Quantum Cryptography (spring 2020)

Dominique Unruh

Due: 2020-04-22

Exercise Sheet 6

Out: 2020-04-10

Problem 1: Quantum Key Exchange

Alice and Bob perform the following quantum key distribution protocol:

• Alice chooses random bits $a_1, \ldots, a_n \in \{0, 1\}$ and $b_1, \ldots, b_n \in \{0, 1\}$. For $i = 1, \ldots, n$, Alice prepares $|\Psi_i\rangle := |\Psi_{a_i b_i}\rangle$ according to the following table:

$ \Psi_{00} angle$	$ 0\rangle$
$ \Psi_{10} angle$	$ 1\rangle$
$ \Psi_{01} angle$	$ +\rangle$
$ \Psi_{11} angle$	$ -\rangle$

(In other words, b_i specifies the basis in which a_i is encoded.)

- Then Alice sends $|\Psi_1\rangle \otimes \cdots \otimes |\Psi_n\rangle$ to Bob (over an insecure quantum channel that is under the control of the adversary Eve).
- When Bob has received all the *n* qubits, he acknowledges receipt over an authenticated (but public, i.e., not secret) channel.
- After getting the acknowledgement from Bob, Alice sends all bits b_i to Bob, and for checking, she also sends a_i to Bob for $i = 1, ..., \frac{n}{2}$ (we assume n to be even).
- Then Bob measures each of the qubits he received in the basis given by the b_i . Let the outcomes be \tilde{a}_i .
- Bob checks whether $a_i = \tilde{a}_i$ for all $i = 1, \ldots, \frac{n}{2}$. If so, he sends OK to Alice over the authenticated channel and outputs the key $\tilde{a}_{\frac{n}{2}+1} \ldots \tilde{a}_n$, otherwise he sends ABORT and aborts.
- When Alice receives OK, she outputs the key $a_{\frac{n}{2}+1} \dots a_n$. If she receives ABORT, she aborts.
- (a) Break the protocol.
- (b) Argue how the protocol security could be improved. (But do not try to prove it!)

Problem 2: Eve's advantage

Assume that in a (bad) QKD protocol, some adversary Eve succeeds in doing the following: The protocol aborts with probability $\frac{2}{3}$. In the cases where the protocol does not abort, the key that is chosen is always $0 \dots 0$ (*n* bits, n > 2). For simplicity, assume that Eve's state is empty after the protocol execution (that is, Eve's quantum state consists of zero qubits, and density operators ρ_E describing Eve's state can be omitted from all formulas).

(a) Describe the state $\rho_{ABE}^{\rm Real}.$ What is the value of

$$\mathrm{TD}(\rho_{ABE}^{\mathrm{Real}}, S_{\mathrm{Ideal}}) := \max_{\substack{\rho_{ABE}^{\mathrm{Ideal}} \in S_{\mathrm{Ideal}}}} \mathrm{TD}(\rho_{ABE}^{\mathrm{Real}}, \rho_{ABE}^{\mathrm{Ideal}})$$

(for the particular Eve described above)?

(b) Show that the protocol is not ε -secure for $\varepsilon = \frac{1}{4}$.