Problem 1: Quantum Key Exchange

Alice and Bob perform the following quantum key distribution protocol:

- Alice chooses random bits $a_1, \ldots, a_n \in \{0, 1\}$ and $b_1, \ldots, b_n \in \{0, 1\}$. For $i = 1, \ldots, n$, Alice prepares $|\Psi_i \rangle := |\Psi_{a_i b_i} \rangle$ according to the following table:

 | $|\Psi_{00} \rangle$ | $|0\rangle$ |
 | $|\Psi_{10} \rangle$ | $|1\rangle$ |
 | $|\Psi_{01} \rangle$ | $|+\rangle$ |
 | $|\Psi_{11} \rangle$ | $|-\rangle$ |

 (In other words, b_i specifies the basis in which a_i is encoded.)

- Then Alice sends $|\Psi_1 \rangle \otimes \cdots \otimes |\Psi_n \rangle$ to Bob (over an insecure quantum channel that is under the control of the adversary Eve).

- When Bob has received all the n qubits, he acknowledges receipt over an authenticated (but public, i.e., not secret) channel.

- After getting the acknowledgement from Bob, Alice sends all bits b_i to Bob, and for checking, she also sends a_i to Bob for $i = 1, \ldots, \frac{n}{2}$ (we assume n to be even).

- Then Bob measures each of the qubits he received in the basis given by the b_i. Let the outcomes be \tilde{a}_i.

- Bob checks whether $a_i = \tilde{a}_i$ for all $i = 1, \ldots, \frac{n}{2}$. If so, he sends OK to Alice over the authenticated channel and outputs the key $\tilde{a}_{\frac{n}{2}+1} \ldots \tilde{a}_n$, otherwise he sends ABORT and aborts.

- When Alice receives OK, she outputs the key $a_{\frac{n}{2}+1} \ldots a_n$. If she receives ABORT, she aborts.

(a) Break the protocol.

(b) Argue how the protocol security could be improved. (But do not try to prove it!)
Problem 2: Eve’s advantage

Assume that in a (bad) QKD protocol, some adversary Eve succeeds in doing the following: The protocol aborts with probability $\frac{2}{3}$. In the cases where the protocol does not abort, the key that is chosen is always $0 \ldots 0$ (n bits, $n > 2$). For simplicity, assume that Eve’s state is empty after the protocol execution (that is, Eve’s quantum state consists of zero qubits, and density operators ρ_E describing Eve’s state can be omitted from all formulas).

(a) Describe the state $\rho_{A|E}$. What is the value of $\text{TD}(\rho_{A|E}, S_{\text{Ideal}}) := \max_{\rho_{A|E} \in S_{\text{Ideal}}} \text{TD}(\rho_{A|E}, \rho_{A|E})$ (for the particular Eve described above)?

(b) Show that the protocol is not ε-secure for $\varepsilon = \frac{1}{4}$.