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Problem 1: Universal hash functions

(a) Let S be the set of all binary `×m-matrices. I.e., S = F`×m2 . Let X be the set of
all m-bit vectors. I.e., X = Fm2 . Let Y = F`2. Let F : S × X → Y be defined as
F (s, x) := sx.

Show that F is a universal hash function.

Note: You may use the fact that for any fixed z 6= 0, and uniformly distributed
s ∈ F`×m2 , sz is uniformly distributed on F`2. (Bonus points if you prove that fact,
too.)

Note: This was sketched in the lecture. You only get points if your proof goes
beyond the sketch in the lecture in detail/rigor.

(b) (Bonus problem) Let S := X := F2m be a finite field (encoded in the standard way
as an F2 vector space). Let trunc`(x) denote the first ` bits of x. Let Y := {0, 1}`.
Let F : S ×X → Y be defined as F (s, x) := trunc`(sx).

Show that F is a universal hash function.

Note: You may use that trunc`(a− b) = trunc`(a)− trunc`(b). (This is immediate
from the encoding of F2m .)

Problem 2: Concrete parameters (bonus problem)

Consider the QKD scheme described in Definition 45 in the lecture notes. Theorem 5 in
the lecture notes shows that the protocol is ε-secure for a certain ε that depends on the
protocol parameters.

Suggest a choice of parameters such that ε ≤ 2−80 and ` = 256. How many qubits are
transmitted for that choice?

Note: The parameter choice should be possible! That is, you need to make sure that there
is a universal hash function F and an error correcting code with the right parameters.

Note: For any integers a, b > 0 with b < 2a − 1, there exists a so-called Reed-Solomon
code with code words of length a(2a − 1), correcting bb/2c errors, and with syndrome
length ab.

Note: You do not need to find an optimal solution.

https://courses.cs.ut.ee/all/MTAT.07.024/2013_fall/uploads/notes.pdf
https://courses.cs.ut.ee/all/MTAT.07.024/2013_fall/uploads/notes.pdf


Problem 3: Discrete Fourier Transform

In this problem, not that the indexes in the definition of the DFT start with 0. I.e., the
top-left component of DN = N−1/2 ((e2iπkl/N ))kl is N−1/2 e2iπ00/N = 1.

(a) Show that the N ×N -DFT DN is unitary.

Hint: Show first that for some ω̃ ∈ C with ω̃N = 1 and ω̃ 6= 1, we have
∑N−1

k=0 ω̃
k = 0.

(What is ω̃ ·
(∑N−1

k=0 ω̃
k
)

= 0?)

(b) Give a circuit for D2 using only elementary gates (i.e., only gates given in the lecture
notes in Sections 2 and 5).

(c) (Bonus) Let N > 0 be an integer. Let r ∈ {1, . . . , N} with r | N . Let x0 ∈
{0, . . . , r − 1}. Let |Ψ〉 := t−1/2

∑t−1
k=0|x0 + kr〉 where δ is a normalization factor and

t := N/r.

(If r = ord a | N for some group element a, then |Ψ〉 is the post-measurement state
we have in Shor’s order-finding algorithm directly before applying the DFT DN .)

Let DN be the N ×N -DFT. Let |Ψ′〉 := DN |Ψ〉. Consider a measurement on |Ψ′〉 in
the computational basis and let γ denote the outcome. Show that Pr[Nr divides γ] = 1.
(In other words, if N - γr then |〈γ|Ψ′〉|2 = 0.)

(That is, at least in the case where ord a | N , the order finding algorithm returns a
multiple of N/ ord a.)

Hint: Show first that for some ω̃ ∈ C and t ∈ N with ω̃t = 1 and ω̃ 6= 1, we have∑t−1
k=0 ω̃

k = 0.

Note: This was sketched in the lecture. You only get points if your proof goes
beyond the sketch in the lecture in detail/rigor.

Problem 4: Inverting cyclic functions

Consider a function H : [N ] → [N ] where [N ] := {0, . . . , N − 1}. Let H i(x) denote
H(H(H(. . . H(x) · · · ))) (applied i times). For the sake of this problem, we call H cyclic
if there exists a value p (the period) such that for all x, Hp(x) = H(x).

(a) Let UH |x〉|i〉|0〉 = |x〉|i〉|H i(x)〉. Give a quantum algorithm involving UH for finding
the period of H (assuming that H is cyclic).

Note: You may assume that the DFT DN can be implemented as a polynomial-time1

quantum circuit. (This is, in general, not true for all N . But in the general case, you
1By polynomial-time, I mean that the size of the circuit is bounded by p(logN) for some polynomial

p.



would be able to use an approximately solution that is only slightly more complicated
than the solution needed here.)

Note: “involving UH ” means that you can apply UH in a single runtime step.

(b) Given y = H(x) and given the period of p, show that you can find x in polynomial-time.
(You may still use UH .)

(c) The following statement is wrong:

Given a cyclic H and a value y ∈ rangeH, using the algorithm from (a), we
can find the period p of H, and then using the algorithm from (b), we can
compute H−1(y).2 Moreover, all involved algorithms run in polynomial-
time. Hence using quantum computers, cyclic functions can be inverted in
polynomial-time.

Why?

2Notice that cyclicity implies bijectivity, so H−1 is well-defined.


