Quantum Cryptography (spring 2019)

Dominique Unruh

Exercise Sheet 9

Out: 2019-05-31

Due: 2019-05-02

This is a bonus homework. Each problem gives up to 10 points.

Problem 1: Concrete parameters

Consider the QKD scheme described in Definition 45 in the lecture notes. Theorem 5 in the lecture notes shows that the protocol is ε -secure for a certain ε that depends on the protocol parameters.

Suggest a choice of parameters such that $\varepsilon \leq 2^{-80}$ and $\ell = 256$. How many qubits are transmitted for that choice?

Note: The parameter choice should be possible! That is, you need to make sure that there is a universal hash function F and an error correcting code with the right parameters.

Note: For any integers a, b > 0 with $b < 2^a - 1$, there exists a so-called Reed-Solomon code with code words of length $a(2^a - 1)$, correcting $\lfloor b/2 \rfloor$ errors, and with syndrome length ab.

Note: You do not need to find an optimal solution.

Problem 2: Breaking a Protocol

Consider the following commitment protocol (where n is some security parameter).

• Commit phase. Alice wants to commit to a bit b. First, she chooses n uniformly random bits $x_1, \ldots, x_n \in \{0, 1\}$. If b = 0 she encodes them in the computational basis; if b = 1, in the diagonal basis. I.e., if $b = 0, x_i = 0$, then $|\Psi_i\rangle := |0\rangle$, if $b = 0, x_i = 1$, then $|\Psi_i\rangle := |1\rangle$, if $b = 1, x_i = 0$, then $|\Psi_i\rangle := |+\rangle$, if $b = 1, x_i = 1$, then $|\Psi_i\rangle := |-\rangle$.

Then Alice sends the qubits $|\Psi_1\rangle, \ldots, |\Psi_n\rangle$ to Bob.

- For each of the qubits, Bob randomly chooses whether to measure it in the computational or the diagonal basis. Let the outcomes of these measurements be denoted \tilde{x}_i .
- Unveil phase. Alice sends b, x_1, \ldots, x_n to Bob.
- Bob checks whether $x_i = \tilde{x}_i$ for all *i* where Bob measured in the right basis (computational in the case of b = 0, diagonal in the case of b = 1).

The intuition behind this protocol is as follows: It is hiding because Bob cannot distinguish which bases Alice used. It is binding because of the following reason: If Bob measures some $|\Psi_i\rangle$ in, say, the computational basis, but $|\Psi_i\rangle$ was not one of $|0\rangle, |1\rangle$, then the outcome of the measurement is to some extend random, and Alice cannot predict the output \tilde{x}_i of Bobs measurement. On the other hand, if Bob measures $|\Psi_i\rangle$ in the diagonal basis, but $|\Psi_i\rangle$ was not one of $|+\rangle, |-\rangle$, then the outcome of the measurement is again random, and Alice cannot predict the output \tilde{x}_i of Bobs measurement. So whatever state $|\Psi\rangle$ Alice sends, there is some probability that she will not know \tilde{x}_i . And since to unveil both as b = 0 and as b = 1, Alice needs to know all \tilde{x}_i , she will fail.

Of course, this intuition cannot be correct since we know from the lecture that this (and any other) commitment protocol cannot be secure.

- (a) Show that this protocol is perfectly hiding (i.e., ε_H -hiding for $\varepsilon_H = 0$).
- (b) Show that this protocol is not ε_B -binding for any $\varepsilon_B < 1$. (I.e., it is possible for Alice to commit in a way such that she can unveil both as b = 0 and as b = 1.)

Note: You have to actually give an attack. It is not sufficient to say that there exists an attack due to Theorem 6 in the lecture notes and (a).

Hint: Think of Bell pairs. Try out what happens if you measure both qubits of $|\beta_{00}\rangle$ in the diagonal basis.

Problem 3: Schmidt Decomposition

(a) For a given state $|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$, the Schmidt number is the smallest *n* such that a Schmidt decomposition $|\Psi\rangle = \sum_{i=1}^n \lambda_i |\alpha_i\rangle |\beta_i\rangle$ exists.

We call a state $|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ entangled if $|\Psi\rangle$ cannot be written as $|\Psi\rangle = |\Psi_A\rangle \otimes |\Psi_B\rangle$. Show that a state is entangled if and only if it has Schmidt number greater than 1. (This justifies using the Schmidt number as a measure of how entangled a state is.)

(b) Let a state $|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ be given. Assume for simplicity that dim $\mathcal{H}_A = \dim \mathcal{H}_B$. Show that $\operatorname{tr}_A |\Psi\rangle \langle \Psi |$ and $\operatorname{tr}_B |\Psi\rangle \langle \Psi |$ have the same eigenvalues.

Hint: Represent $|\Psi\rangle$ in its Schmidt decomposition. Then compute the partial trace tr_A and tr_B directly on that representation.