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Introduction

It is a well-known fact of computer science that the density of transistors that can be
fitted on an integrated circuit has been growing at an exponential rate, thus leading to
significant advances in computational capabilities.

Moore’s law is just one example of this kind of miniaturization. Other interesting
examples are the number of megapixels in a consumer digital camera and, more on
the topic of this thesis, the number of CCD elements used in astronomical cameras.
Combined with other technological advancements, this has led to an exponential growth
in astronomical observational data, which has led to an increase in using computer
algorithms for analysing observational data.

The aim of this thesis is to conduct preliminary experiments on detecting and char-
acterizing emission line stars from the low-resolution BP/RP photometer instrument of
the Gaia space telescope. Gaia is an ambitious science mission of the European Space
Agency, that is currently being built and is planned for launch in 2011.

Although we are solving an astronomy problem, we are mostly using standard
machine learning algorithms to do this, which makes this topic suitable for defending
a degree in computer science.

The main contribution of this thesis is the evaluation of Support Vector Machine
algorithms for detecting and characterizing emission line stars from Gaia BP/RP spec-
tra. First, we use Support Vector Machines in classifying emission line stars. Second,
we validate Support Vector Regression for inferring the effective line width of a fixed
spectral line. Due to scarce available data on emission line stars, we construct a naive
model of emission line spectra to generate sufficient data for the effective line width
estimation algorithm.

The main text of the thesis consists of four chapters. In the first chapter, we give
the necessary astronomical background information on the problem we are solving.
The second chapter is an overview of the computer science algorithms we use in our
experiments. In the third chapter, we describe our datasets, a spectral model we used
to generate data for the line width estimation experiments, as well as our experimental
set-up. In the fourth chapter, we present and discuss our results.
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1 Astronomical Background

This chapter is divided into four parts. In Section 1.1 we give a short introduction on
the present state of high-throughput astronomical observations. Section 1.2 gives an
overview of the Gaia space telescope. Section 1.3 describes the BP/RP Photometer of
the Gaia telescope and Section 1.4 gives a short introduction to emission line stars.

1.1 Introduction

A human being can observe a few thousand stars in a clear night sky with the naked
eye. All of these stars belong to the Milky Way galaxy, which is a disk-like structure
consisting of approximately 200 billion stars. Under good viewing conditions (low light
pollution, non-intoxicated observer), one can also see a few other galaxies, although
the number of galaxies observable using telescopes is significantly higher. Current
estimates on the total number of galaxies in the Universe are in the same order of
magnitude as the number of stars in the Milky Way galaxy.

In addition to regular Sun-like stars and galaxies, various other objects have been
observed in the night sky, including planets, dwarf planets, comets, asteroids, nebulae,
white dwarfs, neutron stars, black holes and quasars. In an intriguing development,
evidence of extrasolar planets (planets that orbit other stars besides the Sun) have
been obtained in the last two decades.

The vast majority of this information is obtained by measuring the energy dis-
tribution of electromagnetic waves coming from these objects. Different instruments
and techniques are being used to observe waves with different wavelengths (these are
roughly divided into radio, infrared, optical, ultraviolet, X-ray and gamma ray). In
addition to studying spectra, precise positional measurements of astronomical objects
are often performed. Potential uses for these include studying the movement of stars in
the Milky Way or projecting the trajectory of a near-Earth asteroid. Other, more ex-
otic methods for studying celestial objects include neutrino detectors and gravitational
wave experiments.

Traditionally, astronomical observations have been done manually, by selecting a set
of interesting objects and observing them one object at a time. Recent advancements
are making it possible to scan large areas of the sky simultaneously, thus significantly
increasing the amount of data requiring analysis [Ree09]. Examples of such a project
are the Sloan Digital Sky Survey (SDSS), which has covered a quarter of the selestial
sphere using a 2.5-meter dedicated telescope located in New Mexico, thereby obtaining
measurements of 100 million galaxies and the Hipparcos satellite which measured the
positions of approximatelly 500 000 stars. Several similar projects are currently in var-
ious stages of preparation, examples include the Pan-STARRS survey, Large Synoptic
Survey Telescope (LSST), the JASMINE and Gaia space probes.

There are at least two major approaches to handle these large quantities of data.
One is to recruit volunteers and have them analyse the observations over the Internet.
Examples of such projects are the Galaxy Zoo project which used volunteers to classify
resolved SDSS galaxies. The second approach is to use algorithmic data analysis,
including various machine learning methods such as neural networks, support vector
machines, clustering and principal component analysis.
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Figure 1: A selection of various objects that an automated sky survey might encounter.
Source: “Classification and Discovery in Large Astronomical Surveys” workshop poster.
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Figure 2: Scanning law of the Gaia space telescope. Source: [Ano06]

1.2 Gaia space telescope

The Gaia space telescope is an ambitious science endeavour of the European Space
Agency (ESA) with the goal of measuring all objects in the celestial sphere up to the
20th magnitude, which corresponds to approximatelly 1 billion objects. [Ano06]

The satellite is currently under construction and is planned to launch in 2011 from
a Soyuz-Fregat rocket from Guiana Space Centre. Following a succesful launch, Gaia
will travel onto a stable orbit around the L2 point of the Earth-Sun system1. There it
will deploy it’s telescope and scan the celestial sphere for the approximatelly five years.

The scanning law of the telescope is visualized in Figure 2. Gaia makes a full turn
around it’s axis in 6 hours. In addition, the spin axis of the satellite is slowly precessing,
allowing Gaia to cover the whole sky in 63 days.

Gaia observes the sky using two telescopes (thereby improving positional measure-
ments), which project the light collected onto a single CCD performing the measure-
ments. A single object takes 4.4 seconds to pass over the CCD detector. A schema of
the CCD is given in Figure 3.

• The Sky Mapper (SM) performs real-time object detection, determining which
measurements of the latter components will be stored and transmitted to Earth.

• The Astrometric Field (AF) instrument then performs a precise positional mea-
surement of the objects relative to each other.

• The Blue Photometer (BP) and the Red Photometer (RP) will measure low-
resolution spectra of the object in the regions of 330–600 and 650–1000nm. This
BP/RP Photometer data will be looked into in this thesis.

1One of five points, where the combined gravitational forces of the Sun and Earth allow a satellite

to be in stationary orbit with respect to the Earth and the Sun. L2 lies directly “behind” Earth.
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Figure 3: Schema of the Gaia CCD. Source: [Ano06], Figure courtesy of EADS As-
trium.

• Finally, the Radial Velocity Spectrograph (RVS) will measure a relatively narrow
area (847–874 nm) of the spectrum with a considerably higher resolution than
the BP/RP Photometer. This measurement will only be performed for objects
up to the 17th magnitude.

From the data analysis perspective, the amount of data produced by Gaia is
formidable. although preliminary data reduction will be performed on-board and in
real-time, the telescope will transmit approximatelly 100 Gigabits of compressed data
to the ground station daily. After uncompressing and processing, the final database
will have an estimated size of 1 petabyte [MR09].

The analysis of the dataset is also a formidable challenge in terms of sheer complex-
ity. As an example, the accuracy of positional measurements is presise enough that
the gravitational effects of the Sun bending starlight have to be taken into account in
determining the real positions of the stars.

1.3 BP/RP Photometer

For our purposes, we can assume that light coming from a star consists of a non-
polarized electromagnetic wave. A CCD element can be used to measure the amount
of power that the wave carries, which lets us to obtain the energy flux F of the wave.
This is measured in W m−2, which is to be understood as “the power of a light measured
on a sensor with a certain area”.

Various techniques (e.g. glass prism, diffraction grid) can be used to spacially sepa-
rate the different wavelengths, thus measuring the flux density (measured in W m−2 nm,
which is to be understood as “energy flux of the light with a certain wavelength”). As
stated earlier, measuring the energy distribution of the light (called a spectrum) coming
from an astronomical body is usually the primary method of studying the object.
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Figure 4: Photometric instrument of the Gaia space probe. Source: [Ano06], Figure
courtesy of EADS Astrium.

The Gaia BP/RP Photometer, visualized in Figure 4, is a low-resolution prismatic
photometer. Light entering the telescope will pass through a broadband filter that
removes unwanted wavelenths. This is followed by passing through a fused-silica prism
that disperses light according to wavelength. After this, the two light beams enter the
CCD sensor and two spectra will be obtained, one in the blue region (330-660nm) and
one in the red region (650-1000nm).

During it’s 5 year mission, Gaia will measure a single object several times. Under
certain conditions, these measurements may be combined to increase their accuracy.
The exact details on how this will be done are not fixed yet, but it will probably be
something similar to the drizzle algorithm that is currently being used in the Hubble
Space Telescope [Smi08]. From now on we will refer to single-transit measurements as
epoch spectra and to end-of-mission data as combined spectra.

1.3.1 Effective line width

A spectral line is a sudden peak (emission line) or sink (absorption line) in an otherwise
smooth spectrum continuum, which can be approximated by a Gaussian function for
our purposes. We use the measure of effective line width (aka equivalent line width) to
charaterise spectral lines. This measure can be thought of as the equivalent wavelength
interval over which the continuum area is equal to the area under the spectral line.

The effective line width is often used in astronomy for two reasons. First, it does not
depend on the channel distribution (sampling) of the observation instrument. Second,
it is insensitive to the distance of the star as well as to interstellar absorption (under
certain assumptions). This allows us to compare spectral features of different objects
without knowing their distance to Earth, which is often the case in astronomy due to
technical limitations on distance measurements.

Formally, the effective line width is defined as follows. Let the whole spectra F (λ)
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be represented as

F (λ) = Fl(λ) + Fc(λ)

where Fl(λ) is the flux of a single spectral line and Fc(λ) describes the flux of the
continuum (everything else except the spectral line). The effective width of the spectral
line is then [Sch06, page 181]

W =

ˆ

F (λ) − Fc(λ)

Fc(λ)
dλ =

ˆ

Fl(λ)

Fc(λ)
dλ

Assuming that the continuum under the spectral line is constant, one can think of this
definition as the area of the spectral line divided by the height of the continuum at the
center of the spectral line. Note that for an emission line, W > 0 and for an absorption
line, W < 0. For calculating the effective line width integral from measured spectra,
we use the extended trapezoidal rule [PTVF92, page 133]

xN
ˆ

x1

f(x) dx = h

(

1

2
f1 + f2 + . . . + fN−1 +

1

2
fN

)

+ O

(

(b − a)3 f ′′

N2

)

1.3.2 Apparent magnitudes

The apparent magnitude is a practical convention for expressing the brightness of an
object. Formally, the magnitude relation between two bodides is defined as [KKO+03,
page 181]

m1 − m2 = −2.5 log10

(

F1

F2

)

where m1, m2 are the respective magnitudes and F1, F2 are the physical fluxes discussed
earlier. Note that the fluxes have to be taken over a fixed set of wavelengths and a
specific object m0 is usually defined to have zero magnitude to fix the scale.

To give examples, the apparent magnitude (in the visual band) of the Sun is −26.8
mag, the nearest star Sirius −1.5 mag and the nearest galaxy (Andromeda) 4.3 mag.

1.4 Emission line stars

We now give a short overview of emission line stars relevant to the data analysed in this
thesis. It is important to note that this is not an exhaustive overview, but is intended
to give some background on the data we are analysing.

1.4.1 Be stars

There are two types of Be stars, which we consider to be similar enough for the low-
resolution Gaia BP/RP spectra to handle them as a single class. First, classical Be
stars are rapidly rotating B type stars surrounded by a flattened disk of gas, which
is the main cause of their H-α emission. Second, Herbig Ae/Be type stars are pre-
main sequence stars often found near large molecular clouds. Somewhat more than
100 Herbig Ae/Be stars have been observed so far [SP04].
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Figure 5: Examples of a Be star (top row) and Wolf-Rayet star (bottom row), both as
high-resolution spectra and as Gaia BP/RP simulations.

An example of a Be star spectrum is given in the top row of Figure 5. In the high-
resolution spectrum, on can observe the H-α emission line at approximately 650nm.
One can also recognize an imprint of this emission line in the low-resolution BP and
RP spectra.

1.4.2 Wolf-Rayet stars

Wolf-Rayet stars are a class of stars, whose spectra are dominated by broad emission
lines, indicating an extreme mass loss [MoPGB01]. An example of a WR star spectrum
is given in the bottom row of Figure 5, where two emission areas can be observed in
the BP spectrum and six emission areas in the RP spectrum. The reasons behind the
mass loss is an open problem in astrophysics, with various hypotheses attributing this
to one or several factors from intense radiation pressure, a binary companion star or a
peculiar stellar magnetic field.

Approximately 220 Wolf-Rayet stars have been observed in our Galaxy and a few
hundred in neighbouring galaxies. Theoretical considerations on the total number of
Wolf-Rayet stars in our Galaxy range between 1000 and 2000.
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2 Computer Science Background

In this chapter, we give an overview of the computer science methods used in this thesis.
First, we discuss Support Vector Machines, which are machine learning algorithms
suitable for both classification (Section 2.1) and regression (Section 2.2). Our overview
is mainly based on [CST04, Bur98].

In Section 2.3, we give a short summary of Principal Component Analaysis (PCA),
which is a method for describing high-dimensional data using a linear combination of a
small number of principal components. We later use PCA in Section 3.3 in constructing
a model of stellar spectra for effective line width prediction.

2.1 Support Vector Classification

Introduction. Machine learning in general is concerned with finding a model describ-
ing a set of data, without any intrisic knowledge about the dataset. Formally, it is
often defined in the following way. Given a set of data

S = {(x1, y1) , . . . , (xl, yl)} , xi ∈ X, yi ∈ Y, i = 1, . . . , l

find a function f : X → Y such that f(xi) ≈ yi and f gives “reasonable” results on
new unknown data not present in S. In case of a classification problem, Y is the set
of class labels and for a regression problem, Y ∈ R.

Maximal Margin Classifier. We begin the overview of Support Vector Machines
by considering a two-dimensional classification problem. Formally this corresponds to
X = R

2 and Y = {+1,−1}. In addition, we assume that the data is linearly separable,
meaning that there exists a line with the property that all points from one class are
on one side of the plane and all points from the other class are on the other side of
the plane. We can classify new unknown points by simply checking their position with
respect to the line. Notice that there may be several lines that separate the two classes,
so we would like to find a criteria that would uniquely define a line that separates the
two points well. Additionally notice that the idea can be generalized to n-dimensional
input data by using a hyperplane given by the equation.

w · x + b = 0, w,x ∈ R
n

The rule for determining the class y of a data point x is then given by the equation.

y = sign(w · x + b)

We now continue to derive a way for uniquelly defining a good hyperplane between two
linearly separable point classes in n-dimensional space. Assume that w · x + b = 0 is
a separating hyperplane and let x+1 and x−1 be the closest points from the respective
classes to the hyperplane. Choose a scale for w and b such that

w · x+1 + b = 1

w · x−1 + b = −1
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Figure 6: A hyperplane with the normal vector w separating two classes, represented
by black and white dots. Source: [Bur98]

Recalling the fact from linear algebra that given a point p ∈ R
n and a plane w·x+b = 0,

the directed distance d between this point and the plane is

d = d(p,w, b) =
w · p + b

‖w‖

where ‖w‖ =

√

n
∑

i=1

w2
i , we now get for all data points

w · xi + b ≥ 1, yi = +1

w · xi + b ≤ −1, yi = −1

which we can combine into

yi (w · xi + b) ≥ 1, i = 1, . . . , l

Let d+1 = d(x+1,w, b) and d−1 = d(x−1,w, b) be the distances between the hyper-
plane and the points x+1 and x−1. We now define the margin M of the hyperplane as
M = d+1 + d−1. In order to find the hyperplane that best separates the classes, we
now decide to select the hyperplane with the maximal margin M between the classes.
This is illustrated on Figure 6.

Since the margin M is the projection of the distance between x+1 and x−1 onto
any vector perpendicular to the hyperplane (and w is obviously perpendicular to the
hyperplane), we can calculate M as follows.

M = prw (x+1 − x−1) =
w · (x+1 − x−1)

‖w‖
=

w · x+1 − w · x−1

‖w‖
=

=
1 − b − (−1 − b)

‖w‖
=

2

‖w‖
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Thus, maximizing the margin M is equivalent to minimizing ‖w‖ while requiring all
the points from both of the classes to lie on the correct side of the hyperplane and
outside the margin, represented by the planes H1 and H2 in Figure 6. Formally, we
have the following optimisation problem.

min
w,b

w · w,

subject to yi (w · xi + b) ≥ 1, i = 1, . . . , l

This classifier obtained from this optimisation problem is called the Maximal Margin
Classifier.

Soft Margin Classifier. Data in the real world is often noisy. Thus, it may be
possible that some of the points in the set S are wrong, which may have adverse effects
to the ability of the classifier to function properly. To improve the situation, we allow
some points to lie on the incorrect side of the margin by introducing the so-called slack
variables ξi into the optimisation problem. Formally, one way to introduce these slack
variables is

min
w,b,ξ

w · w + C
l
∑

i=1

ξi,

subject to yi (w · xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , l

Here, the variable C is a free parameter representing the tradeoff between model com-
plexity and accuracy, often called the complexity constant. In practice, it is usually
determined experimentally by repeatedly learning the model with different values of
C and then selecting the value which results in the best performance. The classifier
obtained from this optimisation problem is called the Soft Margin Classifier.

Finding the optimal hyperplane. Using results from optimisation theory, it is
possible to show that the Soft Margin Classifier optimisation problem is equivalent to
the following optimisation problem.

max
α

W (α) =
l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjxi · xj,

subject to
l
∑

i=1

yiαi = 0,

C ≥ αi ≥ 0, i = 1, . . . , l

with the decision rule on determining the class of the point x taking the form

y = sign

(

l
∑

i=1

yiα
∗

i xi · x + b∗

)

It is possible to solve this optimisation problem using numerical methods that normally
converge to the global optimum. There are several libraries available for specifically
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solving these kinds of optimisation problems. We use the LIBSVM implementation in
our experiments [CL01].

Classifying non-linear data with kernels. Until now, we have assumed that the
data points in S are linearly separable. In order to classify non-linear data, we use a
mapping φ(x) to project the data into an another space called feature space with the
idea that it may be linearly separable in the feature space, i.e.

x = (x1, . . . , xn) 7−→ φ(x) = (φ1(x), . . . , φN(x))

Usually, it is good to have a feature space with a large dimensionality, to increase the
chances of the data becoming linearly separable.

By noticing that the Soft Margin Classifier optimisation problem only computes
with scalar products of the input data, we can define the following function K(x, z),
which is called a kernel function

K(x, z) = φ(x) · φ(z)

By replacing the scalar products of the input data with the kernel function in the Soft
Margin Classifier, our optimisation problem takes the form

max
α

W (α) =
l
∑

i=1

αi −
1

2

l
∑

i,j=1

yiyjαiαjK(xi,xj),

subject to
l
∑

i=1

yiαi = 0,

C ≥ αi ≥ 0, i = 1, . . . , l

with the decision rule on determining the class of the point x changing to

y = sign

(

l
∑

i=1

yiα
∗

i K(xi,x) + b∗

)

It is this variation of the Soft Margin Classifier with a kernel function that is usually
understood as the Support Vector Machine (SVM) algorithm.

There are several different kernel functions to choose. One of the most widely used
is the Radial Basis Function (RBF) kernel, which LIBSVM defines as

KRBF (x, z, γ) = exp
(

−γ ‖x − z‖2
)

, γ > 0

The RBF kernel has a free parameter γ, which is usually determined experimentally
like the complexity constant. We use the RBF kernel in our experiments.

Generally, the use of kernels can further widen the opportunities of applying SVMs
by defining kernels on non-numeric data (e.g. protein primary structure [MIK+07]).

Classifying more than two classes. Until now we have only considered a binary
classification problem. The most often used practical method of using SVMs on a
classification problem with more than two classes is to train several binary classifiers
on different classes and then combine the results. There are several different ways of
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doing this. LIBSVM uses the “one-against-one” approach, which works by training
k(k − 1)/2 binary classifiers for a classification problem with k classes. Each binary
classifier is trained only using data from two classes from the data. In determing
the class, each classifiers votes for one (out of two possible) classes. The class which
received most votes is assigned to the data point.

2.2 Support Vector Regression

The ideas behind the SVM algorithm can also be applied to regression problems where
instead of discrete classes, y ∈ R. One possible way of formulating the regression
problem is the ǫ-Support Vector Regression (SVR), which is formulated as follows
[CST04, page 117]

min
w,b,ξi,ξ̂i

‖w‖2 + C
l
∑

i=1

(

ξi + ξ̂i

)

subject to (w · φ(xi) + b) − yi ≤ ε + ξi, ξi ≥ 0, i = 1, . . . , l

yi − (w · φ(xi) + b) ≤ ε + ξ̂i, ξ̂i ≥ 0, i = 1, . . . , l

The optimisation problem is formulated such that differences between the data and
the model that are smaller than ε do not affect the model. Here, the constant C again
determines the tradeoff between model complexity (a high C value results in a larger
penalty for allowing the difference between a data point and the model to exceed ε).

Support Vector Regression can be used for learning to predict complex non-linear
variables only based on examples. For example, preliminary results have shown good
performance in predicting various astrophysical parameters from (simulated) unre-
solved galaxy spectra of the Gaia space probe [TKBJ+07].

2.3 Principal Component Analysis

Principal Component Analysis (PCA), also known as the Karhunen-Loéve transform,
is an algorithm for representing high-dimensional data in terms of a small number of
principal components that describe the data as well as possible [Bis06]. In particular,
given a set of m-dimensional observations xi, i = 1, . . . , n, PCA finds m-dimensional
principal components such that the projection of the input data on the i-th component
has the i-th largest variance (meaning that the first principal component has the largest
variance). Computationally, one way of determining the principal components involves
calculating the eigenvectors and eigenvalues of the covariance matrix of the dataset.

PCA has several uses, including data compression and dimensionality reduction.
We use the standard prcomp() routine from the R stats package in our experiments.
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3 Materials and Methods

In this chapter, we describe the experiments performed on detecting emission line
stars from Gaia spectra. We give an overview of the data that we used, including the
synthetic spectral model constructed for the effective line width experiments. Also, we
briefly describe the Gaia Object Generator used for obtaining the simulations of the
BP/RP Photometer observations.

3.1 Datasets

Gaia Object Generator. To facilitate the construction of the data reduction pipeline
for Gaia, several simulators have been created to construct spectra resembling real Gaia
observations from existing high-resolution observed or modelled spectra. The Gaia
Object Generator (GOG) [ZBI+08, IZS+08] is one of such simulators. In our work, we
used GOG v5.01, which produces so-called cycle 3 data. When generating combined
spectra using GOG, we used the default number of 80 transits and a sampling factor
of 3.

Local database. We used an existing dataset of 72 high-resolution spectra from the
Tartu Observatory, consisting of various types of Be stars, Wolf-Rayet (WR) stars
and nebulae. In many cases, the whole spectrum from 260nm to 1160nm was not
represented, we approximated with constant interpolation where necessary.

CU8 cycle 3 simulated libraries. The Astrophysical parameters group CU8 of
DPAC is in the process of developing modelled spectral libraries of various astronomical
objects, including main-sequence stars, Be stars and WR stars [DPA]. We use this data
in training our classifier in the classification task.

3.2 Classification

In the direct classification task, we are trying to find an algorithm that separates
spectra into discrete classes. For the scope of this thesis, we are going to make two
simplifications. First, we are going to assume that the previous data reduction pipeline
has already removed all other spectra so that we are only dealing with stellar spectra
as input. Second, we are assuming that we only have two kinds of emission line stars,
namely Be and WR stars in our data. Our previous work [JLK08] has demonstrated
the feasibility of using Support Vector Machines for separating Be-stars with a H-α
emission from regular main sequence stars.

Available datasets are visualized on the following page. For Be stars we have 174
CU8 models and 15 local observations, see Figure 7. In the case of WR stars, we have
9 CU8 models and 25 local observations, see Figure 8. Finally, we have an abundance
of 20180 CU8 simulations for regular stars, see Figure 9. To limit the effects of class
skew, we are going to undersample regular stars in our experiments.

There are notable differences between the CU8 models and local observations. For
Be stars, CU8 models show an emission line at approximatelly 450nm which is not
recognizable in the observations. In case of WR stars, same emission lines are mostly
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Figure 7: Gaia simulations of Be stars from CU8 models (top) and local observations
(bottom).

Figure 8: Gaia simulations of WR stars from CU8 models (top) and local observations
(bottom).

Figure 9: Gaia simulations of regular stars from CU8.
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present in both CU8 models and local observations, but the models have clearly weaker
emission than observations.

Ideally, we would like to train our classifiers on modelled data, that covers the whole
possible class space in a uniform manner. This approach has achieved good results in
e.g. classifying galaxies [TKBJ+07]. although available emission line star models are
quite limited, both in terms of quality and quantity, we are going to try to train our
classifiers on modelled data and validate on observed data.

We additionally perform a second detection experiment and cross-validate our clas-
sifiers on observed data. In this case, training data will be more similar to testing
data. Thus, the cross-validation experiments should provide a rough estimate on the
performance of a classifier when trained on hypothetical modelled spectra that more
closely match actual observations. Due to the low number of observations available,
this is likely to be a pessimistic estimate.

We approach the classification as two binary classification problems by first sepa-
rating stars with H-α emission and then dividing these into Be stars and WR stars.
This will allow us to use different features for the two problems, i.e. we can only use
wavelengths around the 656nm in detecting H-α emission. Additionally, binary clas-
sification will allow us to discuss the results without going into the issue of the rarity
of emission line stars in actual Gaia observations, which lies beyond the scope of the
current work.

3.2.1 Detecting H-α emission

At this point, we are only interested in detecting emission at a specific wavelength,
so we are going to select only channels with wavelengths in the range from 600nm
to 700nm as input. This results in 15 features for epoch spectra and 45 features for
combined spectra. As discussed earlier, we are going to study detection with two
different kinds of experimental set-ups. First, we train our classifier on modelled data
and validate on observed data (while still being forced to use CU8 models for regular
stars in validation). In particular, we proceed as follows.

Training data. For objects with H-α emission, we use a combination of 174 CU8 Be
models and 9 CU8 WR models. For objects with no H-α emission, we use a randomly
drawn sample of 183 CU8 models. This undersampling allows us to avoid the possible
problems of classification bias that can occur when training an SVM with unequal class
proportions in the training data.

Validation data. For objects with H-α emission, we use a combination of 15 local
observations of Be stars and 25 local observations of WR stars. For objects with no
H-α emission, we use a randomly drawn sample of 40 CU8 models that has no overlap
with the selection of regular star spectra in the training data.

Parameter tuning. We perform parameter tuning by conducting a relativelly coarse
but exhaustive full-grid search on the complexity constant C and the constant γ of
the RBF kernel (C = 2−3, 2−2 . . . , 23 and γ = 2−8, 2−7, . . . , 2−2). The meaning of these
constants were described in Section 2.1.

Training and validation. We then train the classifier with the optimal parame-
ters found using all training data. Finally, we validate the optimal classifier on the
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validation data.

Second, we perform cross-validation with local observations (and, again, CU8 simula-
tions for regular stars) to assess the performance of the classifier. We do this to roughly
estimate how the discrepancies between the CU8 models and observed spectra affect
the classification accuracy. Formally, we take the following steps.

Cross-validation data. For objects with H-α emission, we use a combination of 15
local observations of Be stars and 25 local observations of WR stars. For objects with
no H-α emission, we use a randomly drawn sample of 150 CU8 models.

Cross-validation. We divide the data D into n parts Di. We then train n classifiers,
each time using D − Di as training data and Di as validation. As in the previous
case, we do this over a set of free parameters. After some experimentation, we picked
n = 3 as the number of folds due to needing as many points as possible from a single
cross-validation run to plot averaged ROC curves for presenting our results.

Aggregation. Finally, we present the aggregated predictions accross the n experi-
ments on the best combination of free parameters as results.

3.2.2 Separating Be stars and Wolf-Rayet stars

In separating Be stars and WR stars, we use all channels in the RP spectrum as input,
which corresponds to 60 features for epoch spectra and 180 features for combined
spectra. We perform similar experiments as in the case of H-α emission detection. We
use identical setups to the H-α classification by both training on CU8 models with
validation on local observed data and cross-validation on local observed data. For the
first experiment, we define our classes as follows.

Training data. For Be stars, we use 174 CU8 Be models. For WR stars, we use 9
CU8 WR models.

Validation data. For Be stars, we use 15 local observations and for WR stars, we use
25 local observations.

For cross-validation with local observations, we use the data as follows.

Cross-validation data. For Be stars, we use 15 local observations and for WR stars,
we use 25 local observations.

The results of our classification experiments are presented in Section 4.1.

3.3 Synthetic spectra

In the classification task, we performed the experiments on existing data. In the
case of estimating the effective width of a single spectra line, we are going to use a
naive model introduced in this chapter to study line characterization. When trying
to characterize individual spectral lines, we cannot use the CU8 models because we
do not have the corresponding high-resolution data to train the detection algorithms.
Thus we are mostly going to rely on a naive model introduced in this chapter to
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Figure 10: Approximating the continuum from a high-resolution spectrum using SVR
with different ε-parameters.

study line characterisation. It is important to note that the naive model should be
thought of as simply an algorithm for generating data similar enough to real spectra
only for the purpose of characterising individual spectral lines. It does not conform to
an astrophysical model of the star that simulates the underlying physical proccesses
that form the spectrum.

Overview of the synthetic model. For our purposes, a spectrum of a star can be
described by sum of a smooth continuum C(λ) which doesn’t have a good analytical
approximation and a number of spectral lines Li(λ) which can be approximated by a
Gaussian curve. Formally

F (λ) = C(λ) +
∑

i

Li(λ)

where F (λ) is the spectrum, C(λ) is the continuum and Li(λ) represent the spectral
lines. These are further defined as

Li(λ) = A exp

(

−
(λ − λ0)

2

2σ2

)

where A determines the height, λ0 the central wavelength and σ the width of the
spectral line. Note that the spectral line can be an absorption line (A < 0) or an
emission line (A > 0).

Estimating the continuum. We would like to estimate the continuum spectrum
C(λ) on the basis of a set of existing high-resolution stellar spectra. For this, we first
need to extract the continuum from the stellar spectra, subtracting spectral lines in the
process. To achieve this goal, we use support vector regression with a suitable ε-tube
size. Recall from Section 2.2 that the SVR algorithm constructs a model that ignores
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errors that are smaller than ε. In addition the algorithm is allowed to tolerate single
“outliners” (such as spectral lines) at the cost of a simpler model. Thus, selecting a
sufficiently small ε allows us to approximate the smooth continuum. The behaviour of
the SVR algorithm on various ε values is given in Figure 10.

To obtain the continuum, we first train the SVR with the wavelengths as inputs
and the respective spectral fluxes as outputs. We then evaluate the SVR model on the
required wavelengths, thereby obtaining the continuum.

Generating the continuum. Since the detection algorithms should be insensitive
to the general shape of the continuum, we would like to generate as much variation in
the continuums of our synthetic models as possible. We also do not have an analytical
expression of the continuum, meaning that we can only use a set of existing numerical
examples as input. Our solution is to generate a synthetic continuum by taking a
random linear combination of the PCA components of the set of continua.

Formally, assume we have n continuum spectra Ci, each having m discrete chan-
nels. Running a PCA analysis for this set will give us n principal components Pi

(m-dimensional) and a matrix of weights wij such that

Ci(λ) =

n
∑

j=1

wijPj(λ)

where wij are arbitrary weights and principal components with lower indices tend to
describe more variation in the original dataset.

To generate random continuum Crnd, we take a linear combination of the PCA
components

Crnd(λ) =

n
∑

j=1

N(µj, σ
2

j ) Pj(λ)

where N(µj , σ
2
j ) is a random function with a Gaussian distribution. The parameters

µj and σ2
j are approximated from the original weights w1j . . . wnj.

It is important to note that we need to keep the train and validation sets different.
Thus we divide our continuum data into two groups, one will be used to generate the
PCA components for the training data and the other one will be used for the testing
data. Additionally, there are cases where the generated random spectrum has some
negative fluxes. We simply discard such spectra.

Generating spectral lines. The spectral lines are simply approximated using the
standard Gaussian function Li(λ). The free parameters A and σ are approximated us-
ing a uniform distribution. The wavelength λ0 is selected from physical considerations—
we take λ0 = 656.28nm for the H-α. As in the case of continuum generation, we simply
discard a spectrum if a spectral line causes negative fluxes.

To summarize, we use the following steps to obtain a synthetic spectrum.

1. Extract continuum component from a sample of existing spectra.

2. Run PCA on the set of continuum spectra.
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3. Generate a random continuum C(λ) from a random linear combination of the
PCA components.

4. Add the necessary spectral lines Li(λ) to the spectrum.

3.4 Effective width of a fixed spectral line

Our goal is to estimate the effective width (see Section 1.3.1) of a spectral line at a
known, fixed wavelength. We are going to limit ourselves to studying the H-α line
at 656nm, although the results should be transferrable to other spectral lines. For
example, in the case of WR stars emission lines at 470nm and 580nm for BP and
715nm and 770nm for RP are of interest.

Our previous results [JLK08] show that the Support Vector Regression algorithm
is a stable algorithm useful for characterising emission lines from combined spectra.
Using epoch spectra reduced the performance noticeably.

In a major improvement over our previous results we are now using the synthetic
spectral model described in Section 3.3 for studying our algorithm. In addition to
the sheer increase in training data, we also use principal components from different
types of continua (Be stars, Wolf-Rayet stars and nebulae), thus making the algorithm
applicable to a larger selection of objects. In a further attempt to make validation more
realistic, we generate our training data and validation data from different, independant
subsets of our spectra. In particular, we use the following steps in our experiments.

Generating the data. We start by generating 800 high-resolution training spectra
T and 200 high-resolution validation spectra V using the model described in Section
3.3. Then we calculate the true effective line width from the high-resolution spectra
as described in Section 1.3.1. Finally, we simulate low-resolution Gaia measurements
from the high-resolution spectra as outlined in Section 3.1.

Parameter tuning. We divide the training data T into two groups T1 of size 600
spectra) and T2 of size 200 spectra. We perform parameter tuning by conducting a
relatively coarse but exhaustive full-grid search on the complexity constant C and the
constant γ of the RBF kernel C = 2−5, 2−4 . . . , 215 and γ = 2−15, 2−14, . . . , 23. These
are described in Section 2.2.

Training and validation. We then the train the algorithm using all training data T
with the best combination of free parameters found. Finally, we validate this model
on validation data V .

The results of our line width estimation experiments are presented in Section 4.2.
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4 Results and Discussion

In this chapter, we present the results of our detection experiments. In Section 4.1 we
discuss the classification problem, followed by the line width problem in Section 4.2.
In Section 4.3 we try to compare these two approaches and draw a few conclusions on
the direction of future work.

4.1 Classification

In this section we start with detecting H-α emission and continue with separating Be
and WR spectra. All spectra are simulated as magnitude 15. Gaia is planned to
observe all objects up to magnitude 20, but the CU8 cycle 3 simulations were limited
to magnitude 15. We expect objects with greater magnitude to have a degraded signal
to noise ratio and reduced performance. Thus, our results can be interpeted as the
lower limit for objects of magnitude 15 and lower.

We use Receiver Operating Characteristics (ROC) graphs to visualise our classifica-
tion results[Faw04]. ROC graphs can be used with classifiers that output a continuous
decision value indicating the hypothesized class. Discrete classes are then assigned
from a fixed treshold value for this decision score. For the SVM, the decision value
is usually taken to be the distance of the data point from the optimal hyperplane. A
ROC curve is a plot of the false positive rate to the true positive rate in dependence
of the threshold decision value. An ideal classifier would be in the upper left corner
of the plot and a random classifier would lie on the diagonal line. ROC curves have
the useful property of being insensitive to the underlying class distribution. This is
desirable, since we want to ignore the problems of the rarity of emission line stars for
the moment. It can be shown that the total area under the ROC Curve (AUC) is equal
to the likelihood of the classifier ranking a randomly chosen positive instance higher
than a randomly chosen negative instance. We use the ROCR R package for generating
the ROC curves [SSBL05].

4.1.1 Detecting H-α emission

We selected channels in the range of 500nm...600nm (around the H-α line) as input.
The performance of the SVM algorithm in predicting H-α emission is given in Figure 11.
On the left, we trained using CU8 model spectra and validated with local observations.
On the right, we performed cross-validation on local measured spectra.

Training on modelled spectra results in an excellent classifier when using epoch
spectra. The huge drop in classifier performance when switching to combined spectra
is unexpected. We have checked our data handling routines for bugs, without success.
Thus, the explanations for this strange behavior will be left to be explained in future
work.

Cross-validation on observed spectra gives excellent results both in the case of
epoch spectra and combined spectra. Considering the small discrepancies in the AUC
measures, the differences in the models do not seem to have a significant impact on
detection accuracy.

Since the differences between the performances for epoch spectra and combined
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Figure 11: Performance of the SVM in detecting H-α emission. Left: training on
modelled spectra, validation on measured spectra. Right: cross-validation on measured
spectra.

spectra are neglible in the case of cross-validation, we hypothesize that using combined
spectra does not have a significant impact on H-α detection accuracy, at least for
objects up to magnitude 15. This is an important result, given the fact that combined
spectra can only be obtained after the 5-year mission of Gaia is over, whereas epoch
spectra can be obtained significantly sooner.

4.1.2 Separating Be stars and Wolf-Rayet stars

The performance of the SVM algorithm in separating Be stars and Wolf-Rayet stars
is given in Figure 12. As in the H-α prediction experiment, the left graph depicts
training using CU8 model spectra and validation with local observations. The right
graph depicts cross-validation on local measured spectra.

We are dealing with a small number of data points, meaning that the results have
a large uncertainty attached. The overall performance is quite poor, which may be
explained by the fact that there simply isn’t enough data for the SVM algorithm to
construct a proper model. For the most extreme case, recall from Section 3.2 that on
training with modelled data, we only have 9 samples of WR stars in the training data.

Acknowledging this, we would like to present two hypotheses. First, using combined
spectra does seem to improve separation accuracy. Second, cross-validation does have
better performance in terms of the AUC scores, both in the cases of epoch data and
combined data. We emphasize that validity of these statements will have to be checked
in future work that hopefully includes more data.
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Figure 12: Performance of the SVM in separating Be and WR spectra. Left: training on
modelled spectra, validation on measured spectra. Right: cross-validation on measured
spectra.

4.2 Line-width estimation

We now present the results on estimating the effective line width of the H-α line from
the BP/RP spectra. We look at how apparent magnitude and oversampling effect the
predicition accuracy.

We used a training set of 800 spectra as well as a validation set of 200 spectra,
obtained using the model described in Section 3.3. Both datasets were simulated
at three different magnitudes using the GOG as described in Section 3.1. For the
parameter tuning phase, we randomly separate the training set into two parts, using
one of them for training and the other for testing as described in Section 3.4.

We present our results as scatter plots of true line width on the horizontal axis and
predicted line width on the vertical axis. In addition, we also visualize the classifier
performance as Regression Error Characteristic (REC) curves [BB03]. REC curves
are plots of an error measure on the horizontal axis and the fraction of predictions
within the given error on the vertical axis. One can plot different error measures on
the horizontal axis, we use the absolute error. Thus, the ideal classifier would have an
REC curve of a straight line through the point (0, 1) parallel to the horizontal axis.

We first experimented with using clean, noiseless spectra as training data, hoping
that using clean training data would allow the SVR algorithm to construct a more
accurate model, thus improving prediction performance even on noisy spectra. The
results of this experiment, using combined spectra at magnitude 15, are presented in
Figure 13. Using clean spectra as training data results in degraded performance which
may be explained by overfitting, meaning that the algorithm is not able to generalize
the input data to the noisy test data. We use noisy training spectra in all further
experiments.

Since we used our own synthetic model to generate the data sets, we were able to
generate Gaia observations on different magnitudes. We now look at the effects that
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Figure 13: Effect of noiseless training spectra.

magnitude has on effective line width estimation. The results of our experiments are
represented as REC-curves on Figure 14 and as comparison plots on Figure 15. Our
results agree with the quite reasonable hypothesis that objects with a higher magnitude
produce a substantially smaller signal-to-noise ratio, thus making the estimation of the
effective line width more difficult. Still, even at magnitude 20 (which is the detection
limit of the BP/RP instrument), the SVR algorithm is capable of satisfiably inferring
the effective line width from combined spectra.

We again look at Figures 14 and 15 to study the difference between using combined
spectra and epoch spectra. Combined spectra show a clear advantage over epoch
spectra in predicting the H-α effective line width, with results from magnitude 20
combined spectra being comparable to epoch spectra from magnitude 17.5. This is
consistent with our earlier experiments from [JLK08].

To conclude, our experiments demonstrate the feasibility of using the SVR algo-
rithm to infer the effective line width of a spectral line from the low-resolution BP/RP
spectra. Future work should proceed with validation on real spectra.

4.3 Discussion

In brief, the results of the H-α experiment were encouraging. Even with limited data,
the SVM algorithm was able to achieve high accuracy in H-α emission detection. The
next step in H-α detection experiments should be to repeat them at greater magnitudes
to see wether the increased signal-to-noise ratio affects the accuracy of the classifier.
Additionally, future experiments should take into account the extreme rarity of emission
line stars compared to regular stars as discussed in Section 1.4.

The results for separating Be stars from WR stars were less encouraging, hinting
at the need for larger datasets both for training and testing. One way to partially
remedy this problem and perhaps improve the results would be to use an oversampling
algorithm, such as SMOTE [CBHK02].

The results on using SVR in effective line width estimation are promising. One
of the main reasons for this is the ability to use a sythetic model for generating our
dataset. Given enough training data, SVR seems to be able to infer the effective line
width quite accuratelly. Thus, using SVR as a classifier for i.e. H-α emission would
consist of the trivial step of defining a reasonable cutoff for the line width. Additionally,
by adding continuum spectra from other astronomical bodies to the synthetic model,
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Figure 14: Performance of H-α effective line width prediction on three different mag-
nitudes for epoch spectra (red) and combined spectra (green). A larger area under the
Error-Accuracy curve indicates better performance.

Figure 15: Actual vs predicted H-α effective line width for magnitudes 15 (left column),
17.5 (center column) and 20 (right column), for epoch spectra (top row) and combined
spectra (bottom row). Absolute RMS errors are shown in the title of the respective
plot.
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the algorithm may be extended to other astronomical objects.
The biggest drawback of the the current synthetic model is that it does not include

other spectral lines besides the H-α line. Thus, incorporating additional spectral lines is
one of the most important improvements that should be made. This requires additional
knowledge of astrophysics and was therefore beyond the scope of the current work.

Additionally, validation on real spectra is an important next step in testing the SVR
algorithm. Finally, as already mentioned in Section 3.4, the SVR algorithm should be
extendable to other spectral lines.
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5 Conclusion

The aim of this thesis was to study the possibilities of detecting emission line stars from
the BP/RP instrument of the Gaia space telescope using machine learning algorithms.
We tried two different approaches and obtained the following results.

Our classification experiments produced reasonable results in detecting H-α emis-
sion lines, while illustrating the difficulties of constructing a robust classifier based on
limited data in the case of separating Be and WR stars. We discovered relevant dis-
crepancies between the CU8 modelled spectra and local observations of emission line
stars.

We have also obtained promising results in using SVR for estimating the effective
line width from the low-resolution Gaia BP/RP spectra. To achieve this, we con-
structed a naive, non-astrophysical model of a stellar spectrum by using PCA on an
existing set of stellar continua and combining these with Gaussian approximations of
spectral lines. Finally, we proposed several approaches to improve and extend the
results obtained, including validating the SVR algorithm on measured spectra, im-
proving our synthetic model with additional spectral lines and attempting to estimate
the effective line width of additional spectral lines.
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A Resümee

Emissioonijoontega tähtede tuvastamine Gaia kosmoseteleskoobi andmetest

Bakalaureusetöö

Jürgen Jänes

Resümee

Aastal 2011 stardib Euroopa Kosmoseagentuuri (ESA) kosmoseteleskoop Gaia. Teleskoop
vaatleb viie aasta jooksul hinnanguliselt miljard objekti, kogudes seeläbi kokku ühe
petabaidi jagu andmeid.

Käesoleva bakalaureusetöö eesmärgiks oli uurida, kuidas saab kasutada masinõppe
algoritme Gaia kosmoseteleskoobi madalalahutusega BP/RP fotomeetri andmete töötlemisel.
Kuna reaalseid andmeid veel ei eksisteeri, siis kasutati töös olemasolevatest kõrge
lahutusega spektritest koostatud Gaia vaatluste simulatsioone.

Bakalaureusetöö tulemused saab jagada kaheks osaks. Kõigepealt uurisime tugivek-
tormasinate kasutamist kahe erineva klassifikatsiooniülesande lahendamisel. Esimese
ülesandena proovisime eraldada H-α emissiooni sisaldavaid spektreid H-α emissioonita
spektritest. Saadud tulemused olid hoolimata piiratud andmetest head. Teise klassi-
fitseerimisülesandena katsusime eraldada Be tähti Wolf-Rayet’ tähtedest.

Teise ülesandena üritasime me hinnata tugivektorregressiooni algoritmiga H-α spek-
trijoone ekvivalentlaiust. Selleks sobiva andmestiku saamiseks kirjutasime me lihtsa
emissioonijoontega tähespektri mudeli, mis ignoreerib tegelikkuses spektrit tekitavaid
füüsikalisi protsesse. Mudel kasutab peakomponentide analüüsi, et genereerida vaatlus-
tega sarnaseid tähe kontiinuume. Spektrijooned lähendasime Gaussi funktsioonidega.
Esialgset tulemused tugivektorregressiooni kasutamisel olid positiivsed.

Tulevikus on plaanis katsetada erinevaid meetodeid klassifitseerimisalgoritmide ef-
fektiivsuse parandamiseks, lisada emissioonijoontega tähespektri mudelile astrofüüsikalis-
test kaalutlustest tuletatud spektrijooni ning uurida tugivektorregressiooni kasutamist
teiste spektrijoonte effektiivlaiuse tuvastamisel.
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