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Problem 1: Alice and Bob are being clever

Alice and Bob had a few clever ideas. In each case, explain why the idea is not a good
one.

1. Alice noticed that with a sufficiently strong laser pointer, she can make a beam that
is still easily seen on the moon. Since Bob is on a holiday on the moon, they decide
to do a key exchange. For this, they take an off-the-shelf QKD protocol (one that
only requires that Alice sends randomly polarised photons, and that Bob measures
in a random polarisation direction – no quantum computers needed). And as the
photon source, Alice uses her laser pointer. That is, she sends short light flashes of
the laser pointer through her polarisation filter as specified by the QKD protocol.

2. Alice and Bob want to use some QKD protocol over a long distance (300 km).
Unfortunately, all QKD protocols and implementations they know of do not manage
to do more than 250 km (because otherwise the error rate on the channel would
become too high). Fortunately, in the middle between Alice and Bob lives Charlie,
an untrusted yet helpful person. To get rid of the errors, they let Charlie work as
an amplifier: Each qubit is sent to Charlie, and Charlie measures the qubit and
resends it using a fresh photon.

3. In a usual QKD protocol Alice would first send the qubits. Then she would wait for
Bob to receive these. Then Alice sends the bases in which she produced the check
qubits (or some other classical information needed for the check/purification/privacy
amplification; this depends on the protocol they use). Alice and Bob decide to
be more efficient and do a “compressed QKD”. Since it is only Alice that sends
something, anyway, she sends all information simultaneously. I.e., she sends the
qubits and the classical information at the same time (over the quantum and the
authenticated classical channel, respectively) and thus achieves at least doubled
throughput.

Problem 2: Techniques from the QKD proof

Consider the following (rather useless) protocol. Alice gets a state ρ ∈ S(C2n) consisting
of n qubits. Then Alice chooses a random i ∈ {1, . . . , n} and measures the i-th qubit in ρ
in the computational basis. (The qubit is not discarded after the measurement.) If this
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measurement returns 1, Alice aborts. Let ρ̃ denote the state that Alice has under the
condition that she does not abort. Let Psuccess denote the probability of not aborting.

In the following, by T (ρ) we denote the density operator pρ̃ where p is the probability
that ρ passes Alice’s test and ρ̃ is the state that results after passing Alice’s test. (In
particular, ρ̃ = T (ρ)

trT (ρ) and p = trT (ρ).) For any projector P , we write short P (ρ) for
PρP †.

Hint: The following proofs use techniques that have appeared in the proof of QKD.
However, the present case is somewhat simpler.

(a) Assume that ρ = |x〉〈x| for some x ∈ {0, 1}n, x 6= 0n. Show that ρ passes Alice’s test
with probability at most δ := n−1

n .

(b) Assume that ρ =
∑

x∈{0,1}n px|x〉〈x| for some px ≥ 0,
∑
px = 1. Let Pok := |0n〉〈0n|.

Show that trPok (ρ̃) ≥ 1− δ
Psuccess

= 1− δ
trT (ρ) .

(c) Assume that ρ ∈ S(C2n) (arbitrary state). Show that trPok (ρ̃) ≥ 1− δ
Psuccess

.

Hint: Consider a complete measurement in the computational basis, and use the
fact that it commutes with other measurements in the computational basis.

(d) Show that TD(ρ̃, |0n〉〈0n|) · Psuccess ≤
√

n−1
n .

Problem 3: Commuting Measurements (Bonus Problem)

Let H be a Hilbert space and let |Ψ1〉, . . . , |Ψn〉 be an orthonormal basis of H.
Let M = {P1, . . . , Pa} and M ′ = {P ′1, . . . , P ′b} be measurements on H. Assume that

each Pi and P ′i is of the form
∑

j λj |Ψj〉〈Ψj |. (Here the λj may be different for the
different projectors, but the |Ψj〉 are the same for all projectors.)

We will show that it does not matter in which order to apply the measurements M
and M ′ for any density operator ρ.

More precisely, consider the following two experiments:

(i) Measure ρ with measurement M and then measure the resulting post-measurement
state with measurement M ′. Let o and o′ denote the outcomes of M and M ′,
respectively, and let ρ̃ denote the final post-measurement state.

(ii) Measure ρ with measurement M ′ and then measure the resulting post-measurement
state with measurement M . (I.e., the measurements are applied in inverse order.)
Let o and o′ denote the outcomes of M and M ′, respectively, and let ρ̃′ denote the
final post-measurement state.

Show the following facts:

(a) For all i, j we have Pr[o = i and o′ = j : experiment (i)] = Pr[o = i and o′ = j :
experiment (ii)].



(b) For all i, j, we have ρ̃ = ρ̃′ where ρ̃ and ρ̃′ are the post-measurement states in the
case of o = i and o′ = j.

Hint: You may assume without loss of generality that |Ψ1〉, . . . , |Ψn〉 is the computational
basis |1〉, . . . , |n〉. (Since otherwise one can just do a basis transformation to transform it
into that basis.) In that case, all Pi and P ′i will be diagonal.


