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2 Reference 
 
 This chapter contains a detailed description of all the functions in the Neural Network Based 

System Identification Toolbox. The information given here is more or less identical to that 
obtained from the online help facility. 

  

General Network Training Algorithms 

batbp 

igls 

incbp 

marq 

marqlm 

rpe 

Batch version of the back-propagation algorithm. 

Iterated generalized least squares training of multi-output networks 

Recursive (/incremental) version of back-propagation. 

Levenberg-Marquardt method. 

Memory-saving implementation of the Levenberg-Marquardt method. 

Recursive prediction error (~Gauss-Newton) method. 

 
 

Data Manipulation 

dscale Scale data to zero mean and variance 1. 
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Nonlinear System Identification 

lipschit 

nnarmax1 

nnarmax2 

nnarx 

nnarxm 

nnigls 

nniol 

nnoe 

nnssif 

nnrarmx1 

nnrarmx2 

nnrarx 

Determine the lag space. 

Identify a neural network ARMAX (or ARMA) model (linear MA-filter). 

Identify a neural network ARMAX (or ARMA) model. 

Identify a neural network ARX (or AR) model. 

Identify a multi-output neural network ARX (or AR) model. 

Iterated generalized LS training of multi-output NNARX models 

Identify a neural network model suited for I-O linearization type control. 

Identify a neural network Output Error model. 

Identify a neural network state space innovations form model. 

Recursive counterpart to NNARMAX1. 

Recursive counterpart to NNARMAX2. 

Recursive counterpart to NNARX. 

 
Determination of Optimal Network Architecture 

netstruc 

nnprune 

obdprune 

obsprune 

Extract weight matrices from matrix of parameter vectors. 

Prune models of dynamic systems with Optimal Brain Surgeon (OBS). 

Prune feed-forward networks with Optimal Brain Damage (OBD). 

Prune feed-forward networks with Optimal Brain Surgeon (OBS). 
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Evaluation of Trained Networks  

fpe 

ifvalid 

ioleval 

kpredict 

loo 

nneval 

nnfpe 

nnloo 

nnsimul 

nnvalid 

wrescale 

xcorrel 

Final Prediction Error estimate of generalization error for feed-forward nets. 

Validation of models generated by NNSSIF. 

Validation of models generated by NNIOL. 

k-step ahead prediction of network output. 

Leave-One-Out estimate of generalization error for feed-forward networks.  

Validation of feed-forward networks (trained by marq, batbp, incbp, or rpe). 

FPE-estimate for I-O models of dynamic systems. 

Leave-One-Out estimate of generalization error for NNARX models 

Simulate model of dynamic system. 

Validation of I-O models of dynamic systems. 

Rescale weights of a trained network. 

High order cross-correlation functions. 

 
 

Miscellanous Utilities 

crossco 

drawnet 

getgrad 

pmntanh 

settrain 

Calculate correlation coefficients. 

Draws a two-layer feed-forward network. 

Derivative of network outputs w.r.t. the weights. 

Fast tanh-function. 

Set parameters for training algorithms. 
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Demonstration Programs  

test1 

test2 

test3 

test4 

test5 

test6 

test7 

Demonstrates different training methods on a curve fitting example. 

Demonstrates the NNARX function. 

Demonstrates the NNARMAX2 function. 

Demonstrates the NNSSIF function. 

Demonstrates the NNOE function. 

Demonstrates the effect of regularization by simple weight decay. 

Demonstrates pruning by OBS on the sunspot benchmark problem. 
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batbp 
Purpose 

Batch version of the back-propagation algorithm. 
 

Synopsis 
[w1,w2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) 

Input 
NetDef: Network definition. 
W1:  Input-to-hidden layer weights. The matrix dimension is 
     [(# of hidden units)  *  (inputs + 1)]  (the 1 is due to the bias) 
    Use [] for a random initialization. 
W2:  Hidden-to-output layer weights. The matrix dimension is 
      [(outputs)  *  (# of hidden units + 1)] 
    Use [] for a random initialization. 
PHI:  Input data  [(# of inputs)  *  (# of data)] 
Y:   Output data [(outputs)  * (# of data)] 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

Output  
w1, w2: Weight matrices when the training is completed. 
critvec:  Vector containing the criterion of fit  after each iteration. 
iter:   # of iterations. 

 

Description 
Given a set of corresponding input-output pairs and an initial network 
[W1,W2,critvec,iter] = batbp(NetDef,W1,W2,PHI,Y,trparms) trains the 
network with back-propagation. 
 
The activation functions must be either linear or tanh. The network 
architecture is defined by the matrix 'NetDef' consisting of two rows. The first 
row specifies the hidden layer while the second specifies the output layer. 
E.g.:    NetDef = ['LHHHH' 
               'LL---'] 
(L = Linear, H = tanh) 
  
Notice that the bias is included as the last column in the weight matrices. 
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Example 
Generate data as sinusoidal+noise 
>>  PHI = 2*pi*rand(1,300); 
>>  Y = sin(PHI) + 0.2*randn(1,300); 
>>  plot(PHI,Y,’+’); 
 
Initialize Network. 5 tanh hidden units, 1 linear output. 
>>  W1 = rand(5,2); 
>>  W2 = rand(1,6); 
>>  NetDef = [‘HHHHH’;’L----’]; 
>>  drawnet(W1,W2,eps) 
>>  trparms = settrain; 
>>  trparms = settrain(trparms,’maxiter’,1000,’eta’,2e-4); 
>> [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms);  
 
Plot the value of the criterion as a function of the iteration number 
>>  semilogy(critvec); grid; 
>>  xlabel(‘Iteration’); 
>>  ylabel(‘Criterion’) 
 

Algorithm 
Back-propagation is a gradient descent algorithm where the computations are 
ordered in a simple fashion by taking advantage of the special architecture of a 
neural network. In this implementation the step size is fixed.  

 

See Also 
INCBP, NNEVAL, MARQ, RPE. 
 

References 
J. Hertz, A. Krogh & R.G. Palmer: “Introduction to the theory of Neural 
Computation,” Addison-Wesley, 1991. 
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crossco 
Purpose 

Calculate correlation coefficients. 
 

Synopsis 
Cross-correlation coefficients: 
 coefs = crossco(v,w) 
 coefs = crossco(v,w,maxlag); 
  
Autocorrelation coefficients: 
 coefs = crossco(v,v,maxlag); 
 

Input 
v and w are two signals contained in vectors of equal length.  
Default max. lag is 25 or the vector length -1. 
 

Description 
The correlation coefficient is the correlation function normalized such that the 
autocorrelation will be 1 for lag 0. 
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drawnet 
Purpose 

Draw a two layer neural network. 
 

Synopsis 
drawnet(W1,W2) 
drawnet(W1,W2,CancelVal,instring,outstring) 

Input 
W1:   Input-to-hidden layer weights. The matrix dimension is 
      [(# of hidden units)  *  (inputs + 1)]  (the 1 is due to the bias) 
W2:   Hidden-to-output layer weights. The matrix dimension is 
       [(outputs)  *  (# of hidden units + 1)] 
CancelVal: (Optional) Draw only weights/biases exceeding this value. 
instring: (Optional). A cell structure containing in each cell a string to be 

assigned to the corresponding input. The number of cells should 
thus match the number of inputs. If it is not present, or it is empty 
{}, the inputs are simply numbered. 

 outstring: (Optional). A cell structure containing in each cell a string to be 
assigned to the corresponding output. The number of cells should 
thus match the number of outputs. 

Description 
Draws the network specified by the weights in W1 and W2. Positive weights 
are represented by a solid line while a dashed line represents a negative weight. 
Only weights and biases larger than 'CancelVal' are drawn. A bias is 
represented by a vertical line through the neuron. 

Example 
Initialize Network. 5 tanh hidden units and 1 linear output 
>>  W1 = rand(5,3); 
>>  W2 = rand(1,6); 
>>  str1 = {‘  x1’ ’  x2’ ’x253’}; 
>>  str2 = {‘y’};  
>>  drawnet(W1,W2,eps,str1,str2) 

See Also 
OBDPRUNE, OBSPRUNE, NNPRUNE. 
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dscale 
Purpose 

Scale data to zero mean and variance 1 before training 
 

Synopsis 
[Xs,Xscale]=dscale(X) 
Xs=dscale(X,Xscale) 

Input 
X:  Data matrix (dimension is # of data vectors in matrix * # of data 

points). 
Xscale: If Xscale is provided the data in X is scaled to the mean in Xscale(1) 

and the standard deviation Xscale(2). 

Output 
Xs:   Scaled data matrix 
Xscale: Matrix containing sample mean (column 1) and standard deviation 

(column 2) for each data vector in X. 
 

See Also 
WRESCALE on how to rescale the weights of the trained network. 
 

References 
Y. Le Cun, I. Kanter, S.A. Solla: “Eigenvalues of Covariance Matrices: 
Application to Neural-Network Learning,” Physical Review Letters, Vol 66, 
No. 18, pp. 2396-2399, 1991. 
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fpe 
Purpose 

Final prediction error (FPE) estimate of the avarage generalization error. 
 

Synopsis 
[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) 

Input 
See for example the function MARQ. 

Output 
FPE: The Final prediction error estimate. 
deff : The effective number of weights. 
varest: Estimate of the noise variance. 
H:  The Gauss-Newton Hessian. 

 

Description 
[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) calculates Akaike’s 
final prediction error estimate of the average generalization error. The function 
returns the final prediction error estimate (FPE), the effective number of 
weights in the network if the network has been trained with weight decay, an 
estimate of the noise variance, and the Gauss-Newton Hessian. It is important 
that the network has been trained to the minimum of the criterion before this 
function is called. 
 

See Also 
LOO for the Leave-One-Out estimate. 
NNFPE gives the FPE estimate for models of dynamic systems. 

 

References 
J. Larsen & L.K. Hansen: “Generalization Performance of Regularized Neural 
Network Models," Proc. of the IEEE Workshop on Neural networks for Signal 
Proc. IV, Piscataway, New Jersey, pp.42-51, 1994. 
 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 
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getgrad 
Purpose 

Derivative of network output with respect to the weights. 
 

Synopsis 
[PSI,E] = getgrad(method,NetDef,NN,W1,W2,Chat,Y,U) 

Inputs 
See NNVALID. 
For time series, U is either left out or passed as a []. 

Output 
PSI: Matrix containing the derivative of the output w.r.t. each weight for 
   each input-output pair in the data set. The dimension is 
   [# of weights * # of data] 
E:  Prediction errors. 
 

Description 
Produces a matrix of derivatives of the network output w.r.t. each network 
weight for use in the functions NNPRUNE and NNFPE. 

 

Examples 
Network generated by nnarx (or nnrarx): 
  >> [PSI,E] = getgrad('nnarx',NetDef,NN,W1,W2,[],Y,U) 
 
Network generated by nnarmax1 (or nnrarmx1): 
  >> [PSI,E] = getgrad('nnarmax1',NetDef,NN,W1,W2,Chat,Y,U) 
 
Network generated by nnarmax2 (or nnrarmx2): 
  >> [PSI,E] = getgrad('nnarmax2',NetDef,NN,W1,W2,[],Y,U) 
 
Network generated by nnoe: 
  >> [PSI,E] = getgrad('nnoe',NetDef,NN,W1,W2,[],Y,U) 
 

See Also 
NNPRUNE and NNFPE 

 



ifvalid 

2-12 

ifvalid 
Purpose 

Validate state space models. 
 

Synopsis 
[Yhat,NSSE] = ifvalid(NetDef,nx,W1,W2,obsidx,Y,U) 

Input 
See the function NNSSIF. 

Output 
Yhat: Prediction of output(s). 
NSSE: Normalized sum of squared errors. 
 

Description 
Validate a neural network based state space model of a dynamic system. I.e., a 
network model trained with the function NNSSIF. 
 
The following plots are produced:  
-  Output(s) together with predicted output(s). 
-  Prediction error. 
- Autocorrelation function of prediction error and cross-correlation between 

prediction error(s) and input(s). 
-  Histogram(s) showing the distribution of the prediction errors. 
-  Coefficients of extracted linear models. 
 

Example 
>> load spmdata 
>> NetDef = ['HHHH';'LL--']; 
>> trparms = settrain; 
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-4,’skip’,10);  
>> [W1,W2,obsidx,critvec,iter,lambda] =... 
         nnssif(NetDef,2,[],[],[],trparms,y1,u1);  
>> [yhat,NSSE]=ifvalid(NetDef,2,W1,W2,obsidx,y2,u2); 
 

See Also 
NNSSIF, NNVALID, NNEVAL, IOLEVAL 
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igls 
Purpose 

Iterated Generalized Least Squares training of neural networks with multiple 
outputs. 
 

Synopsis 
[w1,w2,lambda,Gamma]=igls(NetDef,W1,W2,trparms,Gamma0,PHI,Y) 

Input 
NetDef, W1, W2, trparms, PHI, Y: See the function MARQ.  
Gamma0: Initial estimate of the covariance matrix for the noise. If passed as [] 

it is set to the identity matrix. 
trparms: Vector containing parameters associated with the training (see 

MARQ). Default values (obtained if trparms=[]): trparms=[50 0 1 
0] 

Output  
w1, w2, lambda: See the function MARQ. 
Gamma:   The estimated covariance matrix. 

 

Description 
A multi-output feedforward network and the noise covariance matrix are 
estimated with an iterative relaxation procedure. 
 
It is important to notice that the network returned from this function will 
produce predictions of scaled outputs (see the Algorithm paragraph). It is 
necessary to multiply the output by sqrtm(Gamma) to obtain the unscaled 
predictions. If the network has linear output units one can instead scale the 
hidden-to-output layer weights: W2= sqrtm(Gamma)*W2. 
 

Example 
Generate data as two sinusoidals+noise 
>>  PHI = 2*pi*rand(1,300); 
>>  Y = [sin(PHI);cos(PHI)] + [0.1*randn(1,300);0.8*randn(1,300)] 
>>  plot(PHI,Y(1,:),’+’,PHI,Y(2,:),’o’); 
 
Train an initial network with 5 tanh hidden units, 2 linear output 
>>  W1 = rand(5,2); 
>>  W2 = rand(1,6); 
>>  NetDef = [‘HHHHH’;’LL---’]; 
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>>  drawnet(W1,W2,eps,{’phi’}, {‘y1’ ’y2’}) 
>>  trparms = settrain; 
>> [W1,W2]=marq(NetDef,[],[],PHI,Y,trparms);  
 
Apply the IGLS procedure 10 times and train 30 iterations in each step. 
>> trparms=settrain(trparms,’maxiter’,30,’repeat’,10); 
>> [w1,w2,lambda,Gamma]=igls(NetDef,W1,W2,trparms, [],PHI,Y); 
>> w2u=sqrtm(Gamma)*w2; 
>> [Yhat,E,NSSE]=nneval(NetDef,w1,w2u,PHI,Y); 
 

Algorithm 
The implemented IGLS procedure is very simple 
 for j=1:repeat, 
  Train the network 
  Estimate the covariance matrix  
 end  
 
The network is trained with the function MARQ according to the criterion 
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the outputs as 
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If the network has linear output units, W2 should be scaled by 22 1WuW −Σ= . 
 

See Also 
MARQ for Levenberg-Marquardt training. 
NNARXM for identification of multi-output NNARX models 
NNIGLS for igls estimation of multi-output NNARX models. 
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References 
T.J Fog, J. Larsen, L.K. Hansen: Training and Evaluation of Neural Networks 
for Multi-Variate Time-Series Processing. Proc. IEEE International 
Conference on Neural Networks, Perth, Australia. 
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incbp 
Purpose 

Recursive (/incremental) version of the back-propagation algorithm. 
 

Synopsis 
[w1,w2,critvec,iter]=incbp(NetDef,W1,W2,PHI,Y,trparms) 

Input 
NetDef:  Network definition  
W1:  Input-to-hidden layer weights. The matrix dimension is 
     [(# of hidden units)  *  (inputs + 1)]  (the 1 is due to the bias) 
    Use [] for a random initialization. 
W2:  Hidden-to-output layer weights. The matrix dimension is 
      [(outputs)  *  (# of hidden units + 1)] 
    Use [] for a random initialization. 
PHI:  Input data  [(# of inputs)  *  (# of data)] 
Y:   Output data [(outputs)  * (# of data)] 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

Output  
w1, w2:  Weight matrices after training. 
critvec:   Vector containing the criterion evaulated after each iteration. 
iter :    # of iterations. 

 

Description 
Given a set of corresponding input-output pairs and an initial network INCBP 
trains a network with recursive back-propagation. 
 
The activation functions must be either linear or tanh. The network 
architecture is defined by the matrix ‘NetDef’ consisting of two rows. The first 
row specifies the hidden layer while the second specifies the output layer. 
 
E.g.:    NetDef = ['LHHHH' 
                'LL---'] 
(L = Linear, H = tanh) 
  
Notice that the bias is included as the last column in the weight matrices! 
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Example 
Generate data as sinusoidal+noise 
>>  PHI = 2*pi*rand(1,300); 
>>  Y = sin(PHI) + 0.2*randn(1,300); 
>>  plot(PHI,Y,’+’); 
 
Initialize Network. 5 tanh hidden units, 1 linear output 
>>  NetDef = [‘HHHHH’;’L----’]; 
>>  trparms = settrain; 
>>  trparms = settrain(trparms,’maxiter’,400,’eta’,0.02); 
>> [w1,w2,critvec,iter]=incbp(NetDef,[],[],PHI,Y,trparms); 
>> drawnet(w1,w2);  
 
Plot criterion evaluated after each iteration 
>>  semilogy(critvec); grid; 
>>  xlabel(‘Iteration’); 
>>  ylabel(‘Criterion’) 
 

Algorithm 
Back-propagation is a gradient descent algorithm where the computations are 
ordered in a simple fashion, taking advantage of the special architecture of a 
neural network. In this implementation the step size is fixed. 

 

See Also 
BATBP for the batch version. 
RPE for a recursive Gauss-Newton algorithm. 
MARQ, NNEVAL. 
 

References 
J. Hertz, A. Krogh & R.G. Palmer: “Introduction to the theory of Neural 
Computation,” Addison-Wesley, 1991. 
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ioleval 
Purpose 

Validate models generated by NNIOL. 
 

Synopsis 
[Yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,Y,U) 

Inputs 
See the function NNIOL for an explanation of the inputs. 

Outputs  
Yhat:  One-step ahead prediction of output. 
NSSE: Normalized sum of squared error (SSE/2N). 
 

Description 
Evaluate a neural network based model on a form well-suited for control by 
discrete input-output linearization; i.e., a network model trained with the 
function NNIOL. 
 
The following plots are produced:  
- Observed output together with predicted output. 
- Prediction error. 
- Histogram showing the distribution of the prediction errors.  

 

Example 
>> load spmdata 
>> NetDeff = ['HHHHH';'L----']; 
>> NetDefg = ['HHH';'L--']; 
>> NN=[2 2 1]; 
>> trparms = settrain; 
>> trparms = settrain(trparms,’D’,1e-3); 
>> [W1f,W2f,W1g,W2g,critvec,iter,lambda] =... 
       nniol(NetDeff,NetDefg,NN,[],[],[],[],trparms,y1,u1);  
>> [yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,y2,u2); 
 

See Also 
NNIOL, NNVALID, NNEVAL, IFVALID 
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kpredict 
Purpose 

k-step ahead prediction of system output. 
 

Synopsis 
Network generated by NNARX (or NNRARX): 
  Ypred = kpredict('nnarx',NetDef,NN,k,W1,W2,Y,U);  
 
(likewise for networks generated with NNARMAX1+2 and NNOE) 

Input 
See NNVALID 

Output 
Ypred:  Vector containing the k-step ahead predictions of the outputs. 
 
NB! The function does not work for models generated by NNIOL, NNARXM, 
or NNSSIF.  
 

Description 
Determine the k-step ahead prediction of the output of a dynamic system and 
compare it to the observed output. The predictions are determined by feeding 
past predictions into the network where observations are not available and by 
setting unavailable residuals to zero. Except for NNOE models a predictor 
defined in this manner cannot be expected to be the optimal predictor. 
 

Example 
>> load spmdata 
>> NetDef = ['HHHH’;'L---']; 
>> NN=[2 2 1];    
>> trparms = [100 0 1 1e-3]; 
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);  
>> ypred=kpredict('nnarx',NetDef,NN,10,W1,W2,y1,u1); 
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lipschit 
Purpose 

Determine the lag space. 
 

Synopsis 
[OrderIndexMat]=lipschit(U,Y,m,n) 

Inputs 
U: Sequence of inputs  (row vector) 
Y: Sequence of outputs (row vector) 
m: Vector specifying the input lag spaces to investigate 
n: Vector specifying the ouput lag spaces to investigate 

Outputs 
OrderIndexMat: A matrix containing the order indices for each combination 

of elements in the vectors m and n. The number of rows 
corresponds to the number of elements in m, while the 
number of columns corresponds to the number of elements 
in n. 

 

Description 
Given corresponding input and output sequences the function calculates a 
matrix of indices that can be helpful for determining a proper lag space 
structure (m and n) before identifying a model of a dynamic system: 
                 y(t) = f(y(t-1),...,y(t-n), u(t-1),..., u(t-m)) 
An insufficient lag space structure leads to a large index. While increasing the 
lag space the index will decrease until a sufficiently large lag space structure is 
reached. Increasing the lag space further will not change the index 
significantly. In other words: look for the knee-point of the plot. 
 
m is a vector specifying which input lag spaces to investigate and n is ditto for 
the output. If one is only interested in the order index for one particular choice 
of lag structure, n and m are specified as scalars, and only the order index is 
returned. In the more general case, where one or both are vectors, the function 
will also produce one or two plots. 

 

Examples 
  o  NNFIR model structure expected: 
 m=[1:20]; n=0; 
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  o  Time series: 
 U=[]; m=0; 
 
  o  Check only n=m: 
 m=[1:5]; n=m; 

 

Algorithm 
The function should be used with some care. Do not rely on the results if the 
data is too corrupted by noise. Physical insight is by far the best tool for 
determination of the lag space. 
 
At this point the function works for SISO systems only. Extension to the 
multivariable case should be straightforward, however. 

 

See Also 
Use the function DSCALE to scale the data. 
 

 Reference 
X. He & H. Asada: "A New Method for Identifying Orders of Input-Output 
Models for Nonlinear Dynamic Systems," Proc. of the American Control 
Conf., S.F., California, 1993. 
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loo 
Purpose 

Estimate the average generalization error by leave-one-out cross-validation. 

Synopsis 
[Eloo,H] = loo(NetDef,W1,W2,PHI,Y,trparms) 

Input 
NetDef, W1, W2, 
PHI, Y, trparms    : See the function MARQ 
If the maxiter field in the data structure trparms is 0 linear unlearning is used 
for obtaining a cheap approximation to the LOO estimate. If maxiter>0 the 
network will be retrained a maximum of maxiter iterations for each input-
output pair that is left out. 

Output 
Eloo: The leave-one-out cross-validation estimate of the average 

generalization error. 
H:  The Gauss-Newton Hessian. 
 

Description 
LOO calculates an approximation to the leave-one-out estimate of the average 
generalization error. The function returns the loo-estimate along with the 
Gauss-Newton Hessian. 

 

Algorithm 
When the maxiter field in trparms is 0 “linear unlearning” is used to get a 
quick approximation to the LOO-estimate. This approximation is much easier 
to compute than the true LOO-estimate, but is in general less reliable. 
Typically it is comparable to the FPE-estimate. See the reference below for a 
derivation. Unless maxiter=0 it is recommended to set maxiter to 20-40. 

 

See Also 
FPE for Akaike’s final prediction error estimate. 

Reference 
 L.K. Hansen and J. Larsen: "Linear Unlearning for Cross-Validation," 

Advances in Computational Mathematics, 5, pp. 269-280, 1996. 
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marq 
Purpose 

Train a network with the Levenberg-Marquardt method. 
 

Synopsis 
[w1,w2,critvec,iteration,lambda] = marq(NetDef,W1,W2,PHI,Y,trparms) 

Input 
NetDef: Network definition. 
W1:  Input-to-hidden layer weights. The matrix dimension is 
     [(# of hidden units)  *  (inputs + 1)]  (the 1 is due to the bias) 
    Use [] for a random initialization. 
W2:  Hidden-to-output layer weights. The matrix dimension is 
      [(outputs)  *  (# of hidden units + 1)] 
    Use [] for a random initialization. 
PHI:  Input data  [(# of inputs)  *  (# of data)] 
Y:   Output data [(outputs)  * (# of data)] 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

Output 
W1, W2: Weight matrices after training. 
critvec:  Vector containing the criterion evaluated after each iteration. 
iteration: # of iterations. 
lambda: The final value of lambda. Relevant if retraining is desired. 

  

Description 
Given a set of corresponding input-output pairs and an initial network, a two 
layer neural network is trained with the Levenberg-Marquardt method. If 
desired it is possible to use regularization by weight decay. Also pruned (i.e., 
not fully connected) networks can be trained. The activation functions can be 
either linear or tanh. The network architecture is defined by matrix 'NetDef' 
which has two rows. The first row specifies the hidden layer while the second 
specifies the output layer. 
 
E.g.:    NetDef = ['LHHHH'  
        'LL---'] 
 (L = linear, H = tanh) 
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Notice that the bias in is included as the last column in the weight matrices and 
that a weight is pruned (i.e., 0 and not updated) by initializing it to 0. 
 
It is possible to train networks with regularization by simple weight decay. The 
field D in trparms can be set as forllows: D is a vector containing the weight 
decay parameters. If D has one element a scalar weight decay will be used. If D 
has two elements the first element will be used as weight decay for the hidden-
to-output layer and while second will be used for the input-to-hidden layer 
weights. For individual weight decays, D must contain as many elements as 
there are weights in the network. 

 

Example 
Generate data as sinusiodal +noise 
>>  PHI = 2*pi*rand(1,300); 
>>  Y = sin(PHI) + 0.2*randn(1,300); 
>>  plot(PHI,Y,’+’); 
 
Initialize network. 5 tanh hidden units, 1 linear output 
>>  NetDef = [‘HHHHH’;’L----’]; 
>>  [W1,W2,critvec,iter,lambda]=marq(NetDef,[],[],PHI,Y); 
>>  drawnet(W1,W2) 
 
Plot criterion evaluated after each iteration 
>>  semilogy(critvec); grid; 
>>  xlabel(‘Iteration’); 
>>  ylabel(‘Criterion’) 

Algorithm 
The algorithm is a standard Levenberg-Marquardt method as described in the 
references below. The trust region is adjusted in an indirect fashion by directly 
increasing/decreasing the diagonal added to the Hessian according to the ratio 
between actual and predicted change in the criterion. 
 

See Also 
MARQLM, RPE, BATBP, INCBP, NNEVAL. 
 

References 
R. Fletcher: “Practical Methods of Optimization,” Wiley, 1987. 

  M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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marqlm 
Purpose 

Implementation of the Levenberg-Marquardt method that uses less memory 
than MARQ. 
 

Description 
A less memory consuming (but slower) version of the Levenberg-Marquardt 
training algorithm implemented in MARQ. The difference in speed occurs 
because the function is less “vectorized” (which is a MATLAB problem), but 
also because some calculations might be repeated. 



netstruc 

2-26 

netstruc 
Purpose 

Extract weight matrices from parameter vector. 
 

Synopsis 
[W1,W2]=netstruc(NetDef,thd,index) 

Inputs 
NetDef: Architecture definition. 
thd: Matrix containing parameter vectors returned by OBDPRUNE, 

OBSPRUNE or NNPRUNE. 
index: Specifies the location in 'thd' where the optimal parameter vector is 

located. 

Outputs 
W1, W2: Weight matrices. 
 

Description 
NETSTRUC extracts the weight matrices from the matrix of parameter vectors 
produced by the pruning functions OBDPRUNE, OBSPRUNE and 
NNPRUNE. 
 

Example 
Prune network by OBS 
>>  [thd,tre,fpevec,tee,deff,pvec]=... 
    obsprune(NetDef,W1,W2,PHI1,Y1,trparms,[],PHI2,Y2) 
 
Find index to minimum FPE 
>>  [minfpe,index] = min(fpevec(pvec)); 
>>  index = pvec(index); 
 
Extract weights from matrix of parameter vectors 
>>  [w1,w2] = netstruc(NetDef,thd,index); 
>>  drawnet(w1,w2,eps) 
 

See Also 
OBDPRUNE, OBSPRUNE, NNPRUNE. 
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nnarmax1 
Purpose 

Identify a Neural Network ARMAX (or ARMA) model (linear MA-filter). 
 

Synopsis 
[w1,w2,chat,critvec,iteration,lambda]=... 
                                nnarmax1(NetDef,NN,W1,W2,Chat,trparms,Y,U) 

Input 
U:   Input (= control signal) (left out in the nnarma case) 
             matrix. Dimension: [(inputs) * (# of data)] 
Y:   Output data. Dimension: [1 * (# of data)] 
NN:  NN=[na nb nc nk]. 

na = # of past outputs used for determining the prediction. 
nb = # of past inputs. 
nc = # of past residuals (= order of C). 
nk = time delay (usually 1). 
For multi-input systems, nb and nk contain as many columns as 
there are inputs. 

W1,W2: Input-to-hidden layer and hidden-to-output layer weights. 
dim(W1)= [(# of hidden units)  *  (na+nb+1)] 
dim(W2)=[1 * (# of hidden units)] 
If they are passed as [], they are initialized automatically. 

Chat:  Initial MA-filter estimate (initialized automatically if Chat=[]). 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

 
For time series (NNARMA models) use NN=[na nc]. 

Ouput 
See the function MARQ for an explanation of the returned variables. 
 

Description 
Determines a nonlinear ARMAX model of a dynamic system by training a two 
layer neural network with the Levenberg-Marquardt method. The function can 
handle multi-input single-output systems (MISO). It is assumed that the noise 
can be modeled by filtering the residuals with a linear MA-filter: 

( ) )()()1(,),(),(,),1()(ˆ 1 tqCnntuntuntytygty kbka εθ −++−−−−−= ��  

in which case problems with instability of the predictor are avoided. 
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Example 
>>load spmdata 
>>NetDef = ['HHHHH';'L----']; 
>> NN=[2 2 2 1];  
>> trparms = settrain; 
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3,’skip’,10); 
>> [W1,W2,Chat,critvec,iter,lambda] = ... 
       nnarmax1(NetDef,NN,[],[],[],trparms,y1,u1);  
>> [yhat,NSSE]=nnvalid('nnarmax1',NetDef,NN,W1,W2,Chat,y2,u2); 

 

Algorithm 
The name NNARMAX has been chosen because the regressors are the same as 
those in ARMAX models. 

 

See Also 
NNRARMX1, NNARMAX2 

Reference 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 
 
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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nnarmax2 
Purpose 

Identify a Neural Network ARMAX (or ARMA) model. 
 

Synopsis 
[w1,w2,critvec,iteration,lambda]=... 
                                   nnarmax2(NetDef,NN,W1,W2,trparms,Y,U) 

Input 
U:   Input (= control signal) (left out in the nnarma case) 
             matrix. Dimension: [(inputs) * (# of data)] 
Y:   Output data. Dimension: [1 * (# of data)] 
NN:  NN=[na nb nc nk]. 

na = # of past outputs used for determining the prediction. 
nb = # of past inputs. 
nc = # of past residuals (= order of C). 
nk = time delay (usually 1). 
For multi-input systems, nb and nk contain as many columns as 
there are inputs. 

W1,W2: Input-to-hidden layer and hidden-to-output layer weights. 
dim(W1)= [(# of hidden units)  *  (na+nb+1)] 
dim(W2)=[1 * (# of hidden units)] 
If they are passed as [], they are initialized automatically. 

trparms: Data structure containing parameters associated with the training 
algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

 
For time series (NNARMA models) use NN=[na nc]. 

Ouput 
See the function MARQ for an explanation of the returned variables. 
 

Description 
Determines a nonlinear ARMAX model: 

( ))(,),1(),1(,),(),(,),1()(ˆ ckbka nttnntuntuntytygty −−+−−−−−= εεθ ���

of a dynamic system by training a two layer neural network with the 
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO). 
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Example 
>> load spmdata 
>> NetDef = ['HHHHH';'L----']; 
>> NN=[2 2 2 1];    
>> trparms = settrain; 
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3,’skip’,10); 
>> [W1,W2,critvec,iter,lambda] = ... 
       nnarmax2(NetDef,NN,[],[],trparms,y1,u1);  
>> [yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,y2,u2); 

 

Algorithm 
The name NNARMAX has been chosen because the regressors are the same as 
those in ARMAX models. 

 

See Also 
NNRARMX2, NNARMAX1 
 

Reference 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 
 
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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nnarx 
Purpose 

Identify a Neural Network ARX (or AR) model. 
 

Synopsis 
[w1,w2,critvec,iteration,lambda]=nnarx(NetDef,NN,W1,W2,trparms,Y,U) 

Input 
U:   Input (= control signal) (left out in the nnar case) 
             matrix. Dimension: [(inputs) * (# of data)] 
Y:   Output data. Dimension: [1 * (# of data)] 
NN:  NN=[na nb nk]. 

na = # of past outputs used for determining the prediction. 
nb = # of past inputs. 
nk = time delay (usually 1). 
For multi-input systems, nb and nk contain as many columns as 
there are inputs. 

W1,W2: Input-to-hidden layer and hidden-to-output layer weights. 
dim(W1)= [(# of hidden units)  *  (na+nb+1)] 
dim(W2)=[1 * (# of hidden units)] 
If they are passed as [], they are initialized automatically. 

trparms: Data structure containing parameters associated with the training 
algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

 
For time series (NNAR models) use NN=na. 

Ouput 
See the function MARQ for an explanation of the returned variables. 

 

Description 
Determines a nonlinear ARX model: 

( ))1(,),(),(,),1()(ˆ +−−−−−= kbka nntuntuntytygty ��θ  

of a dynamic system by training a two layer neural network with the 
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO). 
 

Examples 
>> load spmdata 
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>> NetDef = ['HHHH’;'L---']; 
>> NN=[2 2 1];    
>> trparms = settrain; 
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3); 
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);  
>> [yhat,NSSE]=nnvalid('nnarx',NetDef,NN,W1,W2,y2,u2); 
 

Algorithm 
The name NNARX has been chosen because the regressors are the same as 
those in ARX models. 
 

See Also 
NNRARX, NNARXM, NNPRUNE. 
 

Reference 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 
 
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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nnarxm 
Purpose 

Identify a multi-output Neural Network ARX (or AR) model. 
 

Synopsis 
[W1,W2,critvec,iteration,lambda]=... 
                                      nnarxm(NetDef,NN,W1,W2,trparms,Gamma,Y,U) 

Input 
U:   Input (= control signal) (left out in the nnar case) 
             matrix. Dimension: [(inputs) * (# of data)] 
Y:   Output data. Dimension: [(outputs) * (# of data)] 
NN:  NN=[na1 nb1 nk1;na2 nb2 nk2;...]. 

naX = # of past outputs used for determining the prediction. 
nbX = # of past inputs. 
nkX = time delay (usually 1). 
For multi-input systems, nbX and nkX contain as many columns as 
there are inputs. 

W1,W2: Input-to-hidden layer and hidden-to-output layer weights. 
dim(W1)= [(# of hidden units)  *  (na1+nb1+na2+nb2+...+1)] 
dim(W2)=[(outputs) * (# of hidden units)] 
If they are passed as [], they are initialized automatically. 

Gamma: Inverse weighting matrix (usually the covariance of the noise). 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

 
For time series (NNAR models) use NN=[na1;na2; …]. 

Ouput 
See the function MARQ for an explanation of the returned variables. 

 

Description 
Determines a nonlinear ARX model: 

( ))1(,),(),(,),1()(ˆ +−−−−−= kbka nntuntuntytygty ��θ  

of a dynamic system with multiple outputs by training a two layer neural 
network with the Levenberg-Marquardt method. The function can handle 
multi-input, multi-output systems (MIMO). 
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Examples 
>> load spmdata 
>>Y1=[y1;y1*3]; 
>>Y2=[y2;y2*3]; 
>> NetDef = ['HHHH’;'LL--']; 
>> NN=[2 2 1;2 0 0];    
>> trparms = settrain; 
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3); 
>> [W1,W2]=nnarxm(NetDef,NN,[],[],trparms,[],Y1,u1);  
>> [yhat,NSSE]=nnvalid('nnarxm',NetDef,NN,W1,W2,eye(2),Y2,u2); 
 
In this example NN=[2 2 1;2 0 0]. This does not mean that output # 2 does not 
depend on past inputs at all. If NN had been chosen to [2 2 1;2 2 1] the input 
signal would then have entered the network twice. This is of course not 
relevant except when physical knowledge motivates that an output depends on 
certain inputs and delayed inputs and it should only be used when appropriate 
entries in W1 and W2 are set to 0. 
   

Algorithm 
The network is trained to minimize the criterion 

( ))1(,),(),(,),1()(ˆ +−−−−−= kbka nntuntuntytygty ��θ  

using a Levenberg-Marquardt algorithm. The weighting matrix Gamma is 
usually selected as the noise covariance. This matrix can be estimated with the 
function NNIGLS. 
 

See Also 
NNVALID, NNIGLS, NNARX. 
 

Reference 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 

 
  M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 

Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
 



nneval 

Neural Network Based System Identification Toolbox User’s Guide 2-35 

nneval 
Purpose 

Validation of feedforward neural networks. 
 

Synopsis 
[Yhat,E,NSSE] = nneval(NetDef,W1,W2,PHI,Y) 

Inputs 
See for example one of the functions: MARQ, RPE, BATBP, INCBP. 

Outputs 
Yhat: Network predictions. 
E:  Prediction errors. 
NSSE: Normalized sum of squared errors (SSE/2N). 

 

Description 
The function validates models trained with MARQ, RPE, BATBP, INCBP, 
MARQLM. The following plots are produced: 
  - Output together with predicted output. 
  - Prediction error. 
  - Autocorrelation function of prediction error. 
  - A histogram showing the distribution of the prediction errors 

       

Example 
>>  PHI = 2*pi*rand(1,300); 
>>  Y = sin(PHI) + 0.2*randn(1,300); 
>>  NetDef = [‘HHHHH’;’L----’]; 
>>  [W1,W2,critvec,iter,lambda]=marq(NetDef,[],[],PHI,Y);  
>>  PHI2 = 2*pi*rand(1,300); 
>>  Y2 = sin(PHI2) + 0.2*randn(1,length(PHI2); 
>>  nneval(NetDef,W1,W2,PHI2,Y2); 
 

See Also 
NNVALID, IFVALID, IOLEVAL. 
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nnfpe 
Purpose 

Final Prediction Error estimate (FPE) for I/O models of dynamic systems. 
 

Synopsis 
[FPE,deff,varest,H] =... 
             nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,Chat) 

Input 
See the function that was used for creating the model.The argument Chat 
should only be included if method='nnarmax1'. 

Output 
FPE: The Final prediction error estimate. 
deff : The effective number of parameters. 
varest: Estimate of noise variance. 
H:  The Gauss-Newton Hessian. 

 

Description 
The function calculates Akaike’s final prediction error estimate of the average 
generalization error for models generated by NNARX, NNOE, 
NNARMAX1+2. The function produces the final prediction error estimate 
(FPE), the effective number of weights in the network if the network has been 
trained with weight decay, an estimate of the noise variance, and the Gauss-
Newton Hessian. 

 

See Also 
LOO, FPE. 

 

References 
J. Larsen & L.K. Hansen: “Generalization Performance of Regularized Neural 
Network Models." Proc. of the IEEE Workshop on Neural networks for Signal 
Proc. IV, Piscataway, New Jersey, pp.42-51, 1994. 
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nnigls 
Purpose 

Iterated Generalized Least Squares training of NNARX models with multiple 
outputs. 
 

Synopsis 
[w1,w2,Gamma,lambda]=... 
                                 nnigls(NetDef,NN,W1,W2,trparms,Gamma0,Y,U) 

Input 
U,Y,NN,W1,W2,trparms: See NNARXM 
Gamma0: Initial estimate of the covariance matrix for the 

noise. If passed as [] it is set to the identity matrix. 

Output  
w1, w2, lambda: See the function NNARXM. 
Gamma:    The estimated covariance matrix. 
 

Description 
A multi-output NNARX model and the noise covariance matrix are estimated 
with an iterative relaxation procedure. 
 
It is important to notice that the model returned from this function will produce 
predictions of scaled outputs (see the Algorithm paragraph). It is necessary to 
multiply the output by sqrtm(Gamma) to obtain the unscaled predictions. If the 
network has linear output units one can instead scale the hidden-to-output 
layer weights: W2= sqrtm(Gamma)*W2. 
 

Algorithm 
The IGLS procedure is a straightforward relaxation procedure: 
 for j=1:repeat, 
  Train the network 
  Estimate the covariance matrix  
 end  
 
The factor repeat is a field in trparms. Its default value is 5 but can be changed 
with SETTRAIN. It is recommended to use SETTRAIN to reduce the max. 
number of iterations performed by the training algorithm. 50 is a value that 
generally will work in well. 
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The network is trained with the function MARQ according to the criterion 
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To reduce the amount of computations the network is trained by first scaling 
the outputs as 
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If the network has linear output units, W2 should be scaled by 22 1WuW −Σ= . 
 

See Also 
NNARXM, NNVALID, MARQ, IGLS. 
 

Reference 
T.J Fog, J. Larsen, L.K. Hansen: Training and Evaluation of Neural Networks 
for Multi-Variate Time-Series Processing. Proc. IEEE International 
Conference on Neural Networks, Perth, Australia. 

 



nniol 

Neural Network Based System Identification Toolbox User’s Guide 2-39 

nniol 
Purpose 

Identify a neural network model well-suited for control by discrete input-
output linearization. 
 

Synopsis 
[w1f,w2f,w1g,w2g,critvec,iteration,lambda]=... 
                     nniol(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,trparms,Y,U) 

Input 
U:    Input data (= control signal) (left out in the nnarma case) 
              matrix. Dimension: [(inputs) * (# of data)] 
Y:    Output data. Dimension: [1 * (# of data)] 
NN:   NN=[na nb nk]. 

 na = # of past outputs used for determining the prediction. 
 nb = # of past inputs. 
 nk = time delay (usually 1). 
 For multi-input systems, nb and nk contain as many columns as 
 there are inputs. 

NetDeff: Architecture of network used for modelling the function f (see 
below). 

NetDefg:  Archtecture of network used for modelling the function g. 
W1f,W2f:  Input-to-hidden layer and hidden-to-output layer weights for 
W1g,W2g  the ”f” and ”g” nets, respectively. 

 dim(W1f / W1g) = [(# of hidden units)  *  (na+nb)] 
 dim(W2f / W2g) = [1 * (# of hidden units)] 

If the weight matrices are passed as [] they will be initialized 
automatically. 

trparms: Data structure containing parameters associated with the training 
algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

Ouput 
See the function MARQ for an explanation of the returned variables. 
 

Description 
Train a neural network to model a dynamic system on the following form: 

( )
( ) )-()1+--(),...,1--(),-(),..,1-(  +

 )1+--(),...,1--(),-(,),1-( = )(ˆ

kbkka

bkka

ntunntuntuntytyg

nntuntuntytyfty �θ
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with the Levenberg-Marquardt method. This type of model is particularly 
relevant in the context of control by discrete input-output linearization. 

 

Examples 
>> load spmdata 
>> NetDeff = ['HHHHH';'L----']; 
>> NetDefg = ['HHH';'L--']; 
>> NN=[2 2 1];   
>> trparms = settrain;  
>> [W1f,W2f,W1g,W2g,critvec,iter,lambda] =... 
       nniol(NetDeff,NetDefg,NN,[],[],[],[],trparms,y1,u1);  
>> [yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,y2,u2); 
 

See Also 
IOLEVAL. 
 

Reference 
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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nnloo 
Purpose 

Estimate the average generalization error for NNARX models of dynamic 
systems by using leave-one-out cross-validaton. 

Synopsis 
Eloo =nnloo(NetDef,NN,W1,W2,trparms,U,Y) 

Input 
NetDef, W1, W2, NN 
U, Y, trparms    : See the function NNARX 
If the maxiter field in the data structure trparms is 0 linear unlearning is used 
for obtaining a cheap approximation to the LOO estimate. If maxiter>0 the 
network will be retrained a maximum of maxiter iterations for each input-
output pair that is left out. 

Output 
Eloo: The leave-one-out cross-validation estimate of the average 

generalization error  
 

Description 
LOO calculates an approximation of the leave-one-out estimate of the average 
generalization error. 

 

Algorithm 
When the maxiter field in trparms is 0 “linear unlearning” is used to get a 
quick approximation to the LOO-estimate. This approximation is much easier 
to compute than the true LOO-estimate, but is in general less reliable. 
Typically it is comparable to the FPE-estimate. See the reference below for a 
derivation. Unless maxiter=0 it is recommended to set maxiter to 20-40. 

 

See Also 
NNFPE for Akaike’s final prediction error estimate. 
 

Reference 
 L.K. Hansen and J. Larsen: "Linear Unlearning for Cross-Validation," 

Advances in Computational Mathematics, 5, pp. 269-280, 1996. 
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nnoe 
Purpose 

Identify a neural network output error model. 
 

Synopsis 
[W1,W2,critvec,iter,lambda]=nnoe(NetDef,NN,W1,W2,trparms,Y,U) 

Input 
U:   Input data (= control signal) (left out in the nnarma case) 
             matrix. Dimension: [(inputs) * (# of data)] 
Y:   Output data. Dimension: [1 * (# of data)] 
NN:  NN=[na nb nk]. 

na = # of past predictions used for determining the prediction. 
nb = # of past inputs. 
nk = time delay (usually 1). 
For multi-input systems, nb and nk contain as many columns as 
there are inputs. 

W1,W2: Input-to-hidden layer and hidden-to-output layer weights. 
dim(W1)= [(# of hidden units)  *  (na+nb+1)] 
dim(W2)=[1 * (# of hidden units)] 
If they are passed as [], they are initialized automatically. 

trparms: Data structure containing parameters associated with the training 
algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

Ouput 
See the function MARQ for an explanation of the returned variables. 

 

Description 
Determines a nonlinear output error (OE) model: 

( ))1(,),(),(ˆ,),1(ˆ)(ˆ +−−−−−= kbka nntuntuntytygty �� θθθ  

of a dynamic system by training a two layer neural network with the 
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO). 
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Example 
>> load spmdata 
>> NetDef = ['HHHH’;'L---']; 
>> NN=[2 2 1];    
>> trparms=settrain; 
>> trparms=settrain(trparms,’maxiter’,100,’D’,1e-3,’skip’,10); 
>> [W1,W2,critvec,iter,lambda]=nnoe(NetDef,NN,[],[],trparms,y1,u1);  
>> [yhat,NSSE]=nnvalid('nnoe',NetDef,NN,W1,W2,y2,u2); 

 

Algorithm 
The name NNOE is used because the regressors are the same as those used in 
output error (OE) models. 
 

See Also 
NNPRUNE, NNVALID. 
 

Reference 
L. Ljung:“System Identification - Theory for the User,” Prentice-Hall, 1987. 
 
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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nnprune 
Purpose 

Prune a neural network model of a dynamic systems with the Optimal Brain 
Surgeon algorithm (OBS). 
 

Synopsis 
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec] = ... 
  nnprune(method,NetDef,W1,W2,U,Y,NN,trparms,prparms,U2,Y2,Chat) 

Input 
method:    The function used for creating the model. For example 
       method='nnarx' or method='nnoe'. 
NetDef, W1, W2, 
U, Y, trparms:  See the function used for creating the model. 
U2,Y2 (optional): Test data. This can be used for pointing out the the optimal 

network architecture. Pass two []'s if a test set is not 
available. 

Chat (optional):  See NNARMAX1 
prparms:    Parameters associated with the pruning session. 
                   prparms = [iter RePercent] 
       iter: Max. number of retraining iterations. 
       RePercent : Prune 'RePercent' percent of the remaining   
            weights (0 = prune one weight at a time).  
       If passed as [] is will be reset to prparms = [50 0]. 

  Output 
  thd:    Matrix containing all the parameter vectors. 
  NSSEvec: Vector containing the normalized sum of squared errors 

(SSE/2N), the training error, after each weight elimination. 
  FPEvec:   Contains the FPE estimate of the average generalization error. 
  NSSEtestvec: Contains the test error (SSE/2N for test set). 
  deff_vec:   Contains the ”effective” number of weights. 
  pvec:    Index into the above vectors. 
 

Description 
This function applies the Optimal Brain Surgeon (OBS) strategy for pruning 
neural network input-output models of dynamic systems. That is, models 
produced by one of the functions: NNARX, NNARMAX1, NNARMAX2, 
NNOE. Two different procedures are possible: 
• Eliminate one weight, retrain, eliminate one weight, retrain, ..... 
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• Eliminate 5% (or some other percentage) of the remaining weights, retrain, 
eliminate 5% of the remaning weights,retrain, ..... 

 
The function will return a matrix containing the parameter vectors (a vector 
containing all weights), obtained after each retraining. The optimal parameter 
vector is then chosen afterwards. For example as the one representing the 
network leading to the smallest FPE or the one leading to the smallest test 
error (if a test set is available). After having determined the optimal number of 
weights, the weight matrices are extracted from the thd-matrix with the 
function NETSTRUC. If a NNARMAX1 model has been pruned, remember to 
remove the bottom nc rows from thd first since these contain the coefficients 
of the C-polynomial. 
 
It is important that the network is trained to the minimum of the criterion 
before the function is applied. 

 

Example 
Prune nnarx model with OBS 
>>  [thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec] = ... 
        nnprune(‘nnarx’,NetDef,W1,W2,U,Y,NN,trparms,[],U2,Y2); 
 
Find index to minimum FPE 
>>  [minfpe,index] = min(fpevec(pvec)); 
>>  index = pvec(index); 
 
Extract weights from matrix of parameter vectors 
>>  [W1,W2] = netstruc(NetDef,thd,index); 
>>  drawnet(W1,W2,eps) 

 

Algorithm 
If the network has been trained without regularization (weight decay), the basic 
OBS scheme of Hassibi and Stork is used. To avoid numerical problems, the 
inverse (Gauss-Newton) Hessian is approximated by the recursive method 
described in the paper (see also RPE). If regularization was used when training 
the network the saliences are calculated as the prediced increase in the 
unregularized portion of the criterion as described by Hansen & Pedersen. If 
more than one weight is eliminated between each retraining the inverse 
Hessian after each weight elimination is calculated as the Schur complement 
of the previous inverse Hessian (see Pedersen et al.). 
 
The OBS-scheme has been implemented so that it is impossible to have hidden 
units without having weights leading to as well as from them. If a hidden unit 
has only one weight connecting it to the input layer and one weight connecting 



nnprune 

2-46 

it to the output layer the, the entire unit will be removed if it has the smallest 
total saliency. 

 

See Also 
NETSTRUC, OBDPRUNE, OBSPRUNE. 
 

References 
L.K. Hansen & M. W. Pedersen: “Controlled Growth of Cascade Correlation 
Nets,” Proc. ICANN ‘94, Sorrento, Italy, 1994, Eds. M. Marinaro & P.G. 
Morasso, pp. 797-800. 
 
B. Hassibi, D.G. Stork: “Second Order Derivatives for Network Pruning: 
Optimal Brain Surgeon,” NIPS 5, Eds. S.J. Hanson et al., 164, San Mateo, 
Morgan Kaufmann, 1993. 
 
M.W. Pedersen, L.K. Hansen, J. Larsen: “Pruning With Generalization Based 
Weight Saliences: γOBD, γOBS,” 1995. 
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nnrarmx1, nnrarmx2, nnrarx 
Purpose 

Identify a neural network model of a dynamic system by using a recursive 
algorithm. 
 

Synopsis 
[w1,w2,chat,critvec,iteration]=... 
    nnrarmx1(NetDef,NN,W1,W2,Chat,trparms,Y,U) 
 
[w1,w2,critvec,iteration]=... 
    nnrarmx2(NetDef,NN,W1,W2,trparms,Y,U) 
 
[w1,w2,critvec,iteration,lambda]=... 
    nnrarx(NetDef,NN,W1,W2,trparms,Y,U) 
 

Input 
See the “batch” counterparts (NNARMAX1, NNARMAX2, NNARX). The 
method field in trparms is particularly important here. It selects one of three 
different recursive training schemes. The default method is the exponential 
forgetting factor algorithm. See SETTRAIN for details. 

Output 
See their batch counterparts. 
 

Description 
The three functions are the recursive counterparts to NNARMAX1, 
NNARMAX2, and NNARX, respectively. The networks are trained with a 
recursive Gauss-Newton based method (see RPE) instead of a batch method. 
Most often the disadvantages of a recursive method are overwhelming 
compared to a batch method, but they can be useful for very large 
networks+data sets since lack of memory in this case can be a problem. They 
can also be advantageous compared to batch training when there is high degree 
of redundancy in the data set. 

 

Example 
>> load spmdata 
>> NetDef = ['HHHHH'; 'L----']; 
>> NN=[2 2 1];  
>> trparms=settrain; 
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>> trparms=settrain(trparms,’maxiter’,100,’p0’,1e3); 
>> [W1,W2,critvec,iter]=nnrarx(NetDef,NN,[],[],trparms,y1,u1);  
>> [yhat,NSSE]=nnvalid('nnrarx',NetDef,NN,W1,W2,y2,u2); 

 

Algorithm 
Be careful not to use a forgetting factor which is too small when using the 
forgetting factor method. Because of the many weights usually present in the 
network, some eigenvalues in the covariance matrix (“the inverse Hessian”) 
will grow uncontrollably. 

 

See Also 
NNARMAX1, NNARMAX2, NNARX. 
 

References 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 
 
J.E. Parkum: “Recursive Identification of Time-Varying Systems,” Ph.D. 
thesis, IMM, Technical University of Denmark, 1992. 
 
M.E. Salgado, G. Goodwin, R.H. Middleton: “Modified Least Squares 
Algorithm Incorporating Exponential Forgetting And Resetting,” Int. J. 
Control, 47, pp. 477-491. 
 
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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nnsimul 
Purpose 

Simulate the response of model of dynamic system to a sequence of control 
inputs. 
 

Synopsis 
Network generated by NNARX (or NNRARX): 
  Ysim = nnsimul('nnarx',NetDef,NN,W1,W2,Y,U);  
 
(likewise for networks generated by NNARMAX1+2 and NNOE) 
 
Network generated by NNSSIF: 
  Ysim = nnsimul('nnssif',NetDef,nx,W1,W2,Y,U,obsidx); 

Input 
See nnvalid/ifvalid. 

Output 
Ysim:  Vector containing simulated outputs. 
 
NB! The function does not work for models generated by NNIOL.  
 

Description 
Simulate how a neural network model of a dynamic system responds to a 
specific sequence of control inputs alone. The simulated output is compared to 
the observed output. For NNARMAX1+2 models the initial unknown 
residuals are assumed to be 0. 
 

Examples 
>> load spmdata 
>> NetDef = ['HHHH’;'L---']; 
>> NN=[2 2 1];    
>> trparms=settrain; 
>> trparms=settrain(trparms,’maxiter’,300,’D’,1e-3); 
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);  
>> ysim=nnsimul('nnarx',NetDef,NN,W1,W2,y1,u1); 
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nnssif 
Purpose 

Identify a neural network model in state space innovations form. 
 

Synopsis 
[w1,w2,obsidx,critvec,iteration,lambda]=... 
                      nnssif(NetDef,nx,W1,W2,obsidx,trparms,Y,U) 
 

Inputs: 
U:   Input data (= control signal). dim(U)=[(# of inputs) * (# of data)] 
Y:   Output data. dim(Y)=[1 * (# of data)] 
nx:   # of states (= the order of the system) 
W1,W2:  Input-to-hidden layer and hidden-to-output layer weights. 

dim(W1)= [(# of hidden units)  *  (nx+inputs+outputs+1)] 
    dim(W2)=[nx * (# of hidden units+1)] 
     If they are passed as [] they are initialized automatically. 
obsidx:  Pseudo-observability indices. Their sum must equal nx! 
    If passed as [] a particular set of indices is selected. 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

 

Description 
Determines a nonlinear state space model of a dynamic system: 
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The neural network is trained with the Levenberg-Marquardt method. The 
function can handle multi-input multi-output systems (MIMO). 
 
The function does not work for time series. 

 

Examples 
>> load spmdata 
>> NetDef = ['HHHH';'LL--'];  
>> trparms=settrain; 
>> trparms=settrain(trparms,’maxiter’,300,’D’,1e-3,’skip’,10); 
>> [W1,W2,obsidx,critvec,iter,lambda] =... 
         nnssif(NetDef,2,[],[],[],trparms,y1,u1);  
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>> [yhat,NSSE]=ifvalid(NetDef,2,W1,W2,obsidx,y2,u2); 
 

Algorithm 
The name NNSSIF has been chosen because the regressors equal those of a 
linear state space innovations form (the Kalman filter). 
 
See Ljung (1987) for an explanation of overlapping parametrizations, and for a 
definition of the pseudo-observability indices. 
 

See Also 
IFVALID. 
 

Reference 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 

 
  M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 

Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.
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nnvalid 
Purpose 

Validate neural network input-output models of dynamic systems. 
 

Synopsis 
Network generated by NNARX (or NNRARX): 
  [Yhat,NSSE] = nnvalid('nnarx',NetDef,NN,W1,W2,Y,U) 
 
Network generated by NNARMAX1 (or NNRARMX1): 
  [Yhat,NSSE] = nnvalid('nnarmax1',NetDef,NN,W1,W2,C,Y,U) 
 
Network generated by NNARMAX2 (or NNRARMX2): 
   [Yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,Y,U) 
 
Network generated by NNOE: 
  [Yhat,NSSE] = nnvalid('nnoe',NetDef,NN,W1,W2,Y,U) 
 
Network generated by NNARXM: 
  [Yhat,NSSE] = nnvalid('nnarxm',NetDef,NN,W1,W2,Gamma,Y,U) 

Input 
See the function used for generating the model. 
For time series the argument U is simply left out. 

Output 
Yhat:  Network predictions. 
NSSE:  Normalized sum of squared errors. 
 

Description 
The function validate models that have been generated by one of the functions 
NNARX(M), NNRARX, NNARMAX1+2, NNRARMX1+2, or NNOE. 
 
The following plots are produced: 
- Observed output together with predicted output. 
- Prediction error. 
- Auto correlation function of prediction error and cross-correlation between 

prediction error and input. 
- A histogram showing the distribution of the prediction errors. 
- Coefficients of extracted linear models. 
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Example 
>> load spmdata 
>> NetDef = ['HHHH’;'L---']; 
>> NN=[2 2 1];    
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],[],y1,u1);  
>> [yhat,NSSE]=nnvalid('nnarx',NetDef,NN,W1,W2,y2,u2); 
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obdprune 
Purpose 

Prune ordinary feedforward networks with Optimal Brain Damage (OBD). 
 

Synopsis 
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec]=... 
                         obdprune(NetDef,W1,W2,PHI,Y,trparms,prparms,PHI2,Y2) 

Input 
NetDef, W1, W2, 
PHI, Y, trparms:   See for example the function MARQ. 
PHI2,Y2 (optional): Test data. This can be used as an indicator for pointing 

out the optimal network architecture.  
prparms:     Parameters associated with the pruning session. 
                          prparms = [iter RePercent] 
        iter: Max. number of retraining iterations. 
        RePercent : Prune 'RePercent' percent of the remaining  
             weights (0 = prune one weight at a time).  
        If passed as [] prparms will be set [50 0]. 

  Output 
  thd:    Matrix containing all the parameter vectors 
  NSSEvec: Vector containing normalized sum of squared errors (SSE/2N), 

the training error, after each weight elimination. 
  FPEvec:   Contains the FPE estimate of the average generalization error  
  NSSEtestvec: Contains the test error (SSE/2N for the test set). 
  deff_vec:   Contains the “effective” number of weights. 
  pvec:    Index into the above vectors. 
 

Description 
This function applies the Optimal Brain Damage (OBD) strategy for pruning 
feed-forward neural networks. Two different prucedures are possible: 
• Eliminate one weight, retrain, eliminate one weight, retrain, ..... 
• Eliminate 5% (or some other percentage) of the remaining weights, retrain, 

eliminate 5% of the remaning weights,retrain, ..... 
 
The retraining is done with the Levenberg-Marquardt method in MARQ. 
 
The function will return a matrix containing the parameter vectors (a vector 
containing all weights), obtained after each retraining. The optimal parameter 
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vector is then chosen afterwards. For example as the one representing the 
network leading to the smallest FPE or the one leading to the smallest test 
error (if a test set is available). After having determined the optimal number of 
weights, the weight matrices are extracted from the thd-matrix with the 
function NETSTRUC. 

 

Example 
Prune network with OBD 
>>  [thd,tre,fpevec,tee,deff,pvec]=... 
    obdprune(NetDef,W1,W2,PHI1,Y1,trparms,[50 5],PHI2,Y2) 
 
Find index to minimum FPE 
>>  [minfpe,index] = min(fpevec(pvec)); 
>>  index = pvec(index); 
 
Extract weights from matrix of parameter vectors 
>>  [W1,W2] = netstruc(NetDef,thd,index); 
>>  drawnet(W1,W2,eps) 

 

See Also 
NETSTRUC, OBSPRUNE, NNPRUNE. 
 

References 
Y. Le Cun, J:S. Denker, S.A Solla: “Optimal Brain Damage,” Advances in 
Neural Information Processing Systems, Denver 1989, ed. D. Touretzsky, 
Morgan Kaufmann, pp. 598-605. 
 
C. Svarer, L.K. Hansen, J. Larsen: “On Design and evaluation of Tapped-
Delay Neural Network Architectures,” The 1993 IEEE Int. Conf. on Neural 
networks, San Francisco, Eds. H.R. Berenji et al., pp. 45-51. 
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obsprune 
Purpose 

Prune ordinary feedforward networks with Optimal Brain Surgeon (OBS). 
 

Synopsis 
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec]=... 
                         obsprune(NetDef,W1,W2,PHI,Y,trparms,prparms,PHI2,Y2) 

Input 
NetDef, W1, W2, 
PHI, Y, trparms:  See for example the function MARQ. 
PHI2,Y2 (optional): Test data. This can be used as an indicator for pointing 

out the optimal network architecture.  
prparms:     Parameters associated with the pruning session. 
                          prparms = [iter RePercent] 
        iter: Max. number of retraining iterations. 
        RePercent : Prune 'RePercent' percent of the remaining  
            weights (0 = prune one weight at a time).  
        If passed as [] prparms will be set to [50 0]. 

  Output 
  thd:    Matrix containing all the parameter vectors 
  NSSEvec: Vector containing normalized sum of squared errors (SSE/2N), 

the training error, after each weight elimination. 
  FPEvec:   Contains the FPE estimate of the average generalization error  
  NSSEtestvec: Contains the test error (SSE/2N for the test set). 
  deff_vec:   Contains the “effective” number of weights. 
  pvec:    Index into the above vectors. 
 

Description 
This function applies the Optimal Brain Surgeon (OBS) strategy for pruning 
feed forward neural networks. Two different procedures are possible: 
• Eliminate one weight, retrain, eliminate one weight, retrain, ..... 
• Eliminate 5% (or some other percentage) of the remaining weights, retrain, 

eliminate 5% of the remaning weights,retrain, ..... 
 
The retraining is done with the Levenberg-Marquardt method in MARQ. 
 
The function will return a matrix containing the parameter vectors (a vector 
containing all weights) obtained after each retraining. The optimal parameter 
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vector is then chosen afterwards. For example as the one representing the 
network leading to the smallest FPE or the one leading to the smallest test 
error (if a test set is available). After having determined the optimal number of 
weights, the weight matrices are extracted from the thd-matrix with the 
function NETSTRUC. 

 

Examples 
Prune network with OBS 
>>  [thd,tre,fpevec,tee,deff,pvec]=... 
    obsprune(NetDef,W1,W2,PHI1,Y1,trparms,[50 5],PHI2,Y2) 
 
Find index to minimum FPE 
>>  [minfpe,index] = min(fpevec(pvec)); 
>>  index = pvec(index); 
 
Extract weights from matrix of parameter vectors 
>>  [W1,W2] = netstruc(NetDef,thd,index); 
>>  drawnet(W1,W2,eps) 

 

Algorithm 
If the network has been trained without regularization (weight decay), the basic 
OBS scheme of Hassibi and Stork is used. To avoid numerical problems, the 
inverse (Gauss-Newton) Hessian is approximated by the recursive method 
described in the paper (see also RPE). If regularization was used when training 
the network, the saliences are calculated as the prediced increase in the training 
error as described by Hansen & Pedersen. If more than one weight is 
eliminated between each retraining the inverse Hessian is calculated after each 
weight elimination as the Schur complement of the previous inverse Hessian 
(see Pedersen et al.). 
 
The OBS-scheme has been implemented so that it is impossible to have hidden 
units without weights leading to as well as from them. If a hidden unit has only 
one weight connecting it to the input or one weight connecting it to the output 
layer, the saliency for removing the entire unit is calculated. If the entire unit-
saliency is smaller than any of the other saliencies, the entire unit will be 
removed. 

 

See Also 
NETSTRUC, OBDPRUNE, NNPRUNE. 
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References 
L.K. Hansen & M. W. Pedersen: “Controlled Growth of Cascade Correlation 
Nets,” Proc. ICANN ‘94, Sorrento, Italy, 1994, Eds. M. Marinaro & P.G. 
Morasso, pp. 797-800. 
 
B. Hassibi, D.G. Stork: “Second Order Derivatives for Network Pruning: 
Optimal Brain Surgeon,” NIPS 5, Eds. S.J. Hanson et al., 164, San Mateo, 
Morgan Kaufmann, 1993. 
 
M.W. Pedersen, L.K. Hansen, J. Larsen: “Pruning With Generalization Based 
Weight Saliences: γOBD, γOBS,” 1995. 
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pmntanh 
Purpose 

Fast hyperbolic tangent function. 
 

Synopsis 
y=pmntanh(x) 
 

Description 
The function replaces the TANH function provided by MATLAB to increase 
speed. This is particularly relevant for older versions of MATLAB where the 
implementation of tanh is relatively slow. 
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rpe 
Purpose 

Recursive prediction error method. 
 

Synopsis 
[w1,w2,critvec,iter]=rpe(NetDef,W1,W2,PHI,Y,trparms) 

Input 
NetDef: Network definition. 
W1:  Input-to-hidden layer weights 
    dim(W1)=[(# of hidden units)  *  (inputs + 1)]  (1 is due to the bias) 
    Use [] for a random initialization. 
W2:  Hidden-to-output layer weights 
     dim(W2)=[(outputs)  *  (# of hidden units + 1)] 
    Use [] for a random initialization. 
PHI:  Input data. dim(PHI)=[(inputs)  *  (# of data)] 
Y:   Output data. dim(Y)=[(outputs) *  (# of data)] 
trparms: Data structure containing parameters associated with the training 

algorithm (optional). Use the function SETTRAIN if you do not 
want to use the default values. 

Output 
w1, w2: Weight matrices obtained by training. 
critvec:  Vector containing the criterion after each iteration. 
iter:   # of iterations. 

  

Description 
Given a set of corresponding input-output pairs and an initial network, a two 
layer neural network is trained with the recursive prediction error method 
(“recursive Gauss-Newton”). Also pruned, i.e., not fully connected, networks 
can be trained. Most often the disadvantages of a recursive method are 
overwhelming compared with a batch method. The recursive methods may, 
however, be relevant for very large networks+data sets where lack of memory 
is a problem or when there is a high degree of redundancy in the data set. 
Different methods have been implemented with inspiration from adaptive 
control: exponential forgetting, constant trace and the so-called exponential 
forgetting and resetting algorithm (EFRA). The method field in trparms selects 
one of the three schemes. The default method is the exponential forgetting 
factor algorithm. See SETTRAIN for details. 
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The activation functions can be either linear or tanh. The network architecture 
is defined by the matrix 'NetDef' which has two rows. The first row specifies 
the hidden layer while the second specifies the output layer. 
 
E.g.:    NetDef = ['LHHHH'  
        'LL---'] 
 (L = linear, H = tanh) 
Notice that the bias is included as an extra column in the weight matrices and 
that a weight is eliminated (i.e. 0 and not updated) by setting it to zero. 
 

Example 
Generate data as sinusiodal+noise 
>>  PHI = 2*pi*rand(1,300); 
>>  Y = sin(PHI) + 0.2*randn(1,300); 
>>  plot(PHI,Y,’+’); 
 
Initialize Network. 5 tanh hidden units, 1 linear output 
>>  NetDef = [‘HHHHH’;’L----’]; 
>>  [W1,W2,critvec,iter]=rpe(NetDef,[],[],PHI,Y);  
>>  drawnet(W1,W2,eps) 
 
Plot criterion evaluated after each iteration 
>>  semilogy(critvec); grid; 
>>  xlabel(‘Iteration’); 
>>  ylabel(‘Training error’) 

 

Algorithm 
Be careful not to select the forgetting factor too small in the forgetting factor 
method. Due to the large number of weights usually present in a network 
eigenvalues in the covariance matrix (“the inverse Hessian”) might grow 
uncontrollably. 
 

See Also 
MARQ, BATBP, INCBP. 
 

References 
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987. 
 
J.E. Parkum: “Recursive Identification of Time-Varying Systems,” Ph.D. 
thesis, IMM, Technical University of Denmark, 1992. 
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M.E. Salgado, G. Goodwin, R.H. Middleton: “Modified Least Squares 
Algorithm Incorporating Exponential Forgetting And Resetting,” Int. J. 
Control, 47(2), 1988, pp. 477-491. 

 
  M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for 

Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000. 
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settrain 
Purpose 

Set parameters for a training algorithm. 
 

Synopsis 
trparms =settrain; 
       Set all parameters to default values. 
  
settrain(trparms) 
       List all parameters. 
  
trparms = settrain(trparms,'field1',value1,'field2',value2,...) 
       Set specific parameters 
          trparms.field1 = value1; 
          trparms.filed2 = value2; 
          etc. 
       If value = 'default' the parameter is set to its default value. 
 
The following fields are valid: 
 
Information displayed during training 

       infolevel   - Display little information (0) or much (1). 
  
  Stopping criteria (all algorithms, see note below) 
  maxiter     - Maximum iterations. 
  critmin   - Stop if criterion is below this value. 
  critterm  - Stop if change in criterion is below this value. 
  gradterm  - Stop if largest element in gradient is below this value. 
  paramterm - Stop if largest parameter change is below this value. 
  NB: critterm, gradterm and paramterm must all be satisfied.  
  
  Weight decay (all algorithms trained with the Levenberg-Marquardt alg.) 
  D -  Row vector containing the weight decay parameters. If D has one 

element a scalar weight decay will be used. If D has two elements, the 
first element will be used as weight decay for the hidden-to-output layer 
while second will be used for the input-to-hidden layer weights. For 
individual weight decays, D must contain as many elements as there are 
weights in the network. 

  
  Levenberg-Marquardt parameters 
  lambda  - Initial Levenberg-Marquardt parameter.  
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  Back-propagation parameters 
  eta   - Step size. 
  alph   - Momentum. 
  
  RPE parameters 
  method - Training method ('ff', 'ct', 'efra'). 
  
  Forgetting factor (method=’ff’) 
  fflambda - Forgetting factor. 
  p0   - Covariance matrix is initialized to p0*I. 
  
  Constant trace (method=’ct’) 
  ctlambda - Forgetting factor. 
  alpha_min - Min. eigenvalue of P matrix. 
  alpha_max- Max. eigenvalue of P matrix. 
  
  EFRA (method=’efra’) 
  eflambda - Forgetting factor. 
  alpha  - EFRA parameter. 
  beta  - EFRA parameter. 
  delta  - EFRA parameter. 
  
  For recurrent nets 
  skip   - Do not use the first 'skip' samples for updating the weights. 
  
  For multi-output networks 
  repeat  - Number of times the IGLS procedure should be repeated. 
 

Remarks on the Stopping Criteria 
The stopping criterion is not the same for all training algorithms. The batch 
algorithms use all the parameters; the recursive algorithms use only maxiter, 
critmin and critterm. 
 
If it is important that training is continued until the weights are extremely close 
to the minimizing values, one should reduce critterm, gradterm, and 
paramterm (or at least one of them). 
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wrescale 
Purpose 

Rescale the weights of the trained network model if the training data was 
scaled with DSCALE prior to the training. 
 

Synopsis 
[w1,w2]=wrescale(method,W1,W2,Uscale,Yscale,NN) 

Input 
method   The function applied for generating the model. For example 

method='nnarx' or method='nnoe'. Use method='inverse' for inverse 
models (see the NNCTRL toolkit). 

W1:  Input-to-hidden weights of network trained on scaled data. 
W2:  Hidden-to-output weights. 
Uscale:  Matrix containing the sample mean and standard deviation for 
each 
    input. For time series an empty matrix, [], is passed.  
Yscale:  Matrix containing mean and std's for each output. 
NN: Vector containing lag spaces, i.e., the number of past signals used as 

input to the network (see nnarx, nnarmax, nnoe ..). For ordinary 
feedforward networks (“function fitting” type networks) NN is left 
out. 

Output 
w1, w2: Scaled weight matrices. 
 

Description 
WRESCALE rescales the weights for networks with LINEAR OUTPUT 
UNITS. Don’t use it for networks with tanh output units! The function works 
for feedforward networks as well as for input-output models of dynamic 
systems (i.e. NNAR(X), NNARMA(X) and NNOE type models). If the 
function DSCALE was used for scaling the data to zero mean and unity 
variance before training, the weights should be rescaled after training so that 
the network can work on unscaled data. Notice that when the function is used 
on a pruned network, it is likely to reintroduce biases removed in the pruning 
session. 
 

See Also 
DSCALE. 
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xcorrel 
Purpose 

Calculate high-order cross-correlation functions for input-output models of 
dynamic systems. 
 

Synopsis 
Network generated by NNARX (or NNRARX): 
  xcorrel('nnarx',NetDef,NN,W1,W2,Y,U) 
 
Network generated by NNARMAX1 (or NNRARMX1): 
  xcorrel('nnarmax1',NetDef,NN,W1,W2,C,Y,U) 
 
Network generated by NNARMAX2 (or NNRARMX2): 
   xcorrel('nnarmax2',NetDef,NN,W1,W2,Y,U) 
 
Network generated by nnoe: 
  xcorrel('nnoe',NetDef,NN,W1,W2,Y,U) 
 

Input 
See the function used for generating the model. 
For time series the argument U is left out. 
 

Description 
The function calculates a number of high order cross-correlation functions for 
models that have been generated by one of the functions NNARX, NNRARX, 
NNARMAX1+2, NNRARMX1+2, or NNOE. 
 
Ideally, the prediction errors from the trained neural network model should be 
unpredictable from all combinations of past inputs and outputs. A complete 
check for statistical independence is obviously not feasible so instead it is 
common to investigate a few “wisely” chosen correlation functions.  
 
Plots of the following six (normalized) correlation functions are produced: 
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The overbar denotes the average of a signal 

�
=

=
N

t

tx
N

x
1

)(
1

 

The normalized correlation functions (sometimes called the correlation 
coefficients) are displayed along with their 95% confidence interval. 
 

Notice that NNVALID calculates the autocorrelation function of the prediction 
error. 
 

Example 
>> load spmdata 
>> NetDef = ['HHHH’;'L---']; 
>> NN=[2 2 1];   
>> trparms=settrain; 
>> trparms=settrain(trparms,’maxiter’,300,’D’,1e-3); 
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);  
>> xcorrel('nnarx',NetDef,NN,W1,W2,y2,u2); 
 

See Also 
NNVALID. 
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