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Problem 1: Deutsch-Jozsa Algorithm

Assume that f : {0, 1}n → {0, 1} is a function that satisfies one of the following two
properties:

• f is constant (i.e., f(x) = f(y) for all x, y ∈ {0, 1}n), or

• f is balanced (i.e., |{x : f(x) = 0}| = |{x : f(x) = 1}| = 2n−1).

That is, we have the promise that f is constant or balanced, but we do not know which
of the two holds.

Let Uf be the unitary transformation on C2n+1 defined by

Uf |x, y〉 = |x, y ⊕ f(x)〉 (x ∈ {0, 1}n, y ∈ {0, 1}).

Consider the following circuit:

|0 . . . 0〉 / H⊗n

Uf

H⊗n M

|1〉 H

|Ψ1〉 |Ψ2〉 |Ψ3〉 |Ψ4〉

where M is a complete measurement in the computational basis.
The |Ψi〉 denote the intermediate states after the individual steps of the algorithm.

E.g., |Ψ1〉 = |0 . . . 01〉.

(a) What is |Ψ2〉?

(b) Show that

|Ψ3〉 =
∑

x∈{0,1}n
2−n/2−1/2|x, f(x)〉 − 2−n/2−1/2|x, f(x)〉.

(Here f(x) := 1− f(x).)

(c) Show that
|Ψ3〉 =

(
2−n/2

∑
x∈{0,1}n

(−1)f(x)|x〉
)
⊗ |−〉

Here |−〉 is short for 1√
2
|0〉 − 1√

2
|1〉.



(d) Show that H⊗n|x〉 = 2−n/2
∑

z∈{0,1}n(−1)x·z|z〉 where x · z :=
∑n

i=1 xizi.

(e) What is |Ψ4〉?

(f) Show that the probability P of measuring 0 . . . 0 in the measurement is(
2−n

∑
x∈{0,1}n(−1)f(x)

)2.
(g) Compute the probability P of measuring 0 . . . 0 in the case that f is constant.

(h) Compute the probability P of measuring 0 . . . 0 in the case that f is balanced.

Problem 2: Quantum State Probability Distributions and
Density Operators

(a) Consider the following quantum state probability distributions:

E1 = {|0〉@1
2 , |+〉@

1
2},

E2 = {|0〉@1
4 , |1〉@

3
4},

E3 = {|0〉@1
4 , |1〉@

1
4 , |+〉@

1
4 , |−〉@

1
4}.

Compute the corresponding density operators ρ1, ρ2, ρ3 as explicitly given matrices.
(Note: |+〉 := 1√

2
|0〉+ 1√

2
|1〉 and |−〉 := 1√

2
|0〉 − 1√

2
|1〉.)

(b) Consider the following process: First, a random value x ∈ {0, 1}n is chosen. Then
an n-bit quantum register is prepared to have the value |Ψ〉 := |x〉. Then a unitary
transformation U is applied to Ψ. What is the density operator corresponding to the
resulting quantum state probability distribution?

Hint: As the first step, consider the case that U is the identity.

(c) Let a measurement M consisting of projectors P1, . . . , Pn be given. Let a quantum
state |Ψ〉 be given. Assume that |Ψ〉 is measured using M but the measurement
outcome is not recorded (i.e., it is forgotten, erased). What is the quantum state
probability distribution describing the state of the system after this experiment?
What is the corresponding density operator?

Note: The formula in the lecture was for the case where the measurement outcome
is not forgotten.

(d) (Bonus problem) Assume a quantum system is in the state described by a density
operator ρ. We apply a measurement M consisting of projectors P1, . . . , Pn to the
system and forget the outcome. What is the density operator describing the resulting
state of the system?



Problem 3: Physical indistinguishability – the opposite direc-
tion (bonus problem)

Let E1 and E2 be quantum state probability distributions with density matrices ρ1 and
ρ2. Assume that ρ1 6= ρ2. Prove that E1 and E2 are physically distinguishable by
specifying a measurement M = {Qyes, Qno} with the following property: When measuring
E1 and E2 with M , we get the outcome yes with different probabilities P1 and P2 (where
Pi := Pr[Outcome is yes when measuring ρi]).

Hint: Consider the matrix σ := ρ1 − ρ2. Show that σ is diagonalisable and that it
therefore has an eigenvector |Ψ〉 with eigenvalue λ 6= 0. Set Qyes := |Ψ〉〈Ψ|. You may use
without proof the fact that a density operator is always Hermitean.


