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Problem 1: Quantum Key Exchange

Alice and Bob perform the following quantum key distribution protocol:

e Alice chooses random bits ay,...,a, € {0,1} and by,...,b, € {0,1}. For i =
1,...,n, Alice prepares |V;) := |¥,.;,) according to the following table:

[Woo) |0)
[P10) [1)
[Wo1) |+)
[W11) =)

(In other words, b; specifies the basis in which a; is encoded.)

e Then Alice sends |¥1) ® - -- ® |¥,,) to Bob (over an insecure quantum channel that
is under the control of the adversary Eve).

e When Bob has received all the n qubits, he acknowledges receipt over an authenti-
cated (but public, i.e., not secret) channel.

e After getting the acknowledgement from Bob, Alice sends all bits b; to Bob, and for
checking, she also sends a; to Bob for i =1,...,% (we assume n to be even).

e Then Bob measures each of the qubits he received in the basis given by the b;. Let
the outcomes be a@;.

e Bob checks whether a; = a; for all i = 1,..., 5. If so, he sends OK to Alice over the
authenticated channel and outputs the key EL%_H ... Gy, otherwise he sends ABORT
and aborts.

e When Alice receives OK, she outputs the key aniq...an. If she receives ABORT,
she aborts.

(a) Break the protocol.

(b) Argue how the protocol security could be improved. (But do not try to prove it!)



Problem 2: Eve’s advantage

Assume that in a (bad) QKD protocol, some adversary Eve succeeds in doing the following:
The protocol aborts with probability % In the cases where the protocol does not abort,
the key that is chosen is always 0...0 (n bits, n > 2). For simplicity, assume that Eve’s
state is empty after the protocol execution (that is, Eve’s quantum state consists of zero
qubits, and density operators pg describing Eve’s state can be omitted from all formulas).

(a) Describe the state pR%L.. What is the value of

TD(pARE, Sideal) = | max  TD(piFk, PiEE)

pleal €Sigeal
(for the particular Eve described above)?

(b) Show that the protocol is not e-secure for & = 1.

Problem 3: Doing the Impossible
Let |Bap) for a,b € {0,1} be the Bell states, and let

Py :=|5o0) (Bool + |510) (B1ol,
Pyt = |Boo){Bool| + |Bo1) (Lot

(Remember that {Pys,1 — Py} and {Pps,1 — Py} are the measurements that Alice and
Bob need to perform on their qubit pairs during the Bell test.)

(a) Consider the following two experiments on a two qubit system.

(i) The two qubits are (jointly) measured according to the measurement {Pye, :=
Pys, Ppy :=1— Pys}. Then the qubits are destroyed.

(ii) The two qubits are individually measured in the computational basis {|0), |1)}.
If the results are equal, output yes, otherwise output no. Then the qubits are
destroyed.

Show that both experiments are equivalent. That is, show that for any two-qubit
state p € S(C*), we have that the probability for getting outcome yes is the same.
(Usually, one would have to also show that the post-measurement state is the same.
But since here the qubits are destroyed, this is trivially the case.)

Hint: Let Py, P11 be the two projectors corresponding to both measuring 0 and
both measuring 1, respectively, in the second experiment. Then the probability of
yes in the second experiment is tr Pyop + tr P11p = tr(Poo + Pi1)p.

(b) Consider the following two experiments on a two qubit system.

(i) The two qubits are (jointly) measured according to the measurement {Pye, :=
Pyt, Py :=1— Py}, Then the qubits are destroyed.



(ii) The two qubits are individually measured in the diagonal basis {|+),|—)} with
|+) = %|O> + %|1> and |—) = %|0> - %H) If the results are equal, output
yes, otherwise output no. Then the qubits are destroyed.

Show that both experiments are equivalent.

Note that in both cases, experiment (ii) can be implemented even if the two qubits are
in different locations and only classical communication is possible between these locations.
This allows to replace the Bell test from the lecture by a procedure that can actually be
implemented.



