Quantum Cryptography (spring 2020)

Dominique Unruh

Due: 2020-05-27

Exercise Sheet 9

Out: 2020-05-20

Problem 1: Discrete Fourier Transform

In this problem, note that the indexes in the definition of the DFT start with 0. I.e., the top-left component of $D_N = N^{-1/2} \left((e^{2i\pi k l/N}) \right)_{kl}$ is $N^{-1/2} e^{2i\pi 00/N} = 1$.

(a) Show that the $N \times N$ -DFT D_N is unitary.

Hint: Show first that for some $\tilde{\omega} \in \mathbb{C}$ with $\tilde{\omega}^N = 1$ and $\tilde{\omega} \neq 1$, we have $\sum_{k=0}^{N-1} \tilde{\omega}^k = 0$. (What is $\tilde{\omega} \cdot \left(\sum_{k=0}^{N-1} \tilde{\omega}^k\right)$?)

- (b) Give a circuit for D_2 using only elementary gates (i.e., only gates given in the lecture notes in Sections 2 and 5).
- (c) (Bonus) Let N > 0 be an integer. Let $r \in \{1, ..., N\}$ with $r \mid N$. Let $x_0 \in \{0, ..., r-1\}$. Let $|\Psi\rangle := t^{-1/2} \sum_{k=0}^{t-1} |x_0 + kr\rangle$ where t is a normalization factor and t := N/r.

(If $r = \operatorname{ord} a \mid N$ for some group element a, then $|\Psi\rangle$ is the post-measurement state we have in Shor's order-finding algorithm directly before applying the DFT D_N .)

Let D_N be the $N \times N$ -DFT. Let $|\Psi'\rangle := D_N |\Psi\rangle$. Consider a measurement on $|\Psi'\rangle$ in the computational basis and let γ denote the outcome. Show that $\Pr[\frac{N}{r} \text{ divides } \gamma] = 1$. (In other words, if $N \nmid \gamma r$ then $|\langle \gamma | \Psi' \rangle|^2 = 0$.)

(That is, at least in the case where $\operatorname{ord} a \mid N$, the order finding algorithm returns a multiple of $N/\operatorname{ord} a$.)

Hint: Show first that for some $\tilde{\omega} \in \mathbb{C}$ and $t \in \mathbb{N}$ with $\tilde{\omega}^t = 1$ and $\tilde{\omega} \neq 1$, we have $\sum_{k=0}^{t-1} \tilde{\omega}^k = 0$.

Note: This was sketched in the lecture. You only get points if your proof goes beyond the sketch in the lecture in detail/rigor.

Problem 2: Breaking a Protocol

Consider the following commitment protocol (where n is some security parameter).

• Commit phase. Alice wants to commit to a bit b. First, she chooses n uniformly random bits $x_1, \ldots, x_n \in \{0, 1\}$. If b = 0 she encodes them in the computational

basis; if b = 1, in the diagonal basis. I.e., if $b = 0, x_i = 0$, then $|\Psi_i\rangle := |0\rangle$, if $b = 0, x_i = 1$, then $|\Psi_i\rangle := |1\rangle$, if $b = 1, x_i = 0$, then $|\Psi_i\rangle := |+\rangle$, if $b = 1, x_i = 1$, then $|\Psi_i\rangle := |-\rangle$.

Then Alice sends the qubits $|\Psi_1\rangle, \ldots, |\Psi_n\rangle$ to Bob.

- For each of the qubits, Bob randomly chooses whether to measure it in the computational or the diagonal basis. Let the outcomes of these measurements be denoted \tilde{x}_i .
- Unveil phase. Alice sends b, x_1, \ldots, x_n to Bob.
- Bob checks whether $x_i = \tilde{x}_i$ for all *i* where Bob measured in the right basis (computational in the case of b = 0, diagonal in the case of b = 1).

The intuition behind this protocol is as follows: It is hiding because Bob cannot distinguish which bases Alice used. It is binding because of the following reason: If Bob measures some $|\Psi_i\rangle$ in, say, the computational basis, but $|\Psi_i\rangle$ was not one of $|0\rangle, |1\rangle$, then the outcome of the measurement is to some extend random, and Alice cannot predict the output \tilde{x}_i of Bobs measurement. On the other hand, if Bob measures $|\Psi_i\rangle$ in the diagonal basis, but $|\Psi_i\rangle$ was not one of $|+\rangle, |-\rangle$, then the outcome of the measurement is again random, and Alice cannot predict the output \tilde{x}_i of Bobs measurement. So whatever state $|\Psi\rangle$ Alice sends, there is some probability that she will not know \tilde{x}_i . And since to unveil both as b = 0 and as b = 1, Alice needs to know all \tilde{x}_i , she will fail.

Of course, this intuition cannot be correct since we know from the lecture that this (and any other) commitment protocol cannot be secure.

- (a) Show that this protocol is perfectly hiding (i.e., ε_H -hiding for $\varepsilon_H = 0$).
- (b) Show that this protocol is not ε_B -binding for any $\varepsilon_B < 1$. (I.e., it is possible for Alice to commit in a way such that she can unveil both as b = 0 and as b = 1.)

Note: You have to actually give an attack. It is not sufficient to say that there exists an attack due to Theorem 6 in the lecture notes and (a).

Hint: Think of Bell pairs. Try out what happens if you measure both qubits of $|\beta_{00}\rangle$ in the diagonal basis.