
Neural Network Based System Identification Toolbox User’s Guide 2-1

2 Reference

 This chapter contains a detailed description of all the functions in the Neural Network Based

System Identification Toolbox. The information given here is more or less identical to that
obtained from the online help facility.

General Network Training Algorithms

batbp

igls

incbp

marq

marqlm

rpe

Batch version of the back-propagation algorithm.

Iterated generalized least squares training of multi-output networks

Recursive (/incremental) version of back-propagation.

Levenberg-Marquardt method.

Memory-saving implementation of the Levenberg-Marquardt method.

Recursive prediction error (~Gauss-Newton) method.

Data Manipulation

dscale Scale data to zero mean and variance 1.

2-2

Nonlinear System Identification

lipschit

nnarmax1

nnarmax2

nnarx

nnarxm

nnigls

nniol

nnoe

nnssif

nnrarmx1

nnrarmx2

nnrarx

Determine the lag space.

Identify a neural network ARMAX (or ARMA) model (linear MA-filter).

Identify a neural network ARMAX (or ARMA) model.

Identify a neural network ARX (or AR) model.

Identify a multi-output neural network ARX (or AR) model.

Iterated generalized LS training of multi-output NNARX models

Identify a neural network model suited for I-O linearization type control.

Identify a neural network Output Error model.

Identify a neural network state space innovations form model.

Recursive counterpart to NNARMAX1.

Recursive counterpart to NNARMAX2.

Recursive counterpart to NNARX.

Determination of Optimal Network Architecture

netstruc

nnprune

obdprune

obsprune

Extract weight matrices from matrix of parameter vectors.

Prune models of dynamic systems with Optimal Brain Surgeon (OBS).

Prune feed-forward networks with Optimal Brain Damage (OBD).

Prune feed-forward networks with Optimal Brain Surgeon (OBS).

Neural Network Based System Identification Toolbox User’s Guide 2-3

Evaluation of Trained Networks

fpe

ifvalid

ioleval

kpredict

loo

nneval

nnfpe

nnloo

nnsimul

nnvalid

wrescale

xcorrel

Final Prediction Error estimate of generalization error for feed-forward nets.

Validation of models generated by NNSSIF.

Validation of models generated by NNIOL.

k-step ahead prediction of network output.

Leave-One-Out estimate of generalization error for feed-forward networks.

Validation of feed-forward networks (trained by marq, batbp, incbp, or rpe).

FPE-estimate for I-O models of dynamic systems.

Leave-One-Out estimate of generalization error for NNARX models

Simulate model of dynamic system.

Validation of I-O models of dynamic systems.

Rescale weights of a trained network.

High order cross-correlation functions.

Miscellanous Utilities

crossco

drawnet

getgrad

pmntanh

settrain

Calculate correlation coefficients.

Draws a two-layer feed-forward network.

Derivative of network outputs w.r.t. the weights.

Fast tanh-function.

Set parameters for training algorithms.

2-4

Demonstration Programs

test1

test2

test3

test4

test5

test6

test7

Demonstrates different training methods on a curve fitting example.

Demonstrates the NNARX function.

Demonstrates the NNARMAX2 function.

Demonstrates the NNSSIF function.

Demonstrates the NNOE function.

Demonstrates the effect of regularization by simple weight decay.

Demonstrates pruning by OBS on the sunspot benchmark problem.

batbp

Neural Network Based System Identification Toolbox User’s Guide 2-5

batbp
Purpose

Batch version of the back-propagation algorithm.

Synopsis
[w1,w2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition.
W1: Input-to-hidden layer weights. The matrix dimension is
 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
 Use [] for a random initialization.
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]
 Use [] for a random initialization.
PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of data)]
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Output
w1, w2: Weight matrices when the training is completed.
critvec: Vector containing the criterion of fit after each iteration.
iter: # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network
[W1,W2,critvec,iter] = batbp(NetDef,W1,W2,PHI,Y,trparms) trains the
network with back-propagation.

The activation functions must be either linear or tanh. The network
architecture is defined by the matrix 'NetDef' consisting of two rows. The first
row specifies the hidden layer while the second specifies the output layer.
E.g.: NetDef = ['LHHHH'
 'LL---']
(L = Linear, H = tanh)

Notice that the bias is included as the last column in the weight matrices.

batbp

2-6

Example
Generate data as sinusoidal+noise
>> PHI = 2*pi*rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize Network. 5 tanh hidden units, 1 linear output.
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’L----’];
>> drawnet(W1,W2,eps)
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,1000,’eta’,2e-4);
>> [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms);

Plot the value of the criterion as a function of the iteration number
>> semilogy(critvec); grid;
>> xlabel(‘Iteration’);
>> ylabel(‘Criterion’)

Algorithm
Back-propagation is a gradient descent algorithm where the computations are
ordered in a simple fashion by taking advantage of the special architecture of a
neural network. In this implementation the step size is fixed.

See Also
INCBP, NNEVAL, MARQ, RPE.

References
J. Hertz, A. Krogh & R.G. Palmer: “Introduction to the theory of Neural
Computation,” Addison-Wesley, 1991.

crossco

Neural Network Based System Identification Toolbox User’s Guide 2-7

crossco
Purpose

Calculate correlation coefficients.

Synopsis
Cross-correlation coefficients:
 coefs = crossco(v,w)
 coefs = crossco(v,w,maxlag);

Autocorrelation coefficients:
 coefs = crossco(v,v,maxlag);

Input
v and w are two signals contained in vectors of equal length.
Default max. lag is 25 or the vector length -1.

Description
The correlation coefficient is the correlation function normalized such that the
autocorrelation will be 1 for lag 0.

 2/1

1

2
2/1

1

2

1

))(())((

))()()((
)(ˆ

�
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

−

=
N

t

N

t

N

t
vw

wtwvtv

wtwvtv
r

τ

τ
τ

drawnet

2-8

drawnet
Purpose

Draw a two layer neural network.

Synopsis
drawnet(W1,W2)
drawnet(W1,W2,CancelVal,instring,outstring)

Input
W1: Input-to-hidden layer weights. The matrix dimension is
 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]
CancelVal: (Optional) Draw only weights/biases exceeding this value.
instring: (Optional). A cell structure containing in each cell a string to be

assigned to the corresponding input. The number of cells should
thus match the number of inputs. If it is not present, or it is empty
{}, the inputs are simply numbered.

 outstring: (Optional). A cell structure containing in each cell a string to be
assigned to the corresponding output. The number of cells should
thus match the number of outputs.

Description
Draws the network specified by the weights in W1 and W2. Positive weights
are represented by a solid line while a dashed line represents a negative weight.
Only weights and biases larger than 'CancelVal' are drawn. A bias is
represented by a vertical line through the neuron.

Example
Initialize Network. 5 tanh hidden units and 1 linear output
>> W1 = rand(5,3);
>> W2 = rand(1,6);
>> str1 = {‘ x1’ ’ x2’ ’x253’};
>> str2 = {‘y’};
>> drawnet(W1,W2,eps,str1,str2)

See Also
OBDPRUNE, OBSPRUNE, NNPRUNE.

dscale

Neural Network Based System Identification Toolbox User’s Guide 2-9

dscale
Purpose

Scale data to zero mean and variance 1 before training

Synopsis
[Xs,Xscale]=dscale(X)
Xs=dscale(X,Xscale)

Input
X: Data matrix (dimension is # of data vectors in matrix * # of data

points).
Xscale: If Xscale is provided the data in X is scaled to the mean in Xscale(1)

and the standard deviation Xscale(2).

Output
Xs: Scaled data matrix
Xscale: Matrix containing sample mean (column 1) and standard deviation

(column 2) for each data vector in X.

See Also
WRESCALE on how to rescale the weights of the trained network.

References
Y. Le Cun, I. Kanter, S.A. Solla: “Eigenvalues of Covariance Matrices:
Application to Neural-Network Learning,” Physical Review Letters, Vol 66,
No. 18, pp. 2396-2399, 1991.

fpe

2-10

fpe
Purpose

Final prediction error (FPE) estimate of the avarage generalization error.

Synopsis
[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms)

Input
See for example the function MARQ.

Output
FPE: The Final prediction error estimate.
deff : The effective number of weights.
varest: Estimate of the noise variance.
H: The Gauss-Newton Hessian.

Description
[FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) calculates Akaike’s
final prediction error estimate of the average generalization error. The function
returns the final prediction error estimate (FPE), the effective number of
weights in the network if the network has been trained with weight decay, an
estimate of the noise variance, and the Gauss-Newton Hessian. It is important
that the network has been trained to the minimum of the criterion before this
function is called.

See Also
LOO for the Leave-One-Out estimate.
NNFPE gives the FPE estimate for models of dynamic systems.

References
J. Larsen & L.K. Hansen: “Generalization Performance of Regularized Neural
Network Models," Proc. of the IEEE Workshop on Neural networks for Signal
Proc. IV, Piscataway, New Jersey, pp.42-51, 1994.

L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

getgrad

Neural Network Based System Identification Toolbox User’s Guide 2-11

getgrad
Purpose

Derivative of network output with respect to the weights.

Synopsis
[PSI,E] = getgrad(method,NetDef,NN,W1,W2,Chat,Y,U)

Inputs
See NNVALID.
For time series, U is either left out or passed as a [].

Output
PSI: Matrix containing the derivative of the output w.r.t. each weight for
 each input-output pair in the data set. The dimension is
 [# of weights * # of data]
E: Prediction errors.

Description
Produces a matrix of derivatives of the network output w.r.t. each network
weight for use in the functions NNPRUNE and NNFPE.

Examples
Network generated by nnarx (or nnrarx):
 >> [PSI,E] = getgrad('nnarx',NetDef,NN,W1,W2,[],Y,U)

Network generated by nnarmax1 (or nnrarmx1):
 >> [PSI,E] = getgrad('nnarmax1',NetDef,NN,W1,W2,Chat,Y,U)

Network generated by nnarmax2 (or nnrarmx2):
 >> [PSI,E] = getgrad('nnarmax2',NetDef,NN,W1,W2,[],Y,U)

Network generated by nnoe:
 >> [PSI,E] = getgrad('nnoe',NetDef,NN,W1,W2,[],Y,U)

See Also
NNPRUNE and NNFPE

ifvalid

2-12

ifvalid
Purpose

Validate state space models.

Synopsis
[Yhat,NSSE] = ifvalid(NetDef,nx,W1,W2,obsidx,Y,U)

Input
See the function NNSSIF.

Output
Yhat: Prediction of output(s).
NSSE: Normalized sum of squared errors.

Description
Validate a neural network based state space model of a dynamic system. I.e., a
network model trained with the function NNSSIF.

The following plots are produced:
- Output(s) together with predicted output(s).
- Prediction error.
- Autocorrelation function of prediction error and cross-correlation between

prediction error(s) and input(s).
- Histogram(s) showing the distribution of the prediction errors.
- Coefficients of extracted linear models.

Example
>> load spmdata
>> NetDef = ['HHHH';'LL--'];
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-4,’skip’,10);
>> [W1,W2,obsidx,critvec,iter,lambda] =...
 nnssif(NetDef,2,[],[],[],trparms,y1,u1);
>> [yhat,NSSE]=ifvalid(NetDef,2,W1,W2,obsidx,y2,u2);

See Also
NNSSIF, NNVALID, NNEVAL, IOLEVAL

igls

Neural Network Based System Identification Toolbox User’s Guide 2-13

igls
Purpose

Iterated Generalized Least Squares training of neural networks with multiple
outputs.

Synopsis
[w1,w2,lambda,Gamma]=igls(NetDef,W1,W2,trparms,Gamma0,PHI,Y)

Input
NetDef, W1, W2, trparms, PHI, Y: See the function MARQ.
Gamma0: Initial estimate of the covariance matrix for the noise. If passed as []

it is set to the identity matrix.
trparms: Vector containing parameters associated with the training (see

MARQ). Default values (obtained if trparms=[]): trparms=[50 0 1
0]

Output
w1, w2, lambda: See the function MARQ.
Gamma: The estimated covariance matrix.

Description
A multi-output feedforward network and the noise covariance matrix are
estimated with an iterative relaxation procedure.

It is important to notice that the network returned from this function will
produce predictions of scaled outputs (see the Algorithm paragraph). It is
necessary to multiply the output by sqrtm(Gamma) to obtain the unscaled
predictions. If the network has linear output units one can instead scale the
hidden-to-output layer weights: W2= sqrtm(Gamma)*W2.

Example
Generate data as two sinusoidals+noise
>> PHI = 2*pi*rand(1,300);
>> Y = [sin(PHI);cos(PHI)] + [0.1*randn(1,300);0.8*randn(1,300)]
>> plot(PHI,Y(1,:),’+’,PHI,Y(2,:),’o’);

Train an initial network with 5 tanh hidden units, 2 linear output
>> W1 = rand(5,2);
>> W2 = rand(1,6);
>> NetDef = [‘HHHHH’;’LL---’];

igls

2-14

>> drawnet(W1,W2,eps,{’phi’}, {‘y1’ ’y2’})
>> trparms = settrain;
>> [W1,W2]=marq(NetDef,[],[],PHI,Y,trparms);

Apply the IGLS procedure 10 times and train 30 iterations in each step.
>> trparms=settrain(trparms,’maxiter’,30,’repeat’,10);
>> [w1,w2,lambda,Gamma]=igls(NetDef,W1,W2,trparms, [],PHI,Y);
>> w2u=sqrtm(Gamma)*w2;
>> [Yhat,E,NSSE]=nneval(NetDef,w1,w2u,PHI,Y);

Algorithm
The implemented IGLS procedure is very simple
 for j=1:repeat,
 Train the network
 Estimate the covariance matrix
 end

The network is trained with the function MARQ according to the criterion

() ()

�

�

=

−
−

=

−
−

Λ=

−Λ−==

N

t
j

T

N

t
j

TN
Nj

tt
N

tytytyty
N

ZV

1

1
1

1

1
1

),(ˆ),(
2
1

)(ˆ)(ˆ)(ˆ)(
2
1

),(ˆ

θεθε

θθθθ

and the covariance matrix is estimated as

�
=

=Λ
N

t

jTj
j tt

N 1

)()()ˆ,()ˆ,(
1ˆ θεθε

To reduce the amount of computations the network is trained by first scaling
the outputs as

)()(tyty Σ=
where

ΣΣ=Λ T
and subsequently train the network according to

() ()�
=

−−==
N

t

TN
Nj tytytyty

N
ZV

1

)(ˆ)()(ˆ)(
2
1

),(ˆ θθθθ

If the network has linear output units, W2 should be scaled by 22 1WuW −Σ= .

See Also
MARQ for Levenberg-Marquardt training.
NNARXM for identification of multi-output NNARX models
NNIGLS for igls estimation of multi-output NNARX models.

igls

Neural Network Based System Identification Toolbox User’s Guide 2-15

References
T.J Fog, J. Larsen, L.K. Hansen: Training and Evaluation of Neural Networks
for Multi-Variate Time-Series Processing. Proc. IEEE International
Conference on Neural Networks, Perth, Australia.

incbp

2-16

incbp
Purpose

Recursive (/incremental) version of the back-propagation algorithm.

Synopsis
[w1,w2,critvec,iter]=incbp(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition
W1: Input-to-hidden layer weights. The matrix dimension is
 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
 Use [] for a random initialization.
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]
 Use [] for a random initialization.
PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of data)]
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Output
w1, w2: Weight matrices after training.
critvec: Vector containing the criterion evaulated after each iteration.
iter : # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network INCBP
trains a network with recursive back-propagation.

The activation functions must be either linear or tanh. The network
architecture is defined by the matrix ‘NetDef’ consisting of two rows. The first
row specifies the hidden layer while the second specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']
(L = Linear, H = tanh)

Notice that the bias is included as the last column in the weight matrices!

incbp

Neural Network Based System Identification Toolbox User’s Guide 2-17

Example
Generate data as sinusoidal+noise
>> PHI = 2*pi*rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize Network. 5 tanh hidden units, 1 linear output
>> NetDef = [‘HHHHH’;’L----’];
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,400,’eta’,0.02);
>> [w1,w2,critvec,iter]=incbp(NetDef,[],[],PHI,Y,trparms);
>> drawnet(w1,w2);

Plot criterion evaluated after each iteration
>> semilogy(critvec); grid;
>> xlabel(‘Iteration’);
>> ylabel(‘Criterion’)

Algorithm
Back-propagation is a gradient descent algorithm where the computations are
ordered in a simple fashion, taking advantage of the special architecture of a
neural network. In this implementation the step size is fixed.

See Also
BATBP for the batch version.
RPE for a recursive Gauss-Newton algorithm.
MARQ, NNEVAL.

References
J. Hertz, A. Krogh & R.G. Palmer: “Introduction to the theory of Neural
Computation,” Addison-Wesley, 1991.

ioleval

2-18

ioleval
Purpose

Validate models generated by NNIOL.

Synopsis
[Yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,Y,U)

Inputs
See the function NNIOL for an explanation of the inputs.

Outputs
Yhat: One-step ahead prediction of output.
NSSE: Normalized sum of squared error (SSE/2N).

Description
Evaluate a neural network based model on a form well-suited for control by
discrete input-output linearization; i.e., a network model trained with the
function NNIOL.

The following plots are produced:
- Observed output together with predicted output.
- Prediction error.
- Histogram showing the distribution of the prediction errors.

Example
>> load spmdata
>> NetDeff = ['HHHHH';'L----'];
>> NetDefg = ['HHH';'L--'];
>> NN=[2 2 1];
>> trparms = settrain;
>> trparms = settrain(trparms,’D’,1e-3);
>> [W1f,W2f,W1g,W2g,critvec,iter,lambda] =...
 nniol(NetDeff,NetDefg,NN,[],[],[],[],trparms,y1,u1);
>> [yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,y2,u2);

See Also
NNIOL, NNVALID, NNEVAL, IFVALID

kpredict

Neural Network Based System Identification Toolbox User’s Guide 2-19

kpredict
Purpose

k-step ahead prediction of system output.

Synopsis
Network generated by NNARX (or NNRARX):
 Ypred = kpredict('nnarx',NetDef,NN,k,W1,W2,Y,U);

(likewise for networks generated with NNARMAX1+2 and NNOE)

Input
See NNVALID

Output
Ypred: Vector containing the k-step ahead predictions of the outputs.

NB! The function does not work for models generated by NNIOL, NNARXM,
or NNSSIF.

Description
Determine the k-step ahead prediction of the output of a dynamic system and
compare it to the observed output. The predictions are determined by feeding
past predictions into the network where observations are not available and by
setting unavailable residuals to zero. Except for NNOE models a predictor
defined in this manner cannot be expected to be the optimal predictor.

Example
>> load spmdata
>> NetDef = ['HHHH’;'L---'];
>> NN=[2 2 1];
>> trparms = [100 0 1 1e-3];
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);
>> ypred=kpredict('nnarx',NetDef,NN,10,W1,W2,y1,u1);

lipschit

2-20

lipschit
Purpose

Determine the lag space.

Synopsis
[OrderIndexMat]=lipschit(U,Y,m,n)

Inputs
U: Sequence of inputs (row vector)
Y: Sequence of outputs (row vector)
m: Vector specifying the input lag spaces to investigate
n: Vector specifying the ouput lag spaces to investigate

Outputs
OrderIndexMat: A matrix containing the order indices for each combination

of elements in the vectors m and n. The number of rows
corresponds to the number of elements in m, while the
number of columns corresponds to the number of elements
in n.

Description
Given corresponding input and output sequences the function calculates a
matrix of indices that can be helpful for determining a proper lag space
structure (m and n) before identifying a model of a dynamic system:
 y(t) = f(y(t-1),...,y(t-n), u(t-1),..., u(t-m))
An insufficient lag space structure leads to a large index. While increasing the
lag space the index will decrease until a sufficiently large lag space structure is
reached. Increasing the lag space further will not change the index
significantly. In other words: look for the knee-point of the plot.

m is a vector specifying which input lag spaces to investigate and n is ditto for
the output. If one is only interested in the order index for one particular choice
of lag structure, n and m are specified as scalars, and only the order index is
returned. In the more general case, where one or both are vectors, the function
will also produce one or two plots.

Examples
 o NNFIR model structure expected:
 m=[1:20]; n=0;

lipschit

Neural Network Based System Identification Toolbox User’s Guide 2-21

 o Time series:
 U=[]; m=0;

 o Check only n=m:
 m=[1:5]; n=m;

Algorithm
The function should be used with some care. Do not rely on the results if the
data is too corrupted by noise. Physical insight is by far the best tool for
determination of the lag space.

At this point the function works for SISO systems only. Extension to the
multivariable case should be straightforward, however.

See Also
Use the function DSCALE to scale the data.

 Reference
X. He & H. Asada: "A New Method for Identifying Orders of Input-Output
Models for Nonlinear Dynamic Systems," Proc. of the American Control
Conf., S.F., California, 1993.

loo

2-22

loo
Purpose

Estimate the average generalization error by leave-one-out cross-validation.

Synopsis
[Eloo,H] = loo(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef, W1, W2,
PHI, Y, trparms : See the function MARQ
If the maxiter field in the data structure trparms is 0 linear unlearning is used
for obtaining a cheap approximation to the LOO estimate. If maxiter>0 the
network will be retrained a maximum of maxiter iterations for each input-
output pair that is left out.

Output
Eloo: The leave-one-out cross-validation estimate of the average

generalization error.
H: The Gauss-Newton Hessian.

Description
LOO calculates an approximation to the leave-one-out estimate of the average
generalization error. The function returns the loo-estimate along with the
Gauss-Newton Hessian.

Algorithm
When the maxiter field in trparms is 0 “linear unlearning” is used to get a
quick approximation to the LOO-estimate. This approximation is much easier
to compute than the true LOO-estimate, but is in general less reliable.
Typically it is comparable to the FPE-estimate. See the reference below for a
derivation. Unless maxiter=0 it is recommended to set maxiter to 20-40.

See Also
FPE for Akaike’s final prediction error estimate.

Reference
 L.K. Hansen and J. Larsen: "Linear Unlearning for Cross-Validation,"

Advances in Computational Mathematics, 5, pp. 269-280, 1996.

marq

Neural Network Based System Identification Toolbox User’s Guide 2-23

marq
Purpose

Train a network with the Levenberg-Marquardt method.

Synopsis
[w1,w2,critvec,iteration,lambda] = marq(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition.
W1: Input-to-hidden layer weights. The matrix dimension is
 [(# of hidden units) * (inputs + 1)] (the 1 is due to the bias)
 Use [] for a random initialization.
W2: Hidden-to-output layer weights. The matrix dimension is
 [(outputs) * (# of hidden units + 1)]
 Use [] for a random initialization.
PHI: Input data [(# of inputs) * (# of data)]
Y: Output data [(outputs) * (# of data)]
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Output
W1, W2: Weight matrices after training.
critvec: Vector containing the criterion evaluated after each iteration.
iteration: # of iterations.
lambda: The final value of lambda. Relevant if retraining is desired.

Description
Given a set of corresponding input-output pairs and an initial network, a two
layer neural network is trained with the Levenberg-Marquardt method. If
desired it is possible to use regularization by weight decay. Also pruned (i.e.,
not fully connected) networks can be trained. The activation functions can be
either linear or tanh. The network architecture is defined by matrix 'NetDef'
which has two rows. The first row specifies the hidden layer while the second
specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']
 (L = linear, H = tanh)

marq

2-24

Notice that the bias in is included as the last column in the weight matrices and
that a weight is pruned (i.e., 0 and not updated) by initializing it to 0.

It is possible to train networks with regularization by simple weight decay. The
field D in trparms can be set as forllows: D is a vector containing the weight
decay parameters. If D has one element a scalar weight decay will be used. If D
has two elements the first element will be used as weight decay for the hidden-
to-output layer and while second will be used for the input-to-hidden layer
weights. For individual weight decays, D must contain as many elements as
there are weights in the network.

Example
Generate data as sinusiodal +noise
>> PHI = 2*pi*rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize network. 5 tanh hidden units, 1 linear output
>> NetDef = [‘HHHHH’;’L----’];
>> [W1,W2,critvec,iter,lambda]=marq(NetDef,[],[],PHI,Y);
>> drawnet(W1,W2)

Plot criterion evaluated after each iteration
>> semilogy(critvec); grid;
>> xlabel(‘Iteration’);
>> ylabel(‘Criterion’)

Algorithm
The algorithm is a standard Levenberg-Marquardt method as described in the
references below. The trust region is adjusted in an indirect fashion by directly
increasing/decreasing the diagonal added to the Hessian according to the ratio
between actual and predicted change in the criterion.

See Also
MARQLM, RPE, BATBP, INCBP, NNEVAL.

References
R. Fletcher: “Practical Methods of Optimization,” Wiley, 1987.

 M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

marqlm

Neural Network Based System Identification Toolbox User’s Guide 2-25

marqlm
Purpose

Implementation of the Levenberg-Marquardt method that uses less memory
than MARQ.

Description
A less memory consuming (but slower) version of the Levenberg-Marquardt
training algorithm implemented in MARQ. The difference in speed occurs
because the function is less “vectorized” (which is a MATLAB problem), but
also because some calculations might be repeated.

netstruc

2-26

netstruc
Purpose

Extract weight matrices from parameter vector.

Synopsis
[W1,W2]=netstruc(NetDef,thd,index)

Inputs
NetDef: Architecture definition.
thd: Matrix containing parameter vectors returned by OBDPRUNE,

OBSPRUNE or NNPRUNE.
index: Specifies the location in 'thd' where the optimal parameter vector is

located.

Outputs
W1, W2: Weight matrices.

Description
NETSTRUC extracts the weight matrices from the matrix of parameter vectors
produced by the pruning functions OBDPRUNE, OBSPRUNE and
NNPRUNE.

Example
Prune network by OBS
>> [thd,tre,fpevec,tee,deff,pvec]=...
 obsprune(NetDef,W1,W2,PHI1,Y1,trparms,[],PHI2,Y2)

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [w1,w2] = netstruc(NetDef,thd,index);
>> drawnet(w1,w2,eps)

See Also
OBDPRUNE, OBSPRUNE, NNPRUNE.

nnarmax1

Neural Network Based System Identification Toolbox User’s Guide 2-27

nnarmax1
Purpose

Identify a Neural Network ARMAX (or ARMA) model (linear MA-filter).

Synopsis
[w1,w2,chat,critvec,iteration,lambda]=...
 nnarmax1(NetDef,NN,W1,W2,Chat,trparms,Y,U)

Input
U: Input (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nc nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nc = # of past residuals (= order of C).
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as
there are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [], they are initialized automatically.

Chat: Initial MA-filter estimate (initialized automatically if Chat=[]).
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

For time series (NNARMA models) use NN=[na nc].

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARMAX model of a dynamic system by training a two
layer neural network with the Levenberg-Marquardt method. The function can
handle multi-input single-output systems (MISO). It is assumed that the noise
can be modeled by filtering the residuals with a linear MA-filter:

())()()1(,),(),(,),1()(ˆ 1 tqCnntuntuntytygty kbka εθ −++−−−−−= ��

in which case problems with instability of the predictor are avoided.

nnarmax1

2-28

Example
>>load spmdata
>>NetDef = ['HHHHH';'L----'];
>> NN=[2 2 2 1];
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3,’skip’,10);
>> [W1,W2,Chat,critvec,iter,lambda] = ...
 nnarmax1(NetDef,NN,[],[],[],trparms,y1,u1);
>> [yhat,NSSE]=nnvalid('nnarmax1',NetDef,NN,W1,W2,Chat,y2,u2);

Algorithm
The name NNARMAX has been chosen because the regressors are the same as
those in ARMAX models.

See Also
NNRARMX1, NNARMAX2

Reference
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnarmax2

Neural Network Based System Identification Toolbox User’s Guide 2-29

nnarmax2
Purpose

Identify a Neural Network ARMAX (or ARMA) model.

Synopsis
[w1,w2,critvec,iteration,lambda]=...
 nnarmax2(NetDef,NN,W1,W2,trparms,Y,U)

Input
U: Input (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nc nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nc = # of past residuals (= order of C).
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as
there are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [], they are initialized automatically.

trparms: Data structure containing parameters associated with the training
algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

For time series (NNARMA models) use NN=[na nc].

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARMAX model:

())(,),1(),1(,),(),(,),1()(ˆ ckbka nttnntuntuntytygty −−+−−−−−= εεθ ���

of a dynamic system by training a two layer neural network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO).

nnarmax2

2-30

Example
>> load spmdata
>> NetDef = ['HHHHH';'L----'];
>> NN=[2 2 2 1];
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3,’skip’,10);
>> [W1,W2,critvec,iter,lambda] = ...
 nnarmax2(NetDef,NN,[],[],trparms,y1,u1);
>> [yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,y2,u2);

Algorithm
The name NNARMAX has been chosen because the regressors are the same as
those in ARMAX models.

See Also
NNRARMX2, NNARMAX1

Reference
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnarx

Neural Network Based System Identification Toolbox User’s Guide 2-31

nnarx
Purpose

Identify a Neural Network ARX (or AR) model.

Synopsis
[w1,w2,critvec,iteration,lambda]=nnarx(NetDef,NN,W1,W2,trparms,Y,U)

Input
U: Input (= control signal) (left out in the nnar case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nk].

na = # of past outputs used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as
there are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [], they are initialized automatically.

trparms: Data structure containing parameters associated with the training
algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

For time series (NNAR models) use NN=na.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARX model:

())1(,),(),(,),1()(ˆ +−−−−−= kbka nntuntuntytygty ��θ

of a dynamic system by training a two layer neural network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO).

Examples
>> load spmdata

nnarx

2-32

>> NetDef = ['HHHH’;'L---'];
>> NN=[2 2 1];
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3);
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);
>> [yhat,NSSE]=nnvalid('nnarx',NetDef,NN,W1,W2,y2,u2);

Algorithm
The name NNARX has been chosen because the regressors are the same as
those in ARX models.

See Also
NNRARX, NNARXM, NNPRUNE.

Reference
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnarxm

Neural Network Based System Identification Toolbox User’s Guide 2-33

nnarxm
Purpose

Identify a multi-output Neural Network ARX (or AR) model.

Synopsis
[W1,W2,critvec,iteration,lambda]=...
 nnarxm(NetDef,NN,W1,W2,trparms,Gamma,Y,U)

Input
U: Input (= control signal) (left out in the nnar case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [(outputs) * (# of data)]
NN: NN=[na1 nb1 nk1;na2 nb2 nk2;...].

naX = # of past outputs used for determining the prediction.
nbX = # of past inputs.
nkX = time delay (usually 1).
For multi-input systems, nbX and nkX contain as many columns as
there are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na1+nb1+na2+nb2+...+1)]
dim(W2)=[(outputs) * (# of hidden units)]
If they are passed as [], they are initialized automatically.

Gamma: Inverse weighting matrix (usually the covariance of the noise).
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

For time series (NNAR models) use NN=[na1;na2; …].

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear ARX model:

())1(,),(),(,),1()(ˆ +−−−−−= kbka nntuntuntytygty ��θ

of a dynamic system with multiple outputs by training a two layer neural
network with the Levenberg-Marquardt method. The function can handle
multi-input, multi-output systems (MIMO).

nnarxm

2-34

Examples
>> load spmdata
>>Y1=[y1;y1*3];
>>Y2=[y2;y2*3];
>> NetDef = ['HHHH’;'LL--'];
>> NN=[2 2 1;2 0 0];
>> trparms = settrain;
>> trparms = settrain(trparms,’maxiter’,100,’D’,1e-3);
>> [W1,W2]=nnarxm(NetDef,NN,[],[],trparms,[],Y1,u1);
>> [yhat,NSSE]=nnvalid('nnarxm',NetDef,NN,W1,W2,eye(2),Y2,u2);

In this example NN=[2 2 1;2 0 0]. This does not mean that output # 2 does not
depend on past inputs at all. If NN had been chosen to [2 2 1;2 2 1] the input
signal would then have entered the network twice. This is of course not
relevant except when physical knowledge motivates that an output depends on
certain inputs and delayed inputs and it should only be used when appropriate
entries in W1 and W2 are set to 0.

Algorithm
The network is trained to minimize the criterion

())1(,),(),(,),1()(ˆ +−−−−−= kbka nntuntuntytygty ��θ

using a Levenberg-Marquardt algorithm. The weighting matrix Gamma is
usually selected as the noise covariance. This matrix can be estimated with the
function NNIGLS.

See Also
NNVALID, NNIGLS, NNARX.

Reference
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

 M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for

Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nneval

Neural Network Based System Identification Toolbox User’s Guide 2-35

nneval
Purpose

Validation of feedforward neural networks.

Synopsis
[Yhat,E,NSSE] = nneval(NetDef,W1,W2,PHI,Y)

Inputs
See for example one of the functions: MARQ, RPE, BATBP, INCBP.

Outputs
Yhat: Network predictions.
E: Prediction errors.
NSSE: Normalized sum of squared errors (SSE/2N).

Description
The function validates models trained with MARQ, RPE, BATBP, INCBP,
MARQLM. The following plots are produced:
 - Output together with predicted output.
 - Prediction error.
 - Autocorrelation function of prediction error.
 - A histogram showing the distribution of the prediction errors

Example
>> PHI = 2*pi*rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> NetDef = [‘HHHHH’;’L----’];
>> [W1,W2,critvec,iter,lambda]=marq(NetDef,[],[],PHI,Y);
>> PHI2 = 2*pi*rand(1,300);
>> Y2 = sin(PHI2) + 0.2*randn(1,length(PHI2);
>> nneval(NetDef,W1,W2,PHI2,Y2);

See Also
NNVALID, IFVALID, IOLEVAL.

nnfpe

2-36

nnfpe
Purpose

Final Prediction Error estimate (FPE) for I/O models of dynamic systems.

Synopsis
[FPE,deff,varest,H] =...
 nnfpe(method,NetDef,W1,W2,U,Y,NN,trparms,Chat)

Input
See the function that was used for creating the model.The argument Chat
should only be included if method='nnarmax1'.

Output
FPE: The Final prediction error estimate.
deff : The effective number of parameters.
varest: Estimate of noise variance.
H: The Gauss-Newton Hessian.

Description
The function calculates Akaike’s final prediction error estimate of the average
generalization error for models generated by NNARX, NNOE,
NNARMAX1+2. The function produces the final prediction error estimate
(FPE), the effective number of weights in the network if the network has been
trained with weight decay, an estimate of the noise variance, and the Gauss-
Newton Hessian.

See Also
LOO, FPE.

References
J. Larsen & L.K. Hansen: “Generalization Performance of Regularized Neural
Network Models." Proc. of the IEEE Workshop on Neural networks for Signal
Proc. IV, Piscataway, New Jersey, pp.42-51, 1994.

nnigls

Neural Network Based System Identification Toolbox User’s Guide 2-37

nnigls
Purpose

Iterated Generalized Least Squares training of NNARX models with multiple
outputs.

Synopsis
[w1,w2,Gamma,lambda]=...
 nnigls(NetDef,NN,W1,W2,trparms,Gamma0,Y,U)

Input
U,Y,NN,W1,W2,trparms: See NNARXM
Gamma0: Initial estimate of the covariance matrix for the

noise. If passed as [] it is set to the identity matrix.

Output
w1, w2, lambda: See the function NNARXM.
Gamma: The estimated covariance matrix.

Description
A multi-output NNARX model and the noise covariance matrix are estimated
with an iterative relaxation procedure.

It is important to notice that the model returned from this function will produce
predictions of scaled outputs (see the Algorithm paragraph). It is necessary to
multiply the output by sqrtm(Gamma) to obtain the unscaled predictions. If the
network has linear output units one can instead scale the hidden-to-output
layer weights: W2= sqrtm(Gamma)*W2.

Algorithm
The IGLS procedure is a straightforward relaxation procedure:
 for j=1:repeat,
 Train the network
 Estimate the covariance matrix
 end

The factor repeat is a field in trparms. Its default value is 5 but can be changed
with SETTRAIN. It is recommended to use SETTRAIN to reduce the max.
number of iterations performed by the training algorithm. 50 is a value that
generally will work in well.

nnigls

2-38

The network is trained with the function MARQ according to the criterion

() ()

�

�

=

−
−

=

−
−

Λ=

−Λ−==

N

t
j

T

N

t
j

TN
Nj

tt
N

tytytyty
N

ZV

1

1
1

1

1
1

),(ˆ),(
2
1

)(ˆ)(ˆ)(ˆ)(
2
1

),(ˆ

θεθε

θθθθ

and the covariance matrix is estimated as

�
=

=Λ
N

t

jTj
j tt

N 1

)()()ˆ,()ˆ,(
1ˆ θεθε

To reduce the amount of computations the network is trained by first scaling
the outputs as

)()(tyty Σ=
where

ΣΣ=Λ T
and subsequently train the network according to

() ()�
=

−−==
N

t

TN
Nj tytytyty

N
ZV

1

)(ˆ)()(ˆ)(
2
1

),(ˆ θθθθ

If the network has linear output units, W2 should be scaled by 22 1WuW −Σ= .

See Also
NNARXM, NNVALID, MARQ, IGLS.

Reference
T.J Fog, J. Larsen, L.K. Hansen: Training and Evaluation of Neural Networks
for Multi-Variate Time-Series Processing. Proc. IEEE International
Conference on Neural Networks, Perth, Australia.

nniol

Neural Network Based System Identification Toolbox User’s Guide 2-39

nniol
Purpose

Identify a neural network model well-suited for control by discrete input-
output linearization.

Synopsis
[w1f,w2f,w1g,w2g,critvec,iteration,lambda]=...
 nniol(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,trparms,Y,U)

Input
U: Input data (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nk].

 na = # of past outputs used for determining the prediction.
 nb = # of past inputs.
 nk = time delay (usually 1).
 For multi-input systems, nb and nk contain as many columns as
 there are inputs.

NetDeff: Architecture of network used for modelling the function f (see
below).

NetDefg: Archtecture of network used for modelling the function g.
W1f,W2f: Input-to-hidden layer and hidden-to-output layer weights for
W1g,W2g the ”f” and ”g” nets, respectively.

 dim(W1f / W1g) = [(# of hidden units) * (na+nb)]
 dim(W2f / W2g) = [1 * (# of hidden units)]

If the weight matrices are passed as [] they will be initialized
automatically.

trparms: Data structure containing parameters associated with the training
algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Train a neural network to model a dynamic system on the following form:

()
())-()1+--(),...,1--(),-(),..,1-(+

)1+--(),...,1--(),-(,),1-(=)(ˆ

kbkka

bkka

ntunntuntuntytyg

nntuntuntytyfty �θ

nniol

2-40

with the Levenberg-Marquardt method. This type of model is particularly
relevant in the context of control by discrete input-output linearization.

Examples
>> load spmdata
>> NetDeff = ['HHHHH';'L----'];
>> NetDefg = ['HHH';'L--'];
>> NN=[2 2 1];
>> trparms = settrain;
>> [W1f,W2f,W1g,W2g,critvec,iter,lambda] =...
 nniol(NetDeff,NetDefg,NN,[],[],[],[],trparms,y1,u1);
>> [yhat,NSSE]=ioleval(NetDeff,NetDefg,NN,W1f,W2f,W1g,W2g,y2,u2);

See Also
IOLEVAL.

Reference
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnloo

Neural Network Based System Identification Toolbox User’s Guide 2-41

nnloo
Purpose

Estimate the average generalization error for NNARX models of dynamic
systems by using leave-one-out cross-validaton.

Synopsis
Eloo =nnloo(NetDef,NN,W1,W2,trparms,U,Y)

Input
NetDef, W1, W2, NN
U, Y, trparms : See the function NNARX
If the maxiter field in the data structure trparms is 0 linear unlearning is used
for obtaining a cheap approximation to the LOO estimate. If maxiter>0 the
network will be retrained a maximum of maxiter iterations for each input-
output pair that is left out.

Output
Eloo: The leave-one-out cross-validation estimate of the average

generalization error

Description
LOO calculates an approximation of the leave-one-out estimate of the average
generalization error.

Algorithm
When the maxiter field in trparms is 0 “linear unlearning” is used to get a
quick approximation to the LOO-estimate. This approximation is much easier
to compute than the true LOO-estimate, but is in general less reliable.
Typically it is comparable to the FPE-estimate. See the reference below for a
derivation. Unless maxiter=0 it is recommended to set maxiter to 20-40.

See Also
NNFPE for Akaike’s final prediction error estimate.

Reference
 L.K. Hansen and J. Larsen: "Linear Unlearning for Cross-Validation,"

Advances in Computational Mathematics, 5, pp. 269-280, 1996.

nnoe

2-42

nnoe
Purpose

Identify a neural network output error model.

Synopsis
[W1,W2,critvec,iter,lambda]=nnoe(NetDef,NN,W1,W2,trparms,Y,U)

Input
U: Input data (= control signal) (left out in the nnarma case)
 matrix. Dimension: [(inputs) * (# of data)]
Y: Output data. Dimension: [1 * (# of data)]
NN: NN=[na nb nk].

na = # of past predictions used for determining the prediction.
nb = # of past inputs.
nk = time delay (usually 1).
For multi-input systems, nb and nk contain as many columns as
there are inputs.

W1,W2: Input-to-hidden layer and hidden-to-output layer weights.
dim(W1)= [(# of hidden units) * (na+nb+1)]
dim(W2)=[1 * (# of hidden units)]
If they are passed as [], they are initialized automatically.

trparms: Data structure containing parameters associated with the training
algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Ouput
See the function MARQ for an explanation of the returned variables.

Description
Determines a nonlinear output error (OE) model:

())1(,),(),(ˆ,),1(ˆ)(ˆ +−−−−−= kbka nntuntuntytygty �� θθθ

of a dynamic system by training a two layer neural network with the
Levenberg-Marquardt method. The function can handle multi-input single-
output systems (MISO).

nnoe

Neural Network Based System Identification Toolbox User’s Guide 2-43

Example
>> load spmdata
>> NetDef = ['HHHH’;'L---'];
>> NN=[2 2 1];
>> trparms=settrain;
>> trparms=settrain(trparms,’maxiter’,100,’D’,1e-3,’skip’,10);
>> [W1,W2,critvec,iter,lambda]=nnoe(NetDef,NN,[],[],trparms,y1,u1);
>> [yhat,NSSE]=nnvalid('nnoe',NetDef,NN,W1,W2,y2,u2);

Algorithm
The name NNOE is used because the regressors are the same as those used in
output error (OE) models.

See Also
NNPRUNE, NNVALID.

Reference
L. Ljung:“System Identification - Theory for the User,” Prentice-Hall, 1987.

M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnprune

2-44

nnprune
Purpose

Prune a neural network model of a dynamic systems with the Optimal Brain
Surgeon algorithm (OBS).

Synopsis
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec] = ...
 nnprune(method,NetDef,W1,W2,U,Y,NN,trparms,prparms,U2,Y2,Chat)

Input
method: The function used for creating the model. For example
 method='nnarx' or method='nnoe'.
NetDef, W1, W2,
U, Y, trparms: See the function used for creating the model.
U2,Y2 (optional): Test data. This can be used for pointing out the the optimal

network architecture. Pass two []'s if a test set is not
available.

Chat (optional): See NNARMAX1
prparms: Parameters associated with the pruning session.
 prparms = [iter RePercent]
 iter: Max. number of retraining iterations.
 RePercent : Prune 'RePercent' percent of the remaining
 weights (0 = prune one weight at a time).
 If passed as [] is will be reset to prparms = [50 0].

 Output
 thd: Matrix containing all the parameter vectors.
 NSSEvec: Vector containing the normalized sum of squared errors

(SSE/2N), the training error, after each weight elimination.
 FPEvec: Contains the FPE estimate of the average generalization error.
 NSSEtestvec: Contains the test error (SSE/2N for test set).
 deff_vec: Contains the ”effective” number of weights.
 pvec: Index into the above vectors.

Description
This function applies the Optimal Brain Surgeon (OBS) strategy for pruning
neural network input-output models of dynamic systems. That is, models
produced by one of the functions: NNARX, NNARMAX1, NNARMAX2,
NNOE. Two different procedures are possible:
• Eliminate one weight, retrain, eliminate one weight, retrain,

nnprune

Neural Network Based System Identification Toolbox User’s Guide 2-45

• Eliminate 5% (or some other percentage) of the remaining weights, retrain,
eliminate 5% of the remaning weights,retrain,

The function will return a matrix containing the parameter vectors (a vector
containing all weights), obtained after each retraining. The optimal parameter
vector is then chosen afterwards. For example as the one representing the
network leading to the smallest FPE or the one leading to the smallest test
error (if a test set is available). After having determined the optimal number of
weights, the weight matrices are extracted from the thd-matrix with the
function NETSTRUC. If a NNARMAX1 model has been pruned, remember to
remove the bottom nc rows from thd first since these contain the coefficients
of the C-polynomial.

It is important that the network is trained to the minimum of the criterion
before the function is applied.

Example
Prune nnarx model with OBS
>> [thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec] = ...
 nnprune(‘nnarx’,NetDef,W1,W2,U,Y,NN,trparms,[],U2,Y2);

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

Algorithm
If the network has been trained without regularization (weight decay), the basic
OBS scheme of Hassibi and Stork is used. To avoid numerical problems, the
inverse (Gauss-Newton) Hessian is approximated by the recursive method
described in the paper (see also RPE). If regularization was used when training
the network the saliences are calculated as the prediced increase in the
unregularized portion of the criterion as described by Hansen & Pedersen. If
more than one weight is eliminated between each retraining the inverse
Hessian after each weight elimination is calculated as the Schur complement
of the previous inverse Hessian (see Pedersen et al.).

The OBS-scheme has been implemented so that it is impossible to have hidden
units without having weights leading to as well as from them. If a hidden unit
has only one weight connecting it to the input layer and one weight connecting

nnprune

2-46

it to the output layer the, the entire unit will be removed if it has the smallest
total saliency.

See Also
NETSTRUC, OBDPRUNE, OBSPRUNE.

References
L.K. Hansen & M. W. Pedersen: “Controlled Growth of Cascade Correlation
Nets,” Proc. ICANN ‘94, Sorrento, Italy, 1994, Eds. M. Marinaro & P.G.
Morasso, pp. 797-800.

B. Hassibi, D.G. Stork: “Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon,” NIPS 5, Eds. S.J. Hanson et al., 164, San Mateo,
Morgan Kaufmann, 1993.

M.W. Pedersen, L.K. Hansen, J. Larsen: “Pruning With Generalization Based
Weight Saliences: γOBD, γOBS,” 1995.

nnrarmx1, nnrarmx2, nnrarx

Neural Network Based System Identification Toolbox User’s Guide 2-47

nnrarmx1, nnrarmx2, nnrarx
Purpose

Identify a neural network model of a dynamic system by using a recursive
algorithm.

Synopsis
[w1,w2,chat,critvec,iteration]=...
 nnrarmx1(NetDef,NN,W1,W2,Chat,trparms,Y,U)

[w1,w2,critvec,iteration]=...
 nnrarmx2(NetDef,NN,W1,W2,trparms,Y,U)

[w1,w2,critvec,iteration,lambda]=...
 nnrarx(NetDef,NN,W1,W2,trparms,Y,U)

Input
See the “batch” counterparts (NNARMAX1, NNARMAX2, NNARX). The
method field in trparms is particularly important here. It selects one of three
different recursive training schemes. The default method is the exponential
forgetting factor algorithm. See SETTRAIN for details.

Output
See their batch counterparts.

Description
The three functions are the recursive counterparts to NNARMAX1,
NNARMAX2, and NNARX, respectively. The networks are trained with a
recursive Gauss-Newton based method (see RPE) instead of a batch method.
Most often the disadvantages of a recursive method are overwhelming
compared to a batch method, but they can be useful for very large
networks+data sets since lack of memory in this case can be a problem. They
can also be advantageous compared to batch training when there is high degree
of redundancy in the data set.

Example
>> load spmdata
>> NetDef = ['HHHHH'; 'L----'];
>> NN=[2 2 1];
>> trparms=settrain;

nnrarmx1, nnrarmx2, nnrarx

2-48

>> trparms=settrain(trparms,’maxiter’,100,’p0’,1e3);
>> [W1,W2,critvec,iter]=nnrarx(NetDef,NN,[],[],trparms,y1,u1);
>> [yhat,NSSE]=nnvalid('nnrarx',NetDef,NN,W1,W2,y2,u2);

Algorithm
Be careful not to use a forgetting factor which is too small when using the
forgetting factor method. Because of the many weights usually present in the
network, some eigenvalues in the covariance matrix (“the inverse Hessian”)
will grow uncontrollably.

See Also
NNARMAX1, NNARMAX2, NNARX.

References
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

J.E. Parkum: “Recursive Identification of Time-Varying Systems,” Ph.D.
thesis, IMM, Technical University of Denmark, 1992.

M.E. Salgado, G. Goodwin, R.H. Middleton: “Modified Least Squares
Algorithm Incorporating Exponential Forgetting And Resetting,” Int. J.
Control, 47, pp. 477-491.

M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for
Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnsimul

Neural Network Based System Identification Toolbox User’s Guide 2-49

nnsimul
Purpose

Simulate the response of model of dynamic system to a sequence of control
inputs.

Synopsis
Network generated by NNARX (or NNRARX):
 Ysim = nnsimul('nnarx',NetDef,NN,W1,W2,Y,U);

(likewise for networks generated by NNARMAX1+2 and NNOE)

Network generated by NNSSIF:
 Ysim = nnsimul('nnssif',NetDef,nx,W1,W2,Y,U,obsidx);

Input
See nnvalid/ifvalid.

Output
Ysim: Vector containing simulated outputs.

NB! The function does not work for models generated by NNIOL.

Description
Simulate how a neural network model of a dynamic system responds to a
specific sequence of control inputs alone. The simulated output is compared to
the observed output. For NNARMAX1+2 models the initial unknown
residuals are assumed to be 0.

Examples
>> load spmdata
>> NetDef = ['HHHH’;'L---'];
>> NN=[2 2 1];
>> trparms=settrain;
>> trparms=settrain(trparms,’maxiter’,300,’D’,1e-3);
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);
>> ysim=nnsimul('nnarx',NetDef,NN,W1,W2,y1,u1);

nnssif

2-50

nnssif
Purpose

Identify a neural network model in state space innovations form.

Synopsis
[w1,w2,obsidx,critvec,iteration,lambda]=...
 nnssif(NetDef,nx,W1,W2,obsidx,trparms,Y,U)

Inputs:
U: Input data (= control signal). dim(U)=[(# of inputs) * (# of data)]
Y: Output data. dim(Y)=[1 * (# of data)]
nx: # of states (= the order of the system)
W1,W2: Input-to-hidden layer and hidden-to-output layer weights.

dim(W1)= [(# of hidden units) * (nx+inputs+outputs+1)]
 dim(W2)=[nx * (# of hidden units+1)]
 If they are passed as [] they are initialized automatically.
obsidx: Pseudo-observability indices. Their sum must equal nx!
 If passed as [] a particular set of indices is selected.
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Description
Determines a nonlinear state space model of a dynamic system:

()

),(ˆ)(ˆ

)(),1(),,(ˆ),1(ˆ

θ
θεθθ

txCty

ttutxgtx

=
−=+

The neural network is trained with the Levenberg-Marquardt method. The
function can handle multi-input multi-output systems (MIMO).

The function does not work for time series.

Examples
>> load spmdata
>> NetDef = ['HHHH';'LL--'];
>> trparms=settrain;
>> trparms=settrain(trparms,’maxiter’,300,’D’,1e-3,’skip’,10);
>> [W1,W2,obsidx,critvec,iter,lambda] =...
 nnssif(NetDef,2,[],[],[],trparms,y1,u1);

nnssif

Neural Network Based System Identification Toolbox User’s Guide 2-51

>> [yhat,NSSE]=ifvalid(NetDef,2,W1,W2,obsidx,y2,u2);

Algorithm
The name NNSSIF has been chosen because the regressors equal those of a
linear state space innovations form (the Kalman filter).

See Ljung (1987) for an explanation of overlapping parametrizations, and for a
definition of the pseudo-observability indices.

See Also
IFVALID.

Reference
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

 M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for

Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

nnvalid

2-52

nnvalid
Purpose

Validate neural network input-output models of dynamic systems.

Synopsis
Network generated by NNARX (or NNRARX):
 [Yhat,NSSE] = nnvalid('nnarx',NetDef,NN,W1,W2,Y,U)

Network generated by NNARMAX1 (or NNRARMX1):
 [Yhat,NSSE] = nnvalid('nnarmax1',NetDef,NN,W1,W2,C,Y,U)

Network generated by NNARMAX2 (or NNRARMX2):
 [Yhat,NSSE] = nnvalid('nnarmax2',NetDef,NN,W1,W2,Y,U)

Network generated by NNOE:
 [Yhat,NSSE] = nnvalid('nnoe',NetDef,NN,W1,W2,Y,U)

Network generated by NNARXM:
 [Yhat,NSSE] = nnvalid('nnarxm',NetDef,NN,W1,W2,Gamma,Y,U)

Input
See the function used for generating the model.
For time series the argument U is simply left out.

Output
Yhat: Network predictions.
NSSE: Normalized sum of squared errors.

Description
The function validate models that have been generated by one of the functions
NNARX(M), NNRARX, NNARMAX1+2, NNRARMX1+2, or NNOE.

The following plots are produced:
- Observed output together with predicted output.
- Prediction error.
- Auto correlation function of prediction error and cross-correlation between

prediction error and input.
- A histogram showing the distribution of the prediction errors.
- Coefficients of extracted linear models.

nnvalid

Neural Network Based System Identification Toolbox User’s Guide 2-53

Example
>> load spmdata
>> NetDef = ['HHHH’;'L---'];
>> NN=[2 2 1];
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],[],y1,u1);
>> [yhat,NSSE]=nnvalid('nnarx',NetDef,NN,W1,W2,y2,u2);

obdprune

2-54

obdprune
Purpose

Prune ordinary feedforward networks with Optimal Brain Damage (OBD).

Synopsis
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec]=...
 obdprune(NetDef,W1,W2,PHI,Y,trparms,prparms,PHI2,Y2)

Input
NetDef, W1, W2,
PHI, Y, trparms: See for example the function MARQ.
PHI2,Y2 (optional): Test data. This can be used as an indicator for pointing

out the optimal network architecture.
prparms: Parameters associated with the pruning session.
 prparms = [iter RePercent]
 iter: Max. number of retraining iterations.
 RePercent : Prune 'RePercent' percent of the remaining
 weights (0 = prune one weight at a time).
 If passed as [] prparms will be set [50 0].

 Output
 thd: Matrix containing all the parameter vectors
 NSSEvec: Vector containing normalized sum of squared errors (SSE/2N),

the training error, after each weight elimination.
 FPEvec: Contains the FPE estimate of the average generalization error
 NSSEtestvec: Contains the test error (SSE/2N for the test set).
 deff_vec: Contains the “effective” number of weights.
 pvec: Index into the above vectors.

Description
This function applies the Optimal Brain Damage (OBD) strategy for pruning
feed-forward neural networks. Two different prucedures are possible:
• Eliminate one weight, retrain, eliminate one weight, retrain,
• Eliminate 5% (or some other percentage) of the remaining weights, retrain,

eliminate 5% of the remaning weights,retrain,

The retraining is done with the Levenberg-Marquardt method in MARQ.

The function will return a matrix containing the parameter vectors (a vector
containing all weights), obtained after each retraining. The optimal parameter

obdprune

Neural Network Based System Identification Toolbox User’s Guide 2-55

vector is then chosen afterwards. For example as the one representing the
network leading to the smallest FPE or the one leading to the smallest test
error (if a test set is available). After having determined the optimal number of
weights, the weight matrices are extracted from the thd-matrix with the
function NETSTRUC.

Example
Prune network with OBD
>> [thd,tre,fpevec,tee,deff,pvec]=...
 obdprune(NetDef,W1,W2,PHI1,Y1,trparms,[50 5],PHI2,Y2)

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

See Also
NETSTRUC, OBSPRUNE, NNPRUNE.

References
Y. Le Cun, J:S. Denker, S.A Solla: “Optimal Brain Damage,” Advances in
Neural Information Processing Systems, Denver 1989, ed. D. Touretzsky,
Morgan Kaufmann, pp. 598-605.

C. Svarer, L.K. Hansen, J. Larsen: “On Design and evaluation of Tapped-
Delay Neural Network Architectures,” The 1993 IEEE Int. Conf. on Neural
networks, San Francisco, Eds. H.R. Berenji et al., pp. 45-51.

obsprune

2-56

obsprune
Purpose

Prune ordinary feedforward networks with Optimal Brain Surgeon (OBS).

Synopsis
[thd,NSSEvec,FPEvec,NSSEtestvec,deff_vec,pvec]=...
 obsprune(NetDef,W1,W2,PHI,Y,trparms,prparms,PHI2,Y2)

Input
NetDef, W1, W2,
PHI, Y, trparms: See for example the function MARQ.
PHI2,Y2 (optional): Test data. This can be used as an indicator for pointing

out the optimal network architecture.
prparms: Parameters associated with the pruning session.
 prparms = [iter RePercent]
 iter: Max. number of retraining iterations.
 RePercent : Prune 'RePercent' percent of the remaining
 weights (0 = prune one weight at a time).
 If passed as [] prparms will be set to [50 0].

 Output
 thd: Matrix containing all the parameter vectors
 NSSEvec: Vector containing normalized sum of squared errors (SSE/2N),

the training error, after each weight elimination.
 FPEvec: Contains the FPE estimate of the average generalization error
 NSSEtestvec: Contains the test error (SSE/2N for the test set).
 deff_vec: Contains the “effective” number of weights.
 pvec: Index into the above vectors.

Description
This function applies the Optimal Brain Surgeon (OBS) strategy for pruning
feed forward neural networks. Two different procedures are possible:
• Eliminate one weight, retrain, eliminate one weight, retrain,
• Eliminate 5% (or some other percentage) of the remaining weights, retrain,

eliminate 5% of the remaning weights,retrain,

The retraining is done with the Levenberg-Marquardt method in MARQ.

The function will return a matrix containing the parameter vectors (a vector
containing all weights) obtained after each retraining. The optimal parameter

obsprune

Neural Network Based System Identification Toolbox User’s Guide 2-57

vector is then chosen afterwards. For example as the one representing the
network leading to the smallest FPE or the one leading to the smallest test
error (if a test set is available). After having determined the optimal number of
weights, the weight matrices are extracted from the thd-matrix with the
function NETSTRUC.

Examples
Prune network with OBS
>> [thd,tre,fpevec,tee,deff,pvec]=...
 obsprune(NetDef,W1,W2,PHI1,Y1,trparms,[50 5],PHI2,Y2)

Find index to minimum FPE
>> [minfpe,index] = min(fpevec(pvec));
>> index = pvec(index);

Extract weights from matrix of parameter vectors
>> [W1,W2] = netstruc(NetDef,thd,index);
>> drawnet(W1,W2,eps)

Algorithm
If the network has been trained without regularization (weight decay), the basic
OBS scheme of Hassibi and Stork is used. To avoid numerical problems, the
inverse (Gauss-Newton) Hessian is approximated by the recursive method
described in the paper (see also RPE). If regularization was used when training
the network, the saliences are calculated as the prediced increase in the training
error as described by Hansen & Pedersen. If more than one weight is
eliminated between each retraining the inverse Hessian is calculated after each
weight elimination as the Schur complement of the previous inverse Hessian
(see Pedersen et al.).

The OBS-scheme has been implemented so that it is impossible to have hidden
units without weights leading to as well as from them. If a hidden unit has only
one weight connecting it to the input or one weight connecting it to the output
layer, the saliency for removing the entire unit is calculated. If the entire unit-
saliency is smaller than any of the other saliencies, the entire unit will be
removed.

See Also
NETSTRUC, OBDPRUNE, NNPRUNE.

obsprune

2-58

References
L.K. Hansen & M. W. Pedersen: “Controlled Growth of Cascade Correlation
Nets,” Proc. ICANN ‘94, Sorrento, Italy, 1994, Eds. M. Marinaro & P.G.
Morasso, pp. 797-800.

B. Hassibi, D.G. Stork: “Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon,” NIPS 5, Eds. S.J. Hanson et al., 164, San Mateo,
Morgan Kaufmann, 1993.

M.W. Pedersen, L.K. Hansen, J. Larsen: “Pruning With Generalization Based
Weight Saliences: γOBD, γOBS,” 1995.

pmntanh

Neural Network Based System Identification Toolbox User’s Guide 2-59

pmntanh
Purpose

Fast hyperbolic tangent function.

Synopsis
y=pmntanh(x)

Description
The function replaces the TANH function provided by MATLAB to increase
speed. This is particularly relevant for older versions of MATLAB where the
implementation of tanh is relatively slow.

rpe

2-60

rpe
Purpose

Recursive prediction error method.

Synopsis
[w1,w2,critvec,iter]=rpe(NetDef,W1,W2,PHI,Y,trparms)

Input
NetDef: Network definition.
W1: Input-to-hidden layer weights
 dim(W1)=[(# of hidden units) * (inputs + 1)] (1 is due to the bias)
 Use [] for a random initialization.
W2: Hidden-to-output layer weights
 dim(W2)=[(outputs) * (# of hidden units + 1)]
 Use [] for a random initialization.
PHI: Input data. dim(PHI)=[(inputs) * (# of data)]
Y: Output data. dim(Y)=[(outputs) * (# of data)]
trparms: Data structure containing parameters associated with the training

algorithm (optional). Use the function SETTRAIN if you do not
want to use the default values.

Output
w1, w2: Weight matrices obtained by training.
critvec: Vector containing the criterion after each iteration.
iter: # of iterations.

Description
Given a set of corresponding input-output pairs and an initial network, a two
layer neural network is trained with the recursive prediction error method
(“recursive Gauss-Newton”). Also pruned, i.e., not fully connected, networks
can be trained. Most often the disadvantages of a recursive method are
overwhelming compared with a batch method. The recursive methods may,
however, be relevant for very large networks+data sets where lack of memory
is a problem or when there is a high degree of redundancy in the data set.
Different methods have been implemented with inspiration from adaptive
control: exponential forgetting, constant trace and the so-called exponential
forgetting and resetting algorithm (EFRA). The method field in trparms selects
one of the three schemes. The default method is the exponential forgetting
factor algorithm. See SETTRAIN for details.

rpe

Neural Network Based System Identification Toolbox User’s Guide 2-61

The activation functions can be either linear or tanh. The network architecture
is defined by the matrix 'NetDef' which has two rows. The first row specifies
the hidden layer while the second specifies the output layer.

E.g.: NetDef = ['LHHHH'
 'LL---']
 (L = linear, H = tanh)
Notice that the bias is included as an extra column in the weight matrices and
that a weight is eliminated (i.e. 0 and not updated) by setting it to zero.

Example
Generate data as sinusiodal+noise
>> PHI = 2*pi*rand(1,300);
>> Y = sin(PHI) + 0.2*randn(1,300);
>> plot(PHI,Y,’+’);

Initialize Network. 5 tanh hidden units, 1 linear output
>> NetDef = [‘HHHHH’;’L----’];
>> [W1,W2,critvec,iter]=rpe(NetDef,[],[],PHI,Y);
>> drawnet(W1,W2,eps)

Plot criterion evaluated after each iteration
>> semilogy(critvec); grid;
>> xlabel(‘Iteration’);
>> ylabel(‘Training error’)

Algorithm
Be careful not to select the forgetting factor too small in the forgetting factor
method. Due to the large number of weights usually present in a network
eigenvalues in the covariance matrix (“the inverse Hessian”) might grow
uncontrollably.

See Also
MARQ, BATBP, INCBP.

References
L. Ljung: “System Identification - Theory for the User,” Prentice-Hall, 1987.

J.E. Parkum: “Recursive Identification of Time-Varying Systems,” Ph.D.
thesis, IMM, Technical University of Denmark, 1992.

rpe

2-62

M.E. Salgado, G. Goodwin, R.H. Middleton: “Modified Least Squares
Algorithm Incorporating Exponential Forgetting And Resetting,” Int. J.
Control, 47(2), 1988, pp. 477-491.

 M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen: ”Neural networks for

Modelling and Control of Dynamic Systems,” Springer-Verlag, London, 2000.

settrain

Neural Network Based System Identification Toolbox User’s Guide 2-63

settrain
Purpose

Set parameters for a training algorithm.

Synopsis
trparms =settrain;
 Set all parameters to default values.

settrain(trparms)
 List all parameters.

trparms = settrain(trparms,'field1',value1,'field2',value2,...)
 Set specific parameters
 trparms.field1 = value1;
 trparms.filed2 = value2;
 etc.
 If value = 'default' the parameter is set to its default value.

The following fields are valid:

Information displayed during training

 infolevel - Display little information (0) or much (1).

 Stopping criteria (all algorithms, see note below)
 maxiter - Maximum iterations.
 critmin - Stop if criterion is below this value.
 critterm - Stop if change in criterion is below this value.
 gradterm - Stop if largest element in gradient is below this value.
 paramterm - Stop if largest parameter change is below this value.
 NB: critterm, gradterm and paramterm must all be satisfied.

 Weight decay (all algorithms trained with the Levenberg-Marquardt alg.)
 D - Row vector containing the weight decay parameters. If D has one

element a scalar weight decay will be used. If D has two elements, the
first element will be used as weight decay for the hidden-to-output layer
while second will be used for the input-to-hidden layer weights. For
individual weight decays, D must contain as many elements as there are
weights in the network.

 Levenberg-Marquardt parameters
 lambda - Initial Levenberg-Marquardt parameter.

settrain

2-64

 Back-propagation parameters
 eta - Step size.
 alph - Momentum.

 RPE parameters
 method - Training method ('ff', 'ct', 'efra').

 Forgetting factor (method=’ff’)
 fflambda - Forgetting factor.
 p0 - Covariance matrix is initialized to p0*I.

 Constant trace (method=’ct’)
 ctlambda - Forgetting factor.
 alpha_min - Min. eigenvalue of P matrix.
 alpha_max- Max. eigenvalue of P matrix.

 EFRA (method=’efra’)
 eflambda - Forgetting factor.
 alpha - EFRA parameter.
 beta - EFRA parameter.
 delta - EFRA parameter.

 For recurrent nets
 skip - Do not use the first 'skip' samples for updating the weights.

 For multi-output networks
 repeat - Number of times the IGLS procedure should be repeated.

Remarks on the Stopping Criteria
The stopping criterion is not the same for all training algorithms. The batch
algorithms use all the parameters; the recursive algorithms use only maxiter,
critmin and critterm.

If it is important that training is continued until the weights are extremely close
to the minimizing values, one should reduce critterm, gradterm, and
paramterm (or at least one of them).

wrescale

Neural Network Based System Identification Toolbox User’s Guide 2-65

wrescale
Purpose

Rescale the weights of the trained network model if the training data was
scaled with DSCALE prior to the training.

Synopsis
[w1,w2]=wrescale(method,W1,W2,Uscale,Yscale,NN)

Input
method The function applied for generating the model. For example

method='nnarx' or method='nnoe'. Use method='inverse' for inverse
models (see the NNCTRL toolkit).

W1: Input-to-hidden weights of network trained on scaled data.
W2: Hidden-to-output weights.
Uscale: Matrix containing the sample mean and standard deviation for
each
 input. For time series an empty matrix, [], is passed.
Yscale: Matrix containing mean and std's for each output.
NN: Vector containing lag spaces, i.e., the number of past signals used as

input to the network (see nnarx, nnarmax, nnoe ..). For ordinary
feedforward networks (“function fitting” type networks) NN is left
out.

Output
w1, w2: Scaled weight matrices.

Description
WRESCALE rescales the weights for networks with LINEAR OUTPUT
UNITS. Don’t use it for networks with tanh output units! The function works
for feedforward networks as well as for input-output models of dynamic
systems (i.e. NNAR(X), NNARMA(X) and NNOE type models). If the
function DSCALE was used for scaling the data to zero mean and unity
variance before training, the weights should be rescaled after training so that
the network can work on unscaled data. Notice that when the function is used
on a pruned network, it is likely to reintroduce biases removed in the pruning
session.

See Also
DSCALE.

xcorrel

2-66

xcorrel
Purpose

Calculate high-order cross-correlation functions for input-output models of
dynamic systems.

Synopsis
Network generated by NNARX (or NNRARX):
 xcorrel('nnarx',NetDef,NN,W1,W2,Y,U)

Network generated by NNARMAX1 (or NNRARMX1):
 xcorrel('nnarmax1',NetDef,NN,W1,W2,C,Y,U)

Network generated by NNARMAX2 (or NNRARMX2):
 xcorrel('nnarmax2',NetDef,NN,W1,W2,Y,U)

Network generated by nnoe:
 xcorrel('nnoe',NetDef,NN,W1,W2,Y,U)

Input
See the function used for generating the model.
For time series the argument U is left out.

Description
The function calculates a number of high order cross-correlation functions for
models that have been generated by one of the functions NNARX, NNRARX,
NNARMAX1+2, NNRARMX1+2, or NNOE.

Ideally, the prediction errors from the trained neural network model should be
unpredictable from all combinations of past inputs and outputs. A complete
check for statistical independence is obviously not feasible so instead it is
common to investigate a few “wisely” chosen correlation functions.

Plots of the following six (normalized) correlation functions are produced:

�
	

≠
=

=
−

−−−
=

�

�

=

−

=

0,0
0,1

))ˆ,((

))ˆ,()()ˆ,((
)(ˆ

1

2

1

τ
τ

εθε

εθτεεθε
τ

τ

εε N

t

N

t

t

tt
r

xcorrel

Neural Network Based System Identification Toolbox User’s Guide 2-67

τ
εθε

εθτε
τ

τ

ε ∀=

�
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

−

= ,0

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

2
2/1

1

2

1

N

t

N

t

N

t
u

tutu

tutu
r

τ
εθε

εθτε
τ

τ

ε ∀=

�
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

−

= ,0

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

222
2/1

1

222

1

2222

22
N

t

N

t

N

t
u

tutu

tutu
r

τ
εθε

εθτε
τ

τ

ε ∀=

�
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

−

= ,0

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

2
2/1

1

222

1

22

2
N

t

N

t

N

t
u

tutu

tutu
r

0,0

))(())ˆ,((

))1()()ˆ,((
)(ˆ

2/1

1

2
2/1

1

2

1 ≥=

�
�

�
�
�

� −�
�

�
�
�

� −

−−−−
=

��

�

==

−

= τ
ββεθε

βτβεθε
τ

τ

εβ
N

t

N

t

N

t

tt

tt
r

�
	

≠
=

=

�
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

−

=

0,0
0,

))ˆ,(())((

))ˆ,()()((
)(ˆ

2/1

1

222
2/1

1

2

1

22

2 τ
τ

εθεαα

εθτεαα
τ

τ

αε

k

tt

tt
r

N

t

N

t

N

t

τ
θαα

ταα
τ

τ

α ∀=

�
�

�
�
�

� −�
�

�
�
�

� −

−−−
=

��

�

==

−

= ,0

))ˆ,(())((

))()()((
)(ˆ

2/1

1

222
2/1

1

2

1

22

2
N

t

N

t

N

t
u

utut

utut
r

where

)ˆ,()()(θεβ ttut =

)ˆ,()()(θεα ttyt =

2/1

1

2

2/1

1

22

2

))((

))ˆ,((

�
�

�
�
�

� −

�
�

�
�
�

� −
=

�

�

=

=

N

t

N

t

t

t
k

αα

εθε

xcorrel

2-68

The overbar denotes the average of a signal

�
=

=
N

t

tx
N

x
1

)(
1

The normalized correlation functions (sometimes called the correlation
coefficients) are displayed along with their 95% confidence interval.

Notice that NNVALID calculates the autocorrelation function of the prediction
error.

Example
>> load spmdata
>> NetDef = ['HHHH’;'L---'];
>> NN=[2 2 1];
>> trparms=settrain;
>> trparms=settrain(trparms,’maxiter’,300,’D’,1e-3);
>> [W1,W2,critvec,iter,lambda]=nnarx(NetDef,NN,[],[],trparms,y1,u1);
>> xcorrel('nnarx',NetDef,NN,W1,W2,y2,u2);

See Also
NNVALID.

Reference
S.A. Billings, Q.M. Zhu: Nonlinear model validation using correlation tests,
International Journal of Control,Vol. 60, no. 6, pp. 1107-1120, 1994.

S.A. Billings, H.B. Jamaluddin, S. Chen: Properties of neural networks with
applications to modelling non-linear dynamical systems, International Journal
of Control,Vol. 55, no. 1, pp. 193-224, 1992.

