Time Series of Deterministic Dynamic Systems: Celebrated Takens theorem

Sven Laur swen@math.ut.ee

November 1, 2004

What is a deterministic dynamic system?

Dynamic system evolves in time

$$\boldsymbol{x_{i+1}} = T(\boldsymbol{x_i}),$$

where T is a deterministic rule.

Given initial point x_0 and sampling time, we get a positive orbit

$$X = (x_0, x_1, x_2, \ldots) = (x_0, T(x_0), T(T(x_0)), \ldots).$$

We are interested in long-term properties of the system.

Three possible types of dynamic systems

- Catastrophic—the trajectory in the phase space is unbounded.
- Stable—trajectory is periodic or quasi-periodic.
- Chaotic—trajectory jumps randomly between different sub-paths.

Long-term properties of dynamical system

- If the orbit is bounded then there exists an attractor set A such that if n is large enough $d(A, \boldsymbol{x_n}) < \epsilon$. The value $\epsilon > 0$ can be arbitrary.
- ullet We require that A is stationary T(A) = A and in some sense minimal.
- ullet The geometrical shape of the attractor set A determines complexity of dynamical system.

Observations. Measurement scheme

- We cannot directly observe the state $oldsymbol{x_k} \in \mathcal{X}$ of the system.
- System states completely determine measurements via read-out function

$$f: \mathcal{X} \to \mathbb{R}$$

For each orbit $oldsymbol{X}$ there is a corresponding time serie

$$Y = (y_0, y_1, \ldots) = (f(x_0), f(x_1), \ldots)$$

Can we reconstruct the internal state of the system?

Delay maps. Extended observation orbits

Single measurement cannot describe internal state of the complex system.

Consider k-tuples $(y_i, y_{i+1}, \dots, y_{i+k-1})$ and denote

$$Rec_k(x) = (f(x), f(T(x)), \dots, f(T^{k-1}(x))).$$

We would like to

- ullet distinguish $\mathrm{Rec}_k(oldsymbol{X_1})$ and $\mathrm{Rec}_k(oldsymbol{X_2})$ if orbits $oldsymbol{X_1}
 eq oldsymbol{X_2}$.
- detect "critical" points, where external forces cause change of orbit.
 - (a) jumps
 - (b) angle-points

Let \mathcal{X} be a bounded set. In the Cartesian product space of C^1 -mappings on \mathcal{X} and the space of C^1 -functions from \mathcal{X} to \mathbb{R} there exists a open and dense subset U such that if $(T,f) \in U$, then the reconstruction map Rec_k is an embedding, whenever $k > 2 \cdot \dim(\mathcal{X})$. Moreover, the embedding is continuously differentiable and has also continuously differentiable inverse.

on \mathcal{X} and the space of C^1 -functions from \mathcal{X} to \mathbb{R} there exists a open and dense subset U such that if $(T,f)\in U$, then the reconstruction map Rec_k is an embedding, whenever $k>2\cdot \dim(\mathcal{X})$. Moreover, the embedding is continuously differentiable and has also continuously differentiable inverse.

dense subset U such that if $(T, f) \in U$, then the reconstruction map Rec_k is an embedding, whenever $k > 2 \cdot \dim(\mathcal{X})$. Moreover, the embedding is continuously differentiable and has also continuously differentiable inverse.

if $(T,f)\in U$, then the reconstruction map Rec_k is an embedding, whenever $k>2\cdot \dim(\mathcal{X})$. Moreover, the embedding is continuously differentiable and has also continuously differentiable inverse.

- We have a deterministic system with rule $T: \mathcal{X} \to \mathcal{X}$.
- ullet We have a read-out function $f:\mathcal{X} \to \mathbb{R}$.

Ideal regressor

- Explicitly stated, if $k>2\dim(\mathcal{X})$ there exists a precise deterministic rule g for predicting the next state of the time serie!
- But g might be missing $g \notin \mathcal{F}$ from regression functions.

Should we care about U?

if $(T,f) \in U$, then the reconstruction map Rec_k is an embedding, whenever $k > 2 \cdot \dim(\mathcal{X})$. Moreover, the embedding is continuously differentiable and has also continuously differentiable inverse.

Should we care about U?

exists a open

and dense subset U such that if $(T, f) \in U$, then the reconstruction map Rec_k is an embedding, whenever $k > 2 \cdot \dim(\mathcal{X})$. Moreover, the embedding is continuously differentiable and has also continuously differentiable inverse.

The latter means

- ullet Embedding exists almost for all function pairs (f,T)
- If $(f,T) \notin U$, then exists close function pairs $(\hat{f},\hat{T}) \in U$. More precisely, for any $\epsilon > 0$ we have \hat{f} and \hat{T} such that

$$egin{aligned} & orall oldsymbol{x} \in \mathcal{X} & |f(oldsymbol{x}) - \hat{f}(oldsymbol{x})| + |f'(oldsymbol{x}) - \hat{f}'(oldsymbol{x})| < \epsilon, \ & orall oldsymbol{x} \in \mathcal{X} & |T(oldsymbol{x}) - \hat{T}(oldsymbol{x})| + |T'(oldsymbol{x}) - \hat{T}'(oldsymbol{x})| < \epsilon. \end{aligned}$$

Assumptions of the Takens theorem

- The set \mathcal{X} is bounded—the system in non-catastrophic.
- The rule $T: \mathcal{X} \to \mathcal{X}$ must be continuously differentiable—most physical systems satisfy it by default.
- ullet The read-out function $f:\mathcal{X} \to \mathbb{R}$ is continuously differentiable.

When the delay map is large enough?

Takens theorem assures that if $k>2\dim(\mathcal{X})$ then

$$\operatorname{cdim}(A) = \operatorname{cdim}(\operatorname{Rec}_k(A)).$$

In other words the $\operatorname{cdim}(\operatorname{Rec}_k(A))$ stops growing.

Stationary probability distribution

To get grasp over correlation dimension of the attractor set A, we need a stationary probability distribution

$$\Pr\left[\boldsymbol{x_i} \in B\right] = \Pr\left[\boldsymbol{x_{i+1}} \in T(B)\right] = \Pr\left[\boldsymbol{x_i} \in T(B)\right]$$

Average presence time

ullet Average presence time counts how long on average orbit stays in the set B

$$\Pr\left[\boldsymbol{x} \in B\right] = \lim_{n \to \infty} \frac{1}{n+1} \sum_{i=0}^{n} \Pr\left[T^{i} \boldsymbol{x_0} \in B\right]$$

- Average presence time is stationary probability distribution.
- We can sample points from it.

Correlation dimension

• The fractional dimension of an attractor set A is defined via

$$C(r) = \Pr\left[\|X - Y\|_{\infty} \le r \right],$$

where X and Y are independently drawn from the stationary distribution.

• The correlation dimension is a limit

$$\operatorname{cdim}(A) = \lim_{r \to 0^{+}} \frac{\log C(r)}{\log r} \qquad \operatorname{cdim}(A) \in [0, \dim(\mathcal{X})]$$

Monte-Carlo integration. Grassberger-Proccacia

If z_i and z_j are drawn from our distribution

$$C_n(r) = \frac{2}{n(n-1)} \sum_{\substack{i,j=1\\i\neq j}}^n ? \operatorname{Is}[\|\boldsymbol{z_i} - \boldsymbol{z_j}\|_{\infty} \le r] \approx \Pr[\|\boldsymbol{X} - \boldsymbol{Y}\|_{\infty} \le r]$$

- (1) Compute pairs $(r_1, \alpha_1), \ldots (r_m, \alpha_m)$.
- (2) Fit a line through $(\log r_1, \log \alpha_1), \ldots, (\log r_m, \log \alpha_m)$.
- (3) Slope is the estimator of correlation dimension.

Systematical error versus statistical error

If we decrease r then there will be smaller number of samples close enough.

The effect of noise on Grassberger-Proccacia estimator

Noise adds a bias to counting—it is more probable to move points apart than bring together.

Hidden rocks in shallow water

- Early stop due to the errors in the correlation dimension estimate.
- Just a bad luck

$$\operatorname{cdim}(A) \ll \operatorname{dim}(\mathcal{X}) \Rightarrow \operatorname{dim}(\mathcal{X}) \not \leq k$$

• System is chaotic—the ideal regressor

$$\operatorname{Rec}_k \circ T \circ \operatorname{Rec}_k^{-1}$$
.

is no better than random guessing.

Interpretation of Takens Theorem

If the correlation dimensions of $\mathrm{Rec}_k(\boldsymbol{Y})$ and $\mathrm{Rec}_{k+1}(\boldsymbol{Y})$

- are equal
- or close enough

THEN

- $1^* \cdot \dim(\mathcal{X}) \le k \le 2 \cdot \dim(\mathcal{X}) + 1$
- and the optimal regressor size is between k and $2^* \cdot k + 1$.