Problem 1: Quantum Key Exchange

Alice and Bob perform the following quantum key distribution protocol:

- Alice chooses random bits $a_1, \ldots, a_n \in \{0, 1\}$ and $b_1, \ldots, b_n \in \{0, 1\}$. For $i = 1, \ldots, n$, Alice prepares $|\Psi_i\rangle := |\Psi_{a_i b_i}\rangle$ according to the following table:

 \[
 \begin{array}{c|c}
 |\Psi_{00}\rangle & |0\rangle \\
 |\Psi_{10}\rangle & |1\rangle \\
 |\Psi_{01}\rangle & |+\rangle \\
 |\Psi_{11}\rangle & |-\rangle \\
 \end{array}
 \]

 (In other words, b_i specifies the basis in which a_i is encoded.)

- Then Alice sends $|\Psi_1\rangle \otimes \cdots \otimes |\Psi_n\rangle$ to Bob (over an insecure quantum channel that is under the control of the adversary Eve).

- When Bob has received all the n qubits, he acknowledges receipt over an authenticated (but public, i.e., not secret) channel.

- After getting the acknowledgement from Bob, Alice sends all bits b_i to Bob, and for checking, she also sends a_i to Bob for $i = 1, \ldots, \frac{n}{2}$ (we assume n to be even).

- Then Bob measures each of the qubits he received in the basis given by the b_i. Let the outcomes be \tilde{a}_i.

- Bob checks whether $a_i = \tilde{a}_i$ for all $i = 1, \ldots, \frac{n}{2}$. If so, he sends OK to Alice over the authenticated channel and outputs the key $\tilde{a}_{\frac{n}{2}+1} \ldots \tilde{a}_n$, otherwise he sends ABORT and aborts.

- When Alice receives OK, she outputs the key $a_{\frac{n}{2}+1} \ldots a_n$. If she receives ABORT, she aborts.

(a) Break the protocol.

(b) Argue how the protocol security could be improved. (But do not try to prove it!)
Problem 2: Eve’s advantage

Assume that in a (bad) QKD protocol, some adversary Eve succeeds in doing the following: The protocol aborts with probability \(\frac{2}{3} \). In the cases where the protocol does not abort, the key that is chosen is always 0…0 (n bits, \(n > 2 \)). For simplicity, assume that Eve’s state is empty after the protocol execution (that is, Eve’s quantum state consists of zero qubits, and density operators \(\rho_E \) describing Eve’s state can be omitted from all formulas).

(a) Describe the state \(\rho_{ABE}^{\text{Real}} \). What is the value of

\[
TD(\rho_{ABE}^{\text{Real}}, S_{\text{Ideal}}) := \max_{\rho_{ABE}^{\text{Ideal}} \in S_{\text{Ideal}}} TD(\rho_{ABE}^{\text{Real}}, \rho_{ABE}^{\text{Ideal}})
\]

(for the particular Eve described above)?

(b) Show that the protocol is not \(\varepsilon \)-secure for \(\varepsilon = \frac{1}{4} \).