Problem 1: Deutsch-Jozsa Algorithm

Assume that \(f : \{0, 1\}^n \to \{0, 1\} \) is a function that satisfies one of the following two properties:

- \(f \) is constant (i.e., \(f(x) = f(y) \) for all \(x, y \in \{0, 1\}^n \)), or
- \(f \) is balanced (i.e., \(|\{x : f(x) = 0\}| = |\{x : f(x) = 1\}| = 2^{n-1}\)).

That is, we have the promise that \(f \) is constant or balanced, but we do not know which of the two holds.

Let \(U_f \) be the unitary transformation on \(\mathbb{C}^{2^{n+1}} \) defined by

\[
U_f |x, y\rangle = |x, y \oplus f(x)\rangle \quad (x \in \{0, 1\}^n, y \in \{0, 1\}).
\]

Consider the following circuit:

\]

where \(M \) is a complete measurement in the computational basis.

The \(|\Psi_i\rangle \) denote the intermediate states after the individual steps of the algorithm. E.g., \(|\Psi_1\rangle = |0\ldots01\rangle \).

(a) What is \(|\Psi_2\rangle \)?

(b) Show that

\[
|\Psi_3\rangle = \sum_{x \in \{0, 1\}^n} 2^{-n/2-1/2}|x, f(x)\rangle - 2^{-n/2-1/2}|x, \overline{f(x)}\rangle.
\]

(Here \(\overline{f(x)} := 1 - f(x) \).)

(c) Show that

\[
|\Psi_3\rangle = \left(2^{-n/2} \sum_{x \in \{0, 1\}^n} (-1)^{f(x)}|x\rangle\right) \otimes |-
angle
\]

Here \(|-\rangle \) is short for \(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle \).
(d) Show that $H^\otimes n |x\rangle = 2^{-n/2} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle$ where $x \cdot z := \sum_{i=1}^n x_i z_i$.

(e) What is $|\Psi_4\rangle$?

(f) Show that the probability P of measuring $0\ldots0$ in the measurement is $(2^{-n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)})^2$.

(g) Compute the probability P of measuring $0\ldots0$ in the case that f is constant.

(h) Compute the probability P of measuring $0\ldots0$ in the case that f is balanced.

Problem 2: Quantum State Probability Distributions and Density Operators

(a) Consider the following quantum state probability distributions:

$E_1 = \{ |0\rangle @ \frac{1}{2}, |+\rangle @ \frac{1}{2} \}$,

$E_2 = \{ |0\rangle @ \frac{1}{4}, |1\rangle @ \frac{3}{4} \}$,

$E_3 = \{ |0\rangle @ \frac{1}{4}, |1\rangle @ \frac{3}{4}, |+\rangle @ \frac{1}{4}, |−\rangle @ \frac{1}{4} \}$.

Compute the corresponding density operators ρ_1, ρ_2, ρ_3 as explicitly given matrices. (Note: $|+\rangle := \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$ and $|−\rangle := \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$.)

(b) Consider the following process: First, a random value $x \in \{0,1\}^n$ is chosen. Then an n-bit quantum register is prepared to have the value $|\Psi\rangle := |x\rangle$. Then a unitary transformation U is applied to Ψ. What is the density operator corresponding to the resulting quantum state probability distribution?

Hint: As the first step, consider the case that U is the identity.

(c) Let a measurement M consisting of projectors P_1, \ldots, P_n be given. Let a quantum state $|\Psi\rangle$ be given. Assume that $|\Psi\rangle$ is measured using M but the measurement outcome is not recorded (i.e., it is forgotten, erased). What is the quantum state probability distribution describing the state of the system after this experiment? What is the corresponding density operator?

Note: The formula in the lecture was for the case where the measurement outcome is not forgotten.

(d) **(Bonus problem)** Assume a quantum system is in the state described by a density operator ρ. We apply a measurement M consisting of projectors P_1, \ldots, P_n to the system and forget the outcome. What is the density operator describing the resulting state of the system?
Problem 3: Physical indistinguishability – the opposite direction (bonus problem)

Let E_1 and E_2 be quantum state probability distributions with density matrices ρ_1 and ρ_2. Assume that $\rho_1 \neq \rho_2$. Prove that E_1 and E_2 are physically distinguishable by specifying a measurement $M = \{Q_{\text{yes}}, Q_{\text{no}}\}$ with the following property: When measuring E_1 and E_2 with M, we get the outcome yes with different probabilities P_1 and P_2 (where $P_i := \Pr[\text{Outcome is yes when measuring } \rho_i]$).

Hint: Consider the matrix $\sigma := \rho_1 - \rho_2$. Show that σ is diagonalisable and that it therefore has an eigenvector $|\Psi\rangle$ with eigenvalue $\lambda \neq 0$. Set $Q_{\text{yes}} := |\Psi\rangle\langle \Psi|$. You may use without proof the fact that a density operator is always Hermitian.