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What is a deterministic dynamic system?

Dynamic system evolves in time
$ | 9

Lit+1 = T(w%)v

where T' is a deterministic rule.

Given initial point g and sampling time, we get a positive orbit
X = (%0, Li1,IL2,.. ) = (iEo, T(mo), T(T(SIZ‘())), .. )

We are interested in long-term properties of the system.
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Three possible types of dynamic systems

=

3
/

[
e

/

i:'\.:'l

5
XE%:.E

Catastrophic Stable Chaotic

e Catastrophic—the trajectory in the phase space is unbounded.
e Stable—trajectory is periodic or quasi-periodic.

e Chaotic—trajectory jumps randomly between different sub-paths.
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Long-term properties of dynamical system

o If the orbit is bounded then there
exists an attractor set A such that
if n is large enough d(A,x,) < €.
The value € > 0 can be arbitrary.

Initial point

e We require that A is stationary
T(A) = A and in some sense
minimal.

D

Attractor set
i

e The geometrical shape of the
attractor set A  determines
complexity of dynamical system.
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Observations. Measurement scheme

e \We cannot directly observe the state
T € X of the system.

e System states completely determine
measurements via read-out function

f:X—-R

For each orbit X there is a corresponding time serie

Y = (yo.y1,---) = (f(@o), f(x1), .. .)

Can we reconstruct the internal state of the system?

T-122.101 Analysis of time-series and sequences, November 1, 2004



Delay maps. Extended observation orbits

Single measurement cannot describe internal state of the complex system.

Consider k-tuples (yi, Yit1,---,%itrk—1) and denote

Reci(x) = (f(x), [(T(x)),. .., f(T"'(x))).
We would like to

e distinguish Reci(X7) and Reci(X2) if orbits X; # Xo.
e detect “critical” points, where external forces cause change of orbit.

(a) jumps
(b) angle-points
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Takens theorem (1981)

Let X be a bounded set. In the Cartesian product space of C''-mappings
on X and the space of C'-functions from X to R there exists a open and
dense subset U such that if (T, f) € U, then the reconstruction map Recy
is an embedding, whenever k£ > 2 - dim(X). Moreover, the embedding is
continuously differentiable and has also continuously differentiable inverse.
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Takens theorem (1981)

on X and the space of C''-functions from X to R there exists a open and
dense subset U such that if (T, f) € U, then the reconstruction map Recy,
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Takens theorem (1981)

dense subset U such that if (7, f) € U, then the reconstruction map
Recy, is an embedding, whenever k£ > 2-dim(X’). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.
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Takens theorem (1981)

if (T,f) € U, then the reconstruction map
Recy, is an embedding, whenever k£ > 2-dim(X’). Moreover, the embedding
is continuously differentiable and has also continuously differentiable
inverse.

e \We have a deterministic system with rule T': X — X.

e \We have a read-out function f : X — R.
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Ideal regressor

Det.rul
Current state crrhe, Next state
T
Reckl TRec]gl Reckl
(yz', . 7yi—|-/<—1) ? (yz'+1, . ayz'—l—k)
RecgoT'oRec;

e Explicitly stated, if k£ > 2dim(X’) there exists a precise deterministic
rule g for predicting the next state of the time serie!

e But g might be missing g ¢ F from regression functions.
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Should we care about U?

if (T,f) € U, then the reconstruction map
Recy, is an embedding, whenever k£ > 2-dim(X’). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.
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Should we care about U?

exists a open
and dense subset U such that if (T, f) € U, then the reconstruction map

Recy, is an embedding, whenever k£ > 2-dim(X’). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.

The latter means

e Embedding exists almost for all function pairs (f,T)

o If (f,T) ¢ U, then exists close function pairs (f,7) € U. More
precisely, for any € > 0 we have f and T’ such that

Vo e X |f(x) - f(o)| +|f (=) - f(2)| <
Ve e X |T(x)—T(x)+ T (x) —T' ()| <e.
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Assumptions of the Takens theorem

e [he set A is bounded—the system in non-catastrophic.

e TheruleT : X — X must be continuously differentiable—most physical
systems satisfy it by default.

e The read-out function f : X — R is continuously differentiable.

\
r

.| Observation

\
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When the delay map is large enough?

Takens theorem assures that if & > 2dim(X") then
cdim(A) = cdim(Recg(A)).

In other words the cdim(Recy(A)) stops growing.

7dim(X) 2dim(X)

cdim(A)
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Stationary probability distribution

To get grasp over correlation dimension of the attractor set A, we need a
stationary probability distribution

Pr|x; € B =Pr|x;31 € T(B)] = Pr{x; € T(B)]

K \]\\T(\B)
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Average presence time

e Average presence time counts how long on
average orbit stays in the set B

P B I
o€ B = lim

ZPr 'z € B

e Average presence time is stationary
probability distribution.

e \We can sample points from it.
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Correlation dimension

e The fractional dimension of an attractor set A is defined via
C(r) = Pr[|X — Y|, <11,

where X and Y are independently drawn from the stationary distribution.

e [ he correlation dimension is a limit

cdim(A) = lim log C'(r)

r—0+ logr

cdim(A) € [0, dim(X)]
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Monte-Carlo integration. Grassberger-Proccacia

If z; and z; are drawn from our distribution

2 mn
Chr(r) = 18[||zs — 24|, Sr] = Pr{| X Y| <7]
n(n —1) 7,; J
i#]
(1) Compute pairs (r1,a1), .- (Tm, Qm).

(2) Fit a line through (logri,logay),. .., (log7m,log a,).

(3) Slope is the estimator of correlation dimension.
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Systematical error versus statistical error

log C'(1)

A

— logr

If we decrease r then there will be smaller number of samples close enough.
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The effect of noise on Grassberger-Proccacia estimator

Noise adds a bias to counting—it is more probable to move points apart
than bring together.
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Hidden rocks in shallow water

e Early stop due to the errors in the
correlation dimension estimate.

e Just a bad luck

7dim(X) 2dim(X)

cdim(A)

cdim(A4) < dim(X) = dim(X) £ k

| DDHH e System is chaotic—the ideal regressor

—1
Recy, oT o Recy, .

is no better than random guessing.
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Interpretation of Takens Theorem

IF the correlation dimensions of Rec;(Y ) and Recy11(Y)

e are equal

e or close enough
THEN

o 1" - dim(X) <k <2 -dim(X)+1

e and the optimal regressor size is between k and 2* - k + 1.
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