(ρM(w)) ⊃ ρM(w)]]

PAe � ¬[[¬M(ρM(w)) ⊃ ¬ρM(w)]]

unless PAe is inconsistent.

Theorem (Second Incompleteness Theorem). Let φ(w) ∈ F be a simple
predicate. Then for any polynomial-time Turing machine M, we can
construct a polynomial-time Turing machine M◦ such that for all w ∈ N

PAe ∧M � �¬[[M◦(φ(w)) ∼ φ(w)]]

unless PAe is inconsistent.

T-79.515 Cryptography: Special Topics, March 21, 2005 29



Towards the proof

Lemma. Let ρM◦ be a Gödel centense w.r.t. polynomial-time Turing
machine M◦. Then there exists a polynomial-time Turing machine M�

such that

PAe � ∀w(¬[[ M�(ψ(w)) ⊃ ψ(w)]] ⊃ ρM◦(w))

PAe � ∀w(¬[[¬M�(ψ(w)) ⊃ ¬ψ(w)]] ⊃ ¬ρM◦(w))

Proof.

• M� computes and outputs predicate ρM◦(w).

• By the construction Gödel sentences are efficiently computable, therefore
M� runs in polynomial-time.

• The claims are obvious and can be formally proved.

T-79.515 Cryptography: Special Topics, March 21, 2005 30



Construction of the magic M◦

M◦ KM◦M1 M

ψ

Prohibited call to subroutine

return KM◦

Call to subroutine

return ¬M◦

¬[[M�(ψ) ∼ ψ]]

return KM◦

¬[[M�(ψ) ⊃ ψ]]

¬[[¬M�(ψ) ⊃ ¬ψ]]

[[KM◦]]

• M◦ passes descision of ¬[[M�(ψ(w)) ∼ ψ(w)]] to M1.
Here M�(ψ(w)) = KM◦(w).

• M1 passes it further to M that has to “execute” KM◦(w) and compute
ψ(w). If M gets a provably correct result, it reveals ρM◦(w).

• Thus M◦ has executed the prohibited call.

The actual proof is more involved—one has to reach zen-state to grasp all
details and verify the ’construction, but it is doable!
T-79.515 Cryptography: Special Topics, March 21, 2005 31



Implication of Second Incompleteness Theorem

There is no polynomial-time prover P that could prove for all polynomial-
time Turing machines D that they make incorrect descisions.

• Exact polynomial complexity may depend on the Turing machine D.

• Result indicates that for a constructive proof of P �= NP we have to use
at least super-polynomial prover P to generate counter examples for a
concrete candidate distinguisher D.

• The result does not indicate that there is no provably totally recursive
counter example generator for L3SAT distinquishers.

• The bound is quite natural, as for generating counter examples the prover
P has to “evaluate” 3SAT formulas.

T-79.515 Cryptography: Special Topics, March 21, 2005 32



Computational content of P �= NP proof

The proof of P �= NP is equivalent to

PAe � ∀M ∀n ∃w≥n ¬[[M(ρ3SAT(w)) ∼ ρ3SAT(w)]]

The latter does not apriori mean that given M and n the counter example
w can be computed in polynomial-time in |n|.

If the proof is non-constructive then there might be no hints how to compute
w at all.

Hence even if we have a proof PAe � ∃w≥n ¬[[M(ρ3SAT(w)) ∼ ρ3SAT(w)]]
we might be unable to pin-point w. Still it is trivial to prove it in polynomial-
time w.r.t. formula length, if we have finite proof of

PAe � ∀M ∀n ∃w≥n ¬[[M(ρ3SAT(w)) ∼ ρ3SAT(w)]].

T-79.515 Cryptography: Special Topics, March 21, 2005 33



Unjustified and questionable assumption

Definition. The theory T is an polynomially ω-consistent w.r.t. two
argument descidable predicate ψ(M, w) iff the following holds:

• Let P be a polynomial-time prover such that for any M there exists
an infinite set {m1,m2 . . .} ⊆ N so that

T ∧ P �∃w≥mi ψ(M, w)

• Then there must exist another polynomial-time prover P◦ such that for
any M there exist a constant c an infinite set {n1, n2 . . .} ⊆ N so that

PAe ∧ P �∃w(ni ≤w< mi + |ni|c) ψ(M, w)

T-79.515 Cryptography: Special Topics, March 21, 2005 34



Computational content of polynomial ω-consistency

It is rather hard or even impossible to link polynomial ω-consistency with
any other logic concept. Thus, we provide ad hoc interpretation.

Intuitively, polynomial ω-consistency explicity states that any proof:

• Is constructive or has an extractable explicit computational content.

• The corresponding algorithm has a polynomial complexity.

Under these circumstances unprovability of P �= NP is evident.

Since Peano Arithmetics is not proven to be polynomial ω-consistent, there
is essentially no progress.

It would be trully surprising if Peano Arithmetics is polynomially ω-
consistent.

T-79.515 Cryptography: Special Topics, March 21, 2005 35


