Quantum Cryptography (fall 2018)

Dominique Unruh

Exercise Sheet 4

Out: 2018-10-11 Due: 2018-10-18

Problem 1: Deutsch-Jozsa Algorithm

Assume that $f: \{0,1\}^n \to \{0,1\}$ is a function that satisfies one of the following two properties:

- f is constant (i.e., f(x) = f(y) for all $x, y \in \{0, 1\}^n$), or
- f is balanced (i.e., $|\{x: f(x)=0\}| = |\{x: f(x)=1\}| = 2^{n-1}$).

That is, we have the promise that f is constant or balanced, but we do not know which of the two holds.

Let U_f be the unitary transformation on \mathbb{C}^{2^n} defined by

$$U_f|x,y\rangle = |x,y \oplus f(x)\rangle$$
 $(x \in \{0,1\}^n, y \in \{0,1\}).$

Consider the following circuit:

where M is a complete measurement in the computational basis.

The $|\Psi_i\rangle$ denote the intermediate states after the individual steps of the algorithm. E.g., $|\Psi_1\rangle = |0\dots 01\rangle$.

- (a) What is $|\Psi_2\rangle$?
- (b) Show that

$$|\Psi_3\rangle = \sum_{x \in \{0,1\}^n} 2^{-n/2-1/2} |x, f(x)\rangle - 2^{-n/2-1/2} |x, \overline{f(x)}\rangle.$$

(Here $\overline{f(x)} := 1 - f(x)$.)

(c) Show that

$$|\Psi_3\rangle = \left(2^{-n/2} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle\right) \otimes |-\rangle$$

Here $|-\rangle$ is short for $\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$.

- (d) Show that $H^{\otimes n}|x\rangle = 2^{-n/2} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle$ where $x \cdot z := \sum_{i=1}^n x_i z_i$.
- (e) What is $|\Psi_4\rangle$?
- (f) Show that the probability P of measuring 0...0 in the measurement is $\left(2^{-n}\sum_{x\in\{0,1\}^n}(-1)^{f(x)}\right)^2$.
- (g) Compute the probability P of measuring 0...0 in the case that f is constant.
- (h) Compute the probability P of measuring 0...0 in the case that f is balanced.

Problem 2: Quantum State Probability Distributions and Density Operators

(a) Consider the following quantum state probability distributions:

$$E_{1} = \{|0\rangle @ \frac{1}{2}, |+\rangle @ \frac{1}{2}\},$$

$$E_{2} = \{|0\rangle @ \frac{1}{4}, |1\rangle @ \frac{3}{4}\},$$

$$E_{3} = \{|0\rangle @ \frac{1}{4}, |1\rangle @ \frac{1}{4}, |+\rangle @ \frac{1}{4}, |-\rangle @ \frac{1}{4}\}.$$

Compute the corresponding density operators ρ_1, ρ_2, ρ_3 as explicitly given matrices. (Note: $|+\rangle := \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ and $|-\rangle := \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$.)

(b) Consider the following process: First, a random value $x \in \{0,1\}^n$ is chosen. Then an *n*-bit quantum register is prepared to have the value $|\Psi\rangle := |x\rangle$. Then a unitary transformation U is applied to Ψ . What is the density operator corresponding to the resulting quantum state probability distribution?

Hint: As the first step, consider the case that U is the identity.

(c) Let a measurement M consisting of projectors P_1, \ldots, P_n be given. Let a quantum state $|\Psi\rangle$ be given. Assume that $|\Psi\rangle$ is measured using M but the measurement outcome is **not recorded** (i.e., it is forgotten, erased). What is the quantum state probability distribution describing the state of the system after this experiment? What is the corresponding density operator?

Note: The formula in the lecture was for the case where the measurement outcome is **not** forgotten.

- (d) Assume a quantum system is in the state described by a density operator ρ . We apply a measurement M consisting of projectors P_1, \ldots, P_n to the system and forget the outcome. What is the density operator describing the resulting state of the system?
- (e) In the lecture, we mentioned several times that a global phase, i.e., a factor $\varphi \in \mathbb{C}$ with $|\varphi| = 1$ in front of a quantum state, is physically irrelevant.

Demonstrate this by showing that the two states $|\Psi\rangle$ and $\varphi|\Psi\rangle$ are physically indistinguishable.¹

Problem 3: Physical indistinguishability – the opposite direction (bonus problem)

Let E_1 and E_2 be quantum state probability distributions with density matrices ρ_1 and ρ_2 . Assume that $\rho_1 \neq \rho_2$. Prove that E_1 and E_2 are physically distinguishable by specifying a measurement $M = \{Q_{\text{yes}}, Q_{\text{no}}\}$ with the following property: When measuring E_1 and E_2 with M, we get the outcome yes with different probabilities P_1 and P_2 (where $P_i := \Pr[\text{Outcome is yes when measuring } \rho_i]$).

Hint: Consider the matrix $\sigma := \rho_1 - \rho_2$. Show that σ is diagonalisable and that it therefore has an eigenvector $|\Psi\rangle$ with eigenvalue $\lambda \neq 0$. Set $Q_{\text{yes}} := |\Psi\rangle\langle\Psi|$. You may use without proof the fact that a density operator is always Hermitean.

¹More precisely, that the quantum state probability distributions $\{(|\Psi\rangle, 1)\}$ and $\{(\varphi|\Psi\rangle, 1)\}$ are physically indistinguishable.