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What is a deterministic dynamic system?
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Dynamic system evolves in time

xi+1 = T (xi),

where T is a deterministic rule.

Given initial point x0 and sampling time, we get a positive orbit

X = (x0, x1, x2, . . .) = (x0, T (x0), T (T (x0)), . . .).

We are interested in long-term properties of the system.
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Three possible types of dynamic systems

Catastrophic Stable Chaotic

• Catastrophic—the trajectory in the phase space is unbounded.

• Stable—trajectory is periodic or quasi-periodic.

• Chaotic—trajectory jumps randomly between different sub-paths.
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Long-term properties of dynamical system

• If the orbit is bounded then there
exists an attractor set A such that
if n is large enough d(A,xn) < ε.
The value ε > 0 can be arbitrary.

• We require that A is stationary
T (A) = A and in some sense
minimal.

• The geometrical shape of the
attractor set A determines
complexity of dynamical system.
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Observations. Measurement scheme

• We cannot directly observe the state
xk ∈ X of the system.

• System states completely determine
measurements via read-out function

f : X → R

For each orbit X there is a corresponding time serie

Y = (y0, y1, . . .) = (f(x0), f(x1), . . .)

Can we reconstruct the internal state of the system?
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Delay maps. Extended observation orbits

Single measurement cannot describe internal state of the complex system.

Consider k-tuples (yi, yi+1, . . . , yi+k−1) and denote

Reck(x) = (f(x), f(T (x)), . . . , f(T k−1(x))).

We would like to

• distinguish Reck(X1) and Reck(X2) if orbits X1 6= X2.

• detect “critical” points, where external forces cause change of orbit.

(a) jumps
(b) angle-points
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Takens theorem (1981)

Let X be a bounded set. In the Cartesian product space of C1-mappings
on X and the space of C1-functions from X to R there exists a open and
dense subset U such that if (T, f) ∈ U , then the reconstruction map Reck

is an embedding, whenever k > 2 · dim(X ). Moreover, the embedding is
continuously differentiable and has also continuously differentiable inverse.
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Takens theorem (1981)

dense subset U such that if (T, f) ∈ U , then the reconstruction map
Reck is an embedding, whenever k > 2 ·dim(X ). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.
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Takens theorem (1981)

if (T, f) ∈ U , then the reconstruction map
Reck is an embedding, whenever k > 2 ·dim(X ). Moreover, the embedding
is continuously differentiable and has also continuously differentiable
inverse.

• We have a deterministic system with rule T : X → X .

• We have a read-out function f : X → R.
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Ideal regressor

Current state
Det.rule
−−−−−→

T
Next state

Reck





y

x




Rec−1

k
Reck





y

(yi, . . . , yi+k−1)
Prediction

−−−−−−−−−→
Reck◦T◦Rec−1

k

(yi+1, . . . , yi+k)

• Explicitly stated, if k > 2 dim(X ) there exists a precise deterministic
rule g for predicting the next state of the time serie!

• But g might be missing g /∈ F from regression functions.
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Should we care about U?

if (T, f) ∈ U , then the reconstruction map
Reck is an embedding, whenever k > 2 ·dim(X ). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.
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Should we care about U?

exists a open
and dense subset U such that if (T, f) ∈ U , then the reconstruction map
Reck is an embedding, whenever k > 2 ·dim(X ). Moreover, the embedding
is continuously differentiable and has also continuously differentiable inverse.

The latter means

• Embedding exists almost for all function pairs (f, T )

• If (f, T ) /∈ U , then exists close function pairs (f̂ , T̂ ) ∈ U . More

precisely, for any ε > 0 we have f̂ and T̂ such that

∀x ∈ X |f(x) − f̂(x)| + |f ′(x) − f̂ ′(x)| < ε,

∀x ∈ X |T (x) − T̂ (x)| + |T ′(x) − T̂ ′(x)| < ε.
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Assumptions of the Takens theorem

• The set X is bounded—the system in non-catastrophic.

• The rule T : X → X must be continuously differentiable—most physical
systems satisfy it by default.

• The read-out function f : X → R is continuously differentiable.
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When the delay map is large enough?

Takens theorem assures that if k > 2 dim(X ) then

cdim(A) = cdim(Reck(A)).

In other words the cdim(Reck(A)) stops growing.
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Stationary probability distribution

To get grasp over correlation dimension of the attractor set A, we need a
stationary probability distribution

Pr [xi ∈ B] = Pr [xi+1 ∈ T (B)] = Pr [xi ∈ T (B)]

TB

T (B)
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Average presence time

B

• Average presence time counts how long on
average orbit stays in the set B

Pr [x ∈ B] = lim
n→∞

1

n + 1

n
∑

i=0

Pr
[

T i
x0 ∈ B

]

• Average presence time is stationary
probability distribution.

• We can sample points from it.
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Correlation dimension

• The fractional dimension of an attractor set A is defined via

C(r) = Pr [‖X − Y ‖∞ ≤ r] ,

where X and Y are independently drawn from the stationary distribution.

• The correlation dimension is a limit

cdim(A) = lim
r→0+

log C(r)

log r
cdim(A) ∈ [0, dim(X )]
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Monte-Carlo integration. Grassberger-Proccacia

If zi and zj are drawn from our distribution

Cn(r) =
2

n(n − 1)

n
∑

i,j=1

i 6=j

?Is[‖zi − zj‖∞ ≤ r] ≈ Pr [‖X − Y ‖∞ ≤ r]

(1) Compute pairs (r1, α1), . . . (rm, αm).

(2) Fit a line through (log r1, log α1), . . . , (log rm, log αm).

(3) Slope is the estimator of correlation dimension.
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Systematical error versus statistical error

− log r

log C(r)

If we decrease r then there will be smaller number of samples close enough.
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The effect of noise on Grassberger-Proccacia estimator

Noise adds a bias to counting—it is more probable to move points apart
than bring together.
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Hidden rocks in shallow water

0

1

2

3

4

5

6

7

2dim(X )?dim(X )

cdim(A)

• Early stop due to the errors in the
correlation dimension estimate.

• Just a bad luck

cdim(A) � dim(X ) ⇒ dim(X ) 6≤ k

• System is chaotic—the ideal regressor

Reck ◦ T ◦ Rec−1

k .

is no better than random guessing.
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Interpretation of Takens Theorem

If the correlation dimensions of Reck(Y ) and Reck+1(Y )

• are equal

• or close enough

Then

• 1? · dim(X ) ≤ k ≤ 2 · dim(X ) + 1

• and the optimal regressor size is between k and 2? · k + 1.
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