Quantum Cryptography (spring 2021)

Dominique Unruh

Exercise Sheet 13

Out: 2021-05-18

Due: 2021-05-25

This is a **bonus homework**. It can be used if you have less than 50% of the point total. (Recall that you need 50% to qualify for the exam.) But you are also welcome (and encouraged) to solve the homework if you do not need the points, for sake of learning.

1 Quantum proofs

Knowlets:	ProofSys	ProblemID: QProofs
Time:		
Difficulty:		

Show that if (P, V) is a proof system (Definition 53 in the lecture notes), then it also is a quantum proof system as in the following definition:

Definition 1 (Quantum proof systems) We call a pair (P, V) of interactive machines a quantum proof system for the relation R with soundness-error ε iff the following two conditions are fulfilled:

- Completeness: For any $(x, w) \in R$, we have that $\Pr[\langle P(x, w), V(x) \rangle = 1] = 1$.
- Soundness: For any (potentially computationally unlimited) quantum machine P^* , and for any $x \notin L_R$, we have $\Pr[\langle P^*(), V(x) \rangle = 1] \leq \varepsilon$.

Notice that the only difference to Definition 53 in the lecture notes is the additional word **quantum**.

2 Zero-knowledge and discrete logarithm

Fix a group G of prime order q with generator g. $(G, q, \text{ and } g \text{ may depend on some implicit security parameter but are considered publicly known.) Let <math>R := \{(x, w) : g^w = x, w \in \{0, \dots, q-1\}\}.$

Consider the following proof system for R (Schnorr's proof system for discrete logarithms):

- The prover P gets input $(x, w) \in R$.
- The verifier V gets input $x \in R$.
- The prover P chooses $b \stackrel{\$}{\leftarrow} \{0, \ldots, q-1\}$ and sends $a := g^b$ to the verifier V.
- The verifier chooses $r \stackrel{\$}{\leftarrow} \{0, \ldots, q-1\}$ and sends r to the prover P.
- The prover P computes $s := b + rw \mod q$ and sends s to the verifier V.
- The verifier V checks whether $x, a \in G$ and $g^s = ax^r$.

This proof system is well-known to be a proof system. However, in the classical setting, it is unknown whether this proof system is zero-knowledge!¹

	Knowlets:	ProofSys	ProblemID: ZKDlogSound
(a)	Time:		
	Difficulty:		
	Show that (P, V) is a proof system with soundness-error $1/q$.		

	Knowlets:	QZK, DlogAlgo	ProblemID: ZKDlogShor
(b)	Time:		
	Difficulty:		

Show that (P, V) is statistical quantum zero-knowledge.

Hint: This has nothing to do with rewinding! It has a lot to do with Shor's algorithm.

¹It is however "honest-verifier zero-knowledge". This is a weaker notion where the verifier is considered to behave honestly.