
Density Operators and Partial Trace

Raul-Martin Rebane

March 21, 2020

The definitions of density operators, quantum state probability distributions
etc can be found in prof. Unruh’s lecture notes and you should have that open in
parallel.

NB If you found this document helpful, please mention that in your homework
submission as feedback for me.

1 Motivation
In this part of the course we introduce a new way to describe quantum states and
operations. Until now we have described our quantum states as vectors with norm
1, and our operations as unitary matrices. However this has some limitations -
for example what is the state if I was to measure |+〉, and then do a Hadamard
gate? The answer is |+〉 or |−〉 depending on the result of my measurement. This
creates a kind of branching in the state of our program, and with many sequential
branchings, it can be cumbersome to track the state of our program. We would
potentially have to reason like "If the result of my first measurement is A and the
result of my second measurement is B . . . then I am in state |Ψ〉.

Now we look at a different method of describing our quantum state called
Density Operators which have several advantages. For one they allow us to view
our wires as distributions of states, solving the problem above. Later in the course
we will see how they also allow us to define a measure of distinguishability between
two states - to bound the probability with which a distinguisher could tell apart
two different states.

2 Warmup: Quantum State Probability Distri-
butions

First, we can solve the above problem of being able to speak about our quantum
states as distributions. In the above scenario we would say that we start with the

1

distribution
E1 = {|+〉@1}

and after measuring our distribution is

E2 = {|0〉@1
2 , |1〉@

1
2}

Note that this explicitly says that our wire has the state |0〉 with 1
2 probability and

the same for |1〉. This is not a superposition of states. This is a distribution of
states. And using our predefined rules, we can also apply unitaries to it.

E3 = HE2 = {H|0〉@1
2 , H|1〉@

1
2} = {|+〉@1

2 , |−〉@
1
2}

Notice how if we were to measure this in the computational basis, we could describe
the post-measurement state of our system as just

E4 = {|0〉@1
2 , |1〉@

1
2}

As the path at which we arrive to one of these outcomes does not matter in terms
of describing the quantum state on the wire.

In this course we will often use the terms "pure state" and "mixed state". A
pure state is described with Ep = {|Ψ〉@1} for some |Ψ〉 and a mixed state refers
to a distribution of more than one states (e.g E2).

3 Density Operators
Density operators are similar to quantum state probability distributions, as they
allow us to define a distribution using only a single matrix. The density operator
for a pure state |Ψ〉 is just |Ψ〉〈Ψ|. Remember that 〈Ψ| is (|Ψ〉)†, the conjugate
transpose of |Ψ〉. For a mixed state like E4 above, we take the sum of all the pure
state density matrices, and scale them with their respective probabilities.

ρE4 = 1
2 · |0〉〈0|+

1
2 · |1〉〈1| =

1
2I

Note that our density matrices can also have off-diagonal elements. For example
for the state |Ψ〉 = 1√

2(|00〉+ |11〉) the corresponding density matrix is

ρ = 1√
2

(|00〉+ |11〉)(1√
2

(|00〉+ |11〉))† =

= 1√
2

(|00〉+ |11〉)(1√
2

(〈00|+ 〈11|)) =

= 1
2(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

2

Generally we don’t compute out the actual value of the density matrix, and often
leave it as a general formula. For that reason it is important to be comfortable
using different properties of linear algebra. Luckily we won’t need all that many
and they are fairly intuitive.

Useful properties:

• (A⊗B)(C ⊗D) = (AC)⊗ (BC)

• (A⊗B)† = A† ⊗B†

• (A+B)† = A† +B†

• (AB)† = B†A†

• (A⊗B)⊗ C = A⊗ (B ⊗ C)

• A⊗ (B + C) = A⊗B + A⊗ C

• (B + C)⊗ A = B ⊗ A+ C ⊗ A

If you’re ever confused by a step in a computation, then unless specified otherwise
it is most likely one of these properties being applied.

4 Partial Trace
The partial trace corresponds to "throwing away" a part of the system and restricting
our view to the rest. This can also be viewed as measuring and forgetting part
of the system. The result of the trace represents all of the information that can
be extracted from the initial state ρ given only the subsystem that you haven’t
"thrown away".

Suppose we have a bipartite system HA ⊗HB which consists of a separate "A"
and "B" subsystems. Then given a density operator ρ = σ⊗ τ where σ corresponds
to the HA part and τ to the HB, we say that tracing away the "A" part corresponds
to trA σ ⊗ τ = (tr σ) · τ and tracing away the "B" part is trB σ ⊗ τ = σ · tr τ .

It is important to note that by trX we denote "tracing away subsystem X" and
by just tr we signify the trace of a matrix: tr A = ∑

i Aii.
As an example, let’s try to trace away the second qubit of the state 1√

2(|00〉+|11〉).
We found its density matrix earlier.

ρ = 1
2(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|)

Unfortunately this is not in a nice σ ⊗ τ form. Luckily the trace operator is
linear, meaning trA(u+ v) = trA u+ trA v. And the summands we have are very
easily expressible via tensors.

Remember that by |00〉 we really mean |0〉⊗|0〉. Thus |00〉〈00| is (|0〉⊗|0〉)(〈0|⊗
〈0|) = |0〉〈0| ⊗ |0〉〈0|. We can apply this to each summand separately to get our
density operator in a nicer form.

3

ρ = 1
2(|0〉〈0| ⊗ |0〉〈0|+ |0〉〈1| ⊗ |0〉〈1|+ |1〉〈0| ⊗ |1〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)

And now we can apply the trace operation on it.

trBρ = 1
2(|0〉〈0| · tr |0〉〈0|+ |0〉〈1| · tr |0〉〈1|+ |1〉〈0| · tr |1〉〈0|+ |1〉〈1| · tr |1〉〈1|)

Now notice that for two basis vectors i, j the matrix |i〉〈j| is going to have only
one non-zero entry on row i and column j. This means that its trace (as in the
sum of elements on diagonal) tr |i〉〈j| will be 0 when i 6= j and 1 when i = j. This
allows us to easily find traces of elements like tr |0〉〈1|.

trB ρ = 1
2(|0〉〈0|+ |1〉〈1|) = 1

2I

This is the exact same as the density operator for the ensemble E2 which we
got by measuring |+〉 in the computational basis. So while we started in an EPR
pair, by tracing out one of the qubits we have effectively measured (and forgotten
the result) of the one that’s left.

5 Example: Constructing unitary boolean func-
tions

5.1 The ideal construction
For an example of a more "general" density matrix, let’s describe the density
operator after evaluating Uf in superposition. Recall that Uf |x, y〉 → |x, y ⊕ f(x)〉.
Consider the following system consisting of a n-qubit "input" register and a m-qubit
"output" register.

Uf

x x

y y ⊕ f(x)

4

The state in the start of our system is some unknown |Ψ〉. We can express it as
|Φ〉 = ∑

xy αxy|x, y〉 for our basis vectors (we may not know what the individual α
but they exist). And then after applying Uf we have |Ψ〉 = ∑

xy αxy|x, y ⊕ f(x)〉.
Now to compute the corresponding density matrix we get

ρ = |Ψ〉〈Ψ| = (
∑
xy

αxy|x, y ⊕ f(x)〉)(
∑
x̃ỹ

αx̃ỹ|x̃, ỹ ⊕ f(x̃)〉)†

Currently the reason the second sum has j rather than x̃ and ỹ is not currently
significant, but it soon will be. Because now we can apply (A+B)† = A† +B†.

ρ = (
∑

i

αi|i, f(i)〉)(
∑

j

α∗j〈j, f(j)|)

And now we have a product between two big sums, which is just a big sum of
pairwise product, same as if you had (a+b+c)(a+b+c) = aa+ab+ac+bb+bc+cb+cc
which is why we need the x̃ and ỹ because for each xy (like a above) we are
multiplying it all other elements from the second sum (conjugate transpose) (giving
aa+ ab+ ac). And thus we reach

ρideal =
∑
xyx̃ỹ

αxyα
∗
x̃ỹ|x, y ⊕ f(x)〉〈x̃, ỹ ⊕ f(x̃)|

5.2 What happens without properly cleaning up
In our lab we found a way to evaluate arbitrary boolean functions. Any boolean
circuit can be implemented using only ∧ and ¬ and these we can implement using
the Toffoli gate, the NOT-gate and some extra buffer qubits.

However this leaves some intermediate values in the buffer qubits, which may
depend on our input. So what we have is a Ûf |x, y, 0〉 → |x, y ⊕ f(x), g(x)〉. The
function g represents the leftover values that may depend on x.

Ûf

x x

y y ⊕ f(x)

|0〉k g(x)

What happens if we were to simply throw away these buffer qubits that we
don’t need anymore? Since we can take partial traces, we can answer this question.
We can take the density operator almost identically to what we did in section 5.1.

5

ρ =
∑
xyx̃ỹ

αxyα
∗
x̃ỹ|x, y ⊕ f(x), g(x)〉〈x̃, ỹ ⊕ f(x̃), g(x̃)|

Now let’s start tracing out our buffer subsystem (let’s call it C, with k qubits).
The computation works similarly to the example in section 4 by first expressing
the summands as tensors.

ρ =
∑
xyx̃ỹ

αxyα
∗
x̃ỹ|x, y ⊕ f(x)〉〈x̃, ỹ ⊕ f(x̃)| ⊗ |g(x)〉〈g(x̃)|

And now the trace result will depend on the function g. Let’s view a drastic
case where the g is an injective function, meaning that the output is unique for
each input. For simplicity let’s say g(x) = x. We can simplify our density matrix
by evaluating g.

ρ =
∑
xyx̃ỹ

αxyα
∗
x̃ỹ|x, y ⊕ f(x)〉〈x̃, ỹ ⊕ f(x̃)| ⊗ |x〉〈x̃|

Then similarly as before, since these are basis vectors we can say that |i〉〈j| has
trace 0 when i 6= j and 1 when i = j. Meaning the only summands left are the
ones where x = x̃ and y = ỹ. And since αxyα

∗
x̃ỹ = |αxy|2 we have our final density

matrix.

trC(ρ) =
∑
xy

|αxy|2|x, y ⊕ f(x)〉〈x, y ⊕ f(x)|

And this is completely different from the ρideal we got at the end of the section
5.1! This is a purely diagonal matrix - it doesn’t contain non-diagonal entries. This
means that this is no longer a superposition.

We have shown this for g(x) = x. But this also holds for all injective g function.
In our argumentation it was important whether or not x = x̃ in |x〉〈x̃|. In the
case of some unknown (but injective) g, what will matter is if g(x) = g(x̃) in
|g(x)〉〈g(x̃)|. And from injectivity we know that this is true only if x = x̃.

6 Cleaning up properly
So from the previous section we know that we can’t just throw away our buffer
qubits. However we can use our Ûf by first applying it to a buffer register, not the
"y" register, and then CNOT’ing the result over to the register containing "y".

6

Ûf

x x

|0〉l f(x)

|0〉k g(x)

y y ⊕ f(x)

And then we can run the inverse of Ûf on the first three registers. We know
that this exists - it’s Û †f . And this clearly reverts the first three registers’ values to
what they were before.

Ûf

x x

|0〉l |0〉l

|0〉k |0〉k

y y ⊕ f(x)

Û †f

And now since the buffer qubits are reset to zeroes again (and are independent
of the input register), they are now safe to trace away. To see that this is true,
you can try to do the above tracing we did in section 6, and use g(x) = c for some
arbitrary constant. Every summand will have |c〉〈c| which has trace 1, and you will
get ρideal from section 5.1.

And thus finally, if we add in and then trace away the buffer qubits, we have
our ideal unitary implementation from section 5.1.

7

Ûf

x x

|0〉l

|0〉k

y y ⊕ f(x)

Û †f

Uf

8

