1 Regev’s cryptosystem

In Regev’s cryptosystem, we have an error term e that is initialized according to a distribution χ. In this homework, we investigate what happens, say due to a programmer error, e is not properly randomized.

(a) We have a faulty implementation of Regev’s cryptosystem where $e = (0, \ldots, 0)$ always. The adversary gets the public-key (A, b) and a ciphertext (c_1, c_2). How can the adversary compute the plaintext? (Describe the computation steps performed by the adversary.)

Hint: If in doubt, first try to figure out how to solve the computational LWE problem (i.e., find s) when $e = 0$ always.

(b) Now we have a slightly better implementation. e now indeed contains some noise, but too little. In fact, it turns out that with probability close to 1, only one component $e_i \neq 0$. (That is, for all $j \neq i$, $e_j = 0$.) Show that this is too little noise by giving an attack. (Given public key and ciphertext find the plaintext. Describe the computation steps performed by the adversary.)

(c) Now we have a different randomness failure. e is chosen properly, but $A = 0$. How to attack? (Given public key and ciphertext find the plaintext. Describe the computation steps performed by the adversary.)

(d) Consider the following variant of Regev’s scheme:
• **Encryption.** To encrypt \(\mu \in \mathbb{Z}_q \), pick \(x \leftarrow \{0,1\}^m \). Let \(c_1 := A^T x \) and \(c_2 := x \cdot b + \mu \) (all calculated in \(\mathbb{Z}_q \)).

That is, we have optimized the scheme by allowing messages in \(\mathbb{Z}_q \) (i.e., not limited to a single bit). This is much more efficient. What is the problem with this change?

<table>
<thead>
<tr>
<th>Knowlets:</th>
<th>Regev</th>
<th>ProblemID: RegevMall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficulty:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

And now something completely different: Given a ciphertext \((c_1, c_2)\) that is the encryption of some unknown \(\mu \in \{0,1\} \), how to compute a ciphertext \((c'_1, c'_2)\) that decrypts to \(1 - \mu\) (with high probability)?

Note: You do not need to prove that your solution is correct, it is enough to specify the algorithm.

Note: What you are showing here is that Regev’s cryptosystem is malleable.