Quantum Cryptography (spring 2020)

Dominique Unruh

Due: 2020-05-11

Exercise Sheet 8

Out: 2020-05-03

Problem 1: Missing claims from QKD proof

(a) In the practice we showed (or will show) that in our QKD protocol, after the Bell test and after measuring the *n*-bit raw key, we have

$$H_{\infty}(K_A|E)_{\rho_{raw}} \ge -\log(N2^{-n})$$

where $N := |\{xy \in \{0, 1\}^{2n} : |xy| \le t\}|$. (Note: |xy| does not refer to the Hamming weight of xy here, but to the number of non-00 bitpairs.)

Show that $N \leq (3n+1)^t$.

Hint: Think of how you can compactly describe the bitstring xy with |xy| by only telling where the non-00 pairs are, and then calculate how many such descriptions there are.

Problem 2: Universal hash functions

(a) Let S be the set of all binary $\ell \times m$ -matrices. I.e., $S = \mathbb{F}_2^{\ell \times m}$. Let X be the set of all m-bit vectors. I.e., $X = \mathbb{F}_2^m$. Let $Y = \mathbb{F}_2^\ell$. Let $F : S \times X \to Y$ be defined as F(s, x) := sx.

Show that F is a universal hash function.

Note: You may use the fact that for any fixed $z \neq 0$, and uniformly distributed $s \in \mathbb{F}_2^{\ell \times m}$, sz is uniformly distributed on \mathbb{F}_2^{ℓ} . (Bonus points if you prove that fact, too.)

Note: This was sketched in the lecture. You only get points if your proof goes beyond the sketch in the lecture in detail/rigor.

(b) (Bonus problem) Let $S := X := \mathbb{F}_{2^m}$ be a finite field (encoded in the standard way as an \mathbb{F}_2 vector space). Let $trunc_{\ell}(x)$ denote the first ℓ bits of x. Let $Y := \{0, 1\}^{\ell}$. Let $F : S \times X \to Y$ be defined as $F(s, x) := trunc_{\ell}(sx)$.

Show that F is a universal hash function.

Note: You may use that $trunc_{\ell}(a-b) = trunc_{\ell}(a) - trunc_{\ell}(b)$. (This is immediate from the encoding of \mathbb{F}_{2^m} .)