Convolution Rings and Related Cryptographic Schemes

Sven Laur swen@math.ut.ee

University of Tartu

Introduction. Motivation

- The common public-key cryptosystems are slow because they usually involve exponentiation.
- Reasonable crypto schemes use addition + and substraction -, multiplication * and invertibility.
- Polynomial ring $\mathbb{Z}[X]$ possesses efficient +, -, \star and but lacks \square^{-1} .
- The multiplication rule in $\mathbb{Z}_q[X]/(X^N-1)$ is very simple. If $h=f\circledast_q g$ then

$$h_k \equiv \sum_{i+j \equiv k \mod N} f_i g_j \mod q$$

- Factor ring $\mathbb{Z}_q[X]/(X^N-1)$ has the same properties as $\mathbb{Z}[X]$ and many polynomials f have inverses F_q such that $f \circledast_q F_q = 1$.
- If $q = 2^k$ then there is a simple and natural way to implement $\mathbb{Z}_q[X]/(X^N-1)$.

Related Cryptographic Shemes

Encyption scheme NTRU

NTRU uses double reduction modulo q and modulo p. The integers p and q must be relatively prime.

Key generation

$$h \stackrel{q}{\leftarrow} F_q \circledast g$$
 $f \in \mathcal{L}(d_f, d_f - 1)$ $g \in \mathcal{L}(d_g, d_g)$

Encryption

$$e \stackrel{q}{\leftarrow} p\phi \circledast h + m \qquad \phi \in \mathcal{L}(d_{\phi}, d_{\phi})$$

Decryption

$$a \stackrel{q}{\leftarrow} f \circledast e$$
$$m \stackrel{p}{\leftarrow} F_p \circledast a$$

Simple decryption criterion

$$\left\| p\phi \circledast g + f \circledast m \right\|_{\infty} < \frac{q}{2}$$

$$\left| p \cdot \operatorname{coeff} \left(\phi \circledast g, i \right) + \operatorname{coeff} \left(f \circledast m, i \right) \right| < \frac{q}{2}$$

Coefficient distributions

Due to multiplication rule the coefficients of $c=f\circledast m$ have identical distributions

$$c_i = \sum_{i=1}^{d_1+d_2} X_i$$
, where $X_i \leftarrow \{-1,0,1\}$

It can be computed exactly

$$\Pr\left[c_{i} = C\right] = \frac{1}{3^{d_{1}+d_{2}}} \sum_{k=0}^{d_{1}+d_{2}} {d_{1}+d_{2} \choose k} {d_{1}+d_{2}-k \choose k-C}$$

but this is time consuming and the result is too exact. Berry-Esséen theorem promises convergence to normal distribution $\mathcal{N}(0,\sigma)$. Practical experiments suggest that convergence is rapid. We find σ indirectly

$$\sigma = \frac{1}{\sqrt{2\pi} \Pr\left[\operatorname{coeff}\left(f \circledast m\right) = 0\right]}$$

This methodology can be used to calculate $\phi \circledast g$. This distribution can also be approximated with normal distribution although here we have weak correlation between X_i .

Approximation examples

Further enhancements

How to approximate the distribution?

$$p \cdot \operatorname{coeff}(\phi \circledast g, i) + \operatorname{coeff}(f \circledast m, i)$$

If two random variables $X_1 \sim \mathcal{N}(\mu_1, \sigma_1)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2)$ are independent then

$$X_1 + X_2 \sim \mathcal{N}\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right).$$

We have constraint 2 < p because the $\gcd(p,q) = 1!$ The integer p disperses the summary distribution. Solution p can be a polynomial! What is the distribution of $S = p \circledast \phi \circledast g$?

$$S_i = \sum_{k=1}^r p_k X_k \qquad X_k \sim \mathcal{N}(\mu, \sigma)$$

So we know that

$$\mu_S = \mu \sum_{k=1}^r p_k \qquad \qquad \sigma_S = \|p\|_2 \sigma$$

The best known candidates $p=X\pm 2$ have identical norms $||X\pm 2||=\sqrt{5}\approx 2.24$ so from probabilistic viewpoint there is no difference.

NTRUSIGN and norm distributions

NTRUSIGN is a more efficient simplification of Goldreich-Goldwasser-Halevi signing scheme. The reliability of NTRUSIGN depends on centered norm distributions of $f \circledast m$ which can be approximated with χ^2 -distribution. The aproximation can be determined by the mathematical expectation μ and standard deviation σ which can be calculated.

The security of NTRUSIGN depends on norm distribution

$$W = \sum_{i=0}^{N-1} X_i^2 \qquad X_i \leftarrow \left[-\frac{1}{2}, \frac{1}{2} \right]$$

This converges quickly to normal distribution but the convergence is not quick enough to give security proofs.

The corresponding problem has a simple geometric interpretation – probability is the volume of intersection of unit cube and ball in N-dimendional space. But the direct computation of the volume is Herculean task due to complex geometric structure of intersection.

Experimental norm distributions

