
University of Tartu Prof. Dr. Dominique Unruh

Quantum Cryptography

Short notes, spring 2022

Important note: These notes are not supposed to be self-contained. Instead, they are
intended as a reminder about which topics were discussed in the lecture. If you find
mistakes in these notes, please send them to u r h u . en u @ t e .

Contents

1 Linear Algebra 2

2 One Qubit 4

3 Elitzur-Vaidman Bomb Testing 6

4 Larger quantum systems 8

5 Multi-qubit gates 9

6 Composite Systems 11

7 Sets of Elementary Gates 11

8 The Deutsch-Jozsa Algorithm 12

9 Density Operators 13

10 Partial Trace and Purification 16

11 Quantum Operations 16

12 Trace distance 17

13 Quantum key distribution 20
13.1 Bell test . 23
13.2 Measuring the raw key . 24
13.3 Error-correction . 26
13.4 Privacy amplification . 27

14 Quantum Commitments 29
14.1 Bounded quantum storage model . 32

1

15 Revocable quantum time vaults 34

16 Zero-knowledge proofs 39

17 Factoring 42

18 Quantum money 43
18.1 Wiesner’s protocol . 44
18.2 Aaronson-Christiano quantum money. 46

19 Position-verification 47

20 Lattice-based cryptography 54
20.1 Learning with errors . 54
20.2 Regev’s cryptosystem . 55

Symbol index 60

1 Linear Algebra

In the following, we refresh the basic definitions from linear algebra that will be needed
during the course. In all definitions, we will restrict our attention to the finite dimensional
case only.

Definition 1 (Hilbert space) The n-dimensional Hilbert space is C

n, the n-
dimensional complex vector space.1.

C

n is endowed with the following inner product:

〈Ψ,Φ〉 :=
n∑

i=1

Ψ∗
iΦi

where x∗ is the complex conjugate of x.2

The (Euclidean) norm‖·‖ is defined by

‖Ψ‖ :=
√
〈Ψ,Ψ〉 =

√√√√
n∑

i=1

Ψ∗
iΨi =

√√√√
n∑

i=1

|Ψi|2.

We call two vectors Ψ and Φ orthogonal if 〈Ψ,Φ〉 = 0. We call Ψ orthogonal to a
subspace V ⊆ Cn if Ψ is orthogonal to all x ∈ V .

Furthermore, we call a vector normalised if ‖Ψ‖ = 1, and we call a set of vectors
orthogonal if they are pairwise orthogonal, and we call a set of vectors orthonormal if
they are all normalised and pairwise orthogonal.

1Or any complex vector space isomorphic to Cn

2I.e., (a+ bi)∗ = a− bi.

2

Definition 2 (Conjugate transpose) Given a matrix M ∈ Cn×m, we define M † as
the complex conjugate of the transposition of M , i.e., (M †)ij = (Mji)

∗. (This is the
analogue of transposition.)

We have (M †)† =M and 〈Mx, y〉 = 〈x,M †y〉 (and vice-versa).

Definition 3 (Dirac notation) In the Dirac notation, a vector Ψ in Cn is written |Ψ〉.
By 〈Ψ| we denote the function mapping |Φ〉 to 〈Ψ,Φ〉 (or equivalently: 〈Ψ| is the row
vector |Ψ〉†).

In particular, we can now write 〈Ψ|Φ〉 for the inner product 〈Ψ,Φ〉. And for the
projection PV onto V = spanΨ we write PV = |Ψ〉〈Ψ|. (Try it out and evaluate PV |Φ〉!)

Definition 4 (Trace) The trace trM of a matrix M ∈ Cn×n is
∑

iMii.

The trace can also be computed as
∑

i〈i|M |i〉 for any orthonormal basis |1〉, . . . , |n〉
of Cn.

Definition 5 (Hermitian matrices) A matrix M ∈ Cn×n is called Hermitian, if M =
M †. (This is the analogue of symmetric matrices.)

A Hermitian matrix M can be diagonalised, i.e., there is an orthonormal basis
|1〉, . . . , |n〉 such that M =

∑
i λi|i〉〈i| where λi are the eigenvalues of M .

Definition 6 (Positive matrices) A matrix M ∈ Cn×n is positive if for all |Ψ〉 ∈ Cn

we have 〈Ψ|M |Ψ〉 ≥ 0.

Note that positive is meant in the sense of positive semidefinite (or nonnegative), i.e.,
we allow, e.g., M = 0.

A positive Hermitian matrix has only nonnegative eigenvalues λi ≥ 0.

Definition 7 (Absolute value of a matrix) For a positive Hermitian matrix M , let√
M be the positive matrix satisfying (

√
M)†(

√
M) =M . For a (not necessarily positive

or Hermitian) matrix M , we define |M | :=
√
M †M .

The matrix |M | is always positive Hermitian. For a positive Hermitian matrix M ,
we have |M | =M . For a diagonal matrix M , we get |M | by taking the absolute value of
every element on the diagonal.

For a positive Hermitian M , we can compute
√
M by first diagonalising M as UDU †

(with unitary U and diagonal D), and then computing
√
D (by taking the square root

of each diagonal element individually) and then computing
√
M = U

√
DU †. Since for

a matrix M , we have that M †M is positive Hermitian, we can use this procedure to
compute |M |.

Definition 8 (Unitary matrices) A matrix M ∈ Cn×n is unitary if M †M =MM † =
I where I is the identity matrix. (Unitary matrices are the analogue to rotation matrices.)

3

Note: If M is unitary, then ‖Mx‖ = ‖x‖ and 〈Mx,My〉 = 〈x, y〉.

Definition 9 (Projections) A matrix M ∈ Cn×n is a projection if for all x we have
MMx =Mx (or equivalently, MM =M).

The orthogonal projection PV onto a subspace V ⊆ Cn is defined by PV (u + v) = v
where v ∈ V and u is orthogonal to V . (Note that any state x ∈ Cn can be represented
uniquely as such a sum x = u+ v.)

For a one-dimensional subspace V = span{v} with ‖v‖ = 1, we have that PV x =
v〈v, x〉.

Lemma 1 (Singular value decomposition) For any square matrix A ∈ Cn×n, there
are unitary matrices U, V ∈ Cn×n and a diagonal matrix D ∈ Cn×n with only nonnegative
real entries such that A = UDV .

Definition 10 (Tensor product) Given two Hilbert spaces Cn,Cm with orthonormal
bases B1 = {|i〉}, B2 = {|j〉}, the tensor product (or Kronecker product) Cn ⊗Cmis the
Hilbert space Cnm with basis B1 ×B2 = {|i, j〉}.3

Given two vectors |Ψ1〉 =
∑

i αi|i〉 ∈ Cn and |Ψ2〉 =
∑

j βj |j〉 ∈ Cm, their tensor
product is given by

|Ψ1〉 ⊗ |Ψ2〉 =
∑

i,j

αiβj |i, j〉 ∈ Cn ⊗Cm.

Given two linear operations M1 : C
n → C

n and M2 : C
m → C

m, we define the linear
operation M1 ⊗M2 to be the unique linear operation satisfying

(M1 ⊗M2)|i, j〉 = (M1|i〉)⊗ (M2|j〉).

Further reading: [NC00, Section 2.1]

2 One Qubit

Definition 11 (Qubit) A single qubit is represented by a vector |Ψ〉 ∈ C

2 with
‖|Ψ〉‖ = 1.

There are two kinds of operations on qubits, unitary transformations and measure-
ments.

Definition 12 (Unitary transformations on qubit) A unitary transformation on a
qubit |Ψ〉 is represented by a unitary matrix U ∈ C2×2. The qubit after the transformation
is U |Ψ〉.

3There exists a more general category theoretical definition using a universal property, but for our
purposes this specialisation is sufficient.

4

In the case of polarisation, a typical transformation would be to rotate the polarisation
by an angle of α. In this case we have

U =

(
cosα sinα
− sinα cosα

)

which can be easily verified to be unitary.

Definition 13 (Projective measurements) A projective measurement on a qubit is
defined by two orthonormal vectors |yes〉 and |no〉. The outcomes of the measurement can
be yes or no.4

When applying the measurement to a qubit |Ψ〉, the probability for the yes outcome is
|〈yes|Ψ〉|2, and the probability for the no outcome is |〈no|Ψ〉|2.

In case of a yes outcome, the resulting state is |yes〉, and in case of a no outcome, the
resulting state is |no〉.5

An example for a measurement is a polarising filter. If the filter lets only vertically
polarised light through, it corresponds to a measurement with |yes〉 = |l〉 and |no〉 = |↔〉,
and a yes-outcome corresponds to the fact that the photon passes the filter. In this case,
the resulting photon will be vertically polarised (i.e., in the |l〉 state). (In the no-outcome,
the photon is destroyed, so talking about the resulting photon does not make sense in
that case.)

A few typical unitary transformations on qubits are:

Definition 14 (Hadamard) The Hadamard gate (usually denoted H) is defined by

H =
1√
2

(
1 1
1 −1

)

or equivalently

H|0〉 = 1√
2
(|1〉 + |0〉)

H|1〉 = 1√
2
(|0〉 − |1〉)

The Hadamard gate is useful for introducing superpositions as it takes a classical bit
(|0〉 or |1〉 and transforms it into a superposition).

Definition 15 (Bit flip) The bit flip (also called not-gate or X-gate) is defined by

X =

(
0 1
1 0

)

or equivalently

X|0〉 = |1〉
X|1〉 = |0〉

4Of course, the labelling yes/no is arbitrary. Any other two labels are possible.
5Up to a scalar factor of absolute value 1. To be completely exact, the state after measuring yes is

〈yes|Ψ〉
|〈yes|Ψ〉| · |yes〉 (and analogous for no), but this should not worry us now. Furthermore, scalar factors

(called a global phase) do not have physically observable effect anyway.

5

The bit flip corresponds to a negation. It can, however, be applied in superposition.

Definition 16 (Rotation) The rotation by angle θ is defined by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)

or equivalently

Rθ|0〉 = cos θ|0〉+ sin θ|1〉
Rθ|1〉 = − sin θ|0〉+ cos θ|1〉

Definition 17 (Phase shift) The phase shift S is defined by

S =

(
1 0
0 i

)

or equivalently

S|0〉 = |0〉
S|1〉 = i|1〉

More generally, we can parametrise the phase shift by an angle θ:

Sθ =

(
1 0
0 eiθ

)

or equivalently

Sθ|0〉 = |0〉
Sθ|1〉 = eiθ|1〉

Note that S = Sπ
2
.

Further reading: [NC00, Section 1.2.1, 1.3.1], and [NC00, Section 4.2] for the single
qubit gates.

3 Elitzur-Vaidman Bomb Testing

A beam splitter is a device into which a photon can enter in two positions (call them up
and down), and exit in two positions (call them up and down, too). The input to the
beam splitter is a qubit that is represented as a superposition between |up〉 and |down〉.
Then the beam splitter performs the following linear transformation Bπ

4
:

Bπ
4
|up〉 = 1√

2
(|up〉+ |down〉)

Bπ
4
|down〉 = 1√

2
(−|up〉+ |down〉)

6

Another variant of the beam splitter is given by the linear transformation

B−π
4
|up〉 = 1√

2
(|up〉 − |down〉)

B−π
4
|down〉 = 1√

2
(|up〉+ |down〉)

Note that Bπ
4

and B−π
4

are unitary, and that Bπ
4
B−π

4
= B−π

4
Bπ

4
= 1.

The Elitzur-Vaidman bomb tester is the following construction. We are given a box
that may or may not contain a bomb. The bomb explodes if a single photon falls onto
it. We want to find out whether the box contains a bomb. To do so, we take a Bπ

4
beam

splitter and send an |up〉 photon through it. The state that comes out of the beam splitter
is 1√

2
(|up〉 + |down〉). Now we put the box in the path of the |down〉 photon. Assume

for the moment that a bomb is in that box. Then the box constitutes a measurement
whether the photon takes the up- or the down-path. Since the state of the photon is
1√
2
(|up〉+ |down〉), the measurement outcome will be up or down, each with probability

1
2 . In the case of a down-outcome, the bomb explodes. In the case of an up-outcome, the
resulting state is |up〉 (i.e., the photon takes the upper path). Then the photon passes the
B−π

4
beam splitter and is transformed into 1√

2
(|up〉− |down〉). Now we measure whether

the photon is in the up state or the down state (by simply putting a photon detector in
at the end of both paths). With probability 1

2 the photon will be up (conditioned on the
fact that the bomb did not explode), with probability 1

2 it will be down. Altogether we
get the following predictions for this experiment.

Event Probability

Bomb explodes 1
2

Photon is in up-path 1
4

Photon is in down-path 1
4

On the other hand, if no bomb is in the box, the box has no effect on the photon. In
this case, the experiment consists of two beam splitters Bπ

4
and B−π

4
in a row. Because

these beam splitters are inverses of each other, they cancel each other out, and the photon
coming out of the second beam splitter will be in state |up〉. Thus in this case we get
the following probabilities:

Event Probability

Bomb explodes 0

Photon is in up-path 1

Photon is in down-path 0

In other words, if the outcome of the experiment is “down”, we know for sure that
there is a bomb in the box without having caused it to explode. Unfortunately, with
probability 1

2 the bomb still explodes. The experiment can, however, be improved to
make the probability of the bomb exploding arbitrarily small (homework).

7

Further reading: For the modelling of the beam splitter: [NC00, Section 7.4]
(uses some physics we have not discussed yet). For the bomb tester: [Wik,
Elitzur-Vaidman bomb-tester].

4 Larger quantum systems

Definition 18 (Quantum states) An n-dimensional quantum state is represented by
a vector |Ψ〉 ∈ Cn with ‖|Ψ〉‖ = 1 (here Cn is a Hilbert space).

In most cases, we assume some canonical orthonormal basis of Cn (representing the
classical possibilities of the system) which we call the computational basis. We then use
the following convention: If |b1〉, . . . , |bn〉 are the basis vectors, and b1, . . . , bn are some
labels we assign to these vectors sorted according to some natural ordering (e.g., for
an m-qubit system (i.e., n = 2m) bi is the bitstring bi ∈ {0, 1}m which is the binary
representation of i − 1), then |bi〉 = (0, . . . , 0, 1, 0, . . . , 0)t where the 1 is at the i-th
position.

We abbreviate x⊗ . . .⊗x (n components) as x⊗n. See Definition 10 for the definition
of ⊗.

There are two kinds of operations on quantum states, unitary transformations and
measurements.

Definition 19 (Unitary transformation) A unitary transformation on a quantum
state |Ψ〉 ∈ Cn is represented by a unitary matrix U ∈ Cn×n. The state after the
transformation is U |Ψ〉.

Definition 20 (Measurement) A (projective) measurement on a Hilbert space H is
specified by a family {Pi}i∈I of orthogonal projections on H labelled with the possible
measurement outcomes i ∈ I. The projections have to be pairwise orthogonal, i.e., PiPj =
0 for i 6= j. And the projections sum to 1, i.e.,

∑
i Pi = 1H where 1H is the identity on

H.
When measuring a state |Ψ〉 ∈ H, the outcome i occurs with probability

‖Pi|Ψ〉‖2.

If the outcome i occurs, the state after the measurement (post-measurement state) is

Pi|Ψ〉
‖Pi|Ψ〉‖

.

A special case of a measurement is the complete measurement in which every projec-
tion is the projection onto a one-dimensional subspace.

Note that we can also represent a measurement by giving the images Vi of the projec-
tors Pi instead of the projectors themselves. This is equivalent, as the Pi can be recovered
from Vi and vice versa.

8

http://en.wikipedia.org/wiki/Elitzur-Vaidman_bomb-tester

Definition 21 (Complete measurement) A complete measurement on H is speci-
fied by an orthonormal basis B = {|i〉}i∈I of H labelled with the possible measurement
outcomes i ∈ I.

When measuring a state |Ψ〉 ∈ H, the outcome i occurs with probability

|〈i|Ψ〉|2.

and the corresponding post-measurement state is

〈i|Ψ〉
|〈i|Ψ〉| · |i〉

(which is |i〉 up to a (physically irrelevant) scalar factor 〈i|Ψ〉
|〈i|Ψ〉| of absolute value 1, the

global phase).

Note that the complete measurement with basis {|i〉}i∈I has the same effect as the
measurement with projectors {Pi}i∈I where Pi := |i〉〈i|. Thus complete measurements
are a special case of measurements as in Definition 20.

Further reading: [NC00], Section 2.2.1, 2.2.2, and 2.2.5 for states, unitary evolution,
and projective measurements, respectively. Section 2.2.7 for information in the global
phase.

5 Multi-qubit gates

Definition 22 (Controlled NOT) The CNOT gate on C4 is defined to be the linear
operation defined by

CNOT|00〉 = |00〉
CNOT|01〉 = |01〉
CNOT|10〉 = |11〉
CNOT|11〉 = |10〉

or equivalently
CNOT|a, b〉 = |a, a⊕ b〉 (a, b ∈ {0, 1})

where ⊕ denotes XOR.

In circuits, we write CNOT as follows:

•

9

The dot represents the controlling qubit, and the ⊕ represents the qubit that is condi-
tionally flipped. The dot does not have to be one the qubit above the ⊕. For example,

•
represents the operation defined by

|a, b, c〉 7→ |a⊕ c, b, c〉 (a, b, c ∈ {0, 1})

Definition 23 (SWAP) The SWAP gate on C4 is defined to be the linear operation
defined by

SWAP|a, b〉 = |b, a〉.

The swap gate is represented by
×
×

Again, the two × do not have to be on adjacent lines.

Definition 24 (Toffoli) The Toffoli gate on C8 is defined to be the linear operation
defined by

Toffoli|a, b, c〉 = |a, b, (a · b)⊕ c〉
where · is the multiplication modulo 2, or equivalently, the and-operation.

The Toffoli gate is usually represented as follows:

•
•

As with the CNOT, the two dots can be on arbitrary lines, not only those adjacent to
the ⊕. Furthermore, the symbol generalises to more than two controlling qubits in the
obvious way.

Definition 25 (Controlled-U) Given a unitary transformation U ∈ C

n, the
controlled-U gate C(U) is defined to be the linear operation on C2n defined by

C(U)|0, j〉 = |0, j〉
C(U)|1, j〉 = |1〉 ⊗ U |j〉.

The controlled-U is depicted as follows:

•
U

Again, the dot can be on an arbitrary qubit.

10

Further reading: [NC00], Section 4.3

6 Composite Systems

Definition 26 (Composite systems and states) Given n quantum systems Hi, the
composite system is H1 ⊗ . . .⊗Hn.

Given n quantum states |Ψi〉 ∈ Hi, the composite state consisting of n independent
subsystems in states |Ψi〉 is

|Ψ1〉 ⊗ . . .⊗ |Ψn〉 ∈ H1 ⊗ . . .⊗Hn.

Definition 27 (Composite unitary operations) Given a composite system H1⊗H2,
performing the unitary operation U1 on H1 and U2 on H2 independently is equivalent to
performing the unitary operation U1 ⊗ U2 on H1 ⊗H2.

A special case is performing an operation U only on H1 and not touching H2. This
is represented by U ⊗ I where I is the identity.

Definition 28 (Composite measurements) Given a measurement M1 specified by
projections P1, . . . , Pn on H1 and a measurement M2 specified by projections P ′

1, . . . , P
′
m

on H2, performing each of the measurements independently is equivalent to performing
the measurement M specified by the projections Pij := Pi ⊗ Pj with i = 1, . . . , n and
j = 1, . . . ,m. (I.e., the possible outcomes of M are pairs i, j with i = 1, . . . , n and
j = 1, . . . ,m.)

Note that the measurement that does nothing and has no effect on the state is given
by the single projector I (the identity). Thus a measurement M on H1 only extends to
a measurement M ′ on H1 ⊗H2 as follows: If M consists of P1, . . . , Pn, then M ′ consists
of P1 ⊗ I, . . . , Pn ⊗ I.

Further reading: [NC00], Section 2.2.8.

7 Sets of Elementary Gates

The following theorem is a corollary of the so-called Solovay-Kitaev theorem:

Theorem 1 Fix ε > 0. Fix a unitary operation U operating on C2n (an n-qubit opera-
tion).

Then there exists a ϕ ∈ C with |ϕ| = 1 (a global phase factor), and a quantum circuit
C of size polylog(1/ε) + exp(n) containing only the gates CNOT, H (Hadamard), Rπ

8

(rotation by π
8), S (phase shift) such that the following holds:

For all |Ψ〉 ∈ C2n with ‖|Ψ〉‖ = 1, we have that

‖ϕU |Ψ〉 − UC |Ψ〉‖ ≤ ε
where UC is the unitary transformation implemented by the circuit C.

11

In other words, we can approximate any unitary transformation U by a circuit con-
taining only the above-mentioned gates (up to a global phase factor ϕ which is physically
irrelevant). The construction is very efficient in terms of the error ε, but becomes ineffi-
cient for larger systems (exponential in the number n of qubits).

As a consequence, we may assume any finite set of elementary gates that is powerful
enough to implement CNOT, Hadamard, Rotation by π

8 and phase shift (up to an arbi-
trarily small error). The theorem above then implies that it does not matter which set of
gates we choose. (Note that in a finite set of gates, the number of qubits a gate operates
on is n = O(1), so the exponential term exp(n) in the complexity of the construction
vanishes.)

Fault tolerant computation. In the above, we assumed that we are given error free
gates, i.e., the gates always implement the unitary transformation they are supposed
to implement. However, in practise we will have very noisy components that introduce
errors on the qubits. Fortunately, it is possible to implement quantum circuits in a fault
tolerant fashion (under reasonable assumptions about the gates and the error model).
Then, given gates that have an error probability of approximately 10−5–10−6, we can get
almost error free computation. In the following, we always assume error free gates and
communication for simplicity.

Further reading: [NC00], Appendix 3 for the Solovay-Kitaev theorem (which gives
Theorem 1) for the case n = 2, and Section 4.5 on how to get a larger value of n.

[NC00], Section 4.6 for fault tolerant computation (needs knowledge of the preceding
sections on error correcting codes).

8 The Deutsch-Jozsa Algorithm

Deutsch’s algorithm. Assume we are given a function f : {0, 1} → {0, 1}. We ask
the question which of the following two cases applies:

• f is constant (f(0) = f(1)), or

• f is balanced (f(0) 6= f(1)).

We further assume that f is implemented as a unitary transformation Uf on two qubits
that performs the following operation:

Uf |x, y〉 = |x, y ⊕ f(x)〉 (x, y ∈ {0, 1})

(Such a unitary can be efficiently implemented if f has a poly-size classical circuit.)
Deutsch’s algorithm performs the following operations:

|0〉 H
Uf

H M

|1〉 H

12

(Here M denotes a complete measurement of the first qubit in the computational

basis, i.e., we look whether it is |0〉 or |1〉.)
Computing the output of this circuit, we get the following:

• If f is constant, then with probability 1 the measurement M has outcome 0.

• If f is balanced, then with probability 1 the measurement M has outcome 1.

Thus with one evaluation of f we have determined whether f is constant or balanced.
Classically, we would have needed two evaluations.

An extension of this algorihm, the Deutsch-Jozsa algorithm, can even handle functions
f : {0, 1}n → {0, 1} and decide whether they are constant or balanced (same number of
0 and 1 outputs). It needs only one evaluation of f . (There is no guarantee if f is neither
constant nor balanced.)

Further reading: [NC00, Section 1.4.3].

9 Density Operators

Intuitively, a quantum state probability distribution is a probability distribution on quan-
tum states.

Definition 29 (Quantum state probability distribution) A quantum state proba-
bility distribution E over a Hilbert space H is a (possibly infinite) set of pairs E =
{|Ψi〉@pi}i satisfying:

• For all i we have |Ψi〉 ∈ H.

• The vectors |Ψi〉 are normalized (‖|Ψi〉‖ = 1).

• We have pi ≥ 0 for all i and
∑

i pi = 1.

The interpretation is that a system is in state |Ψi〉 with probability pi.
Operations performed on quantum states generalise to quantum state probability

distributions.

Definition 30 (Unitary transformation) Let U be a unitary matrix on H. Let E =
{|Ψi〉@pi}i be an quantum state probability distribution over H.

Then applying U to the quantum state probability distribution E leads to the quantum
state probability distribution

UE = {U |Ψi〉@ pi}i.

Definition 31 (Measurement) Let M = {Q1, . . . , Qn} be a projective measurement
over H consisting of projectors Qi. Let E = {|Ψi〉@pi}i be an quantum state probability
distribution over H.

13

If we measure the state described by E with M , the outcome j has probability

Pr[Outcome j] =
∑

i

pi‖Qj |Ψi〉‖2.

After measuring the outcome j, the system state is described by the following quantum
state probability distribution:

{
Qj|Ψi〉
‖Qj |Ψi〉‖

@
pi‖Qj |Ψi〉‖2

Pr[Outcome j]

}

i

.

Definition 32 (Extending the state space) Let E = {|Ψi〉@pi}i be an quantum
state probability distribution over H. Let |Γ〉 ∈ H′, ‖|Γ〉‖ = 1.

Then extending the state described by E by adding another quantum system described
by |Γ〉 results in the following quantum state probability distribution over H⊗H′:

E ⊗ |Γ〉 = {|Ψi〉 ⊗ |Γ〉 @ pi}i.

Definition 33 (Physical indistinguishability) We call two quantum state probabil-
ity distributions physically indistinguishable if all sequences of operations according to
Definitions 30, 31, and 32 lead to the same probabilities of measurement outcomes.

A density operator is a compact representation of a quantum quantum state probability
distribution. This representation looses some information contained in the description of
an quantum state probability distribution,6 but it still contains enough information to
predict the outcome of physical experiments.

Definition 34 (Density operator) Let E = {|Ψi〉@pi}i be a quantum state probability
distribution over H. The density operator (density matrix, mixed state) corresponding
to E is the linear transformation ρE on H defined as follows:

ρE =
∑

i

pi|Ψi〉〈Ψi|.

We call ρ a density operator over H if it is a density operator for some quantum state
probability distribution E over H. By S(H) we denote the set of all density operators
over H.

Note: The usage of the words mixed state and pure state is ambiguous. There are
two usages:

• A mixed state is a density operator ρ ∈ S(H) and a pure state is a state described
by a vector |Ψ〉 ∈ H.

6E.g., the following two quantum state probability distributions both have the same representation
as a density operator: {(|0〉, 1

2
), (|1〉, 1

2
)} and {(|+〉, 1

2
), (|−〉, 1

2
) with |+〉 = 1√

2
|0〉 + 1√

2
|1〉 and |−〉 =

1√
2
|0〉 − 1√

2
|1〉.

14

• A pure state is a density operator of the form |Ψ〉〈Ψ| (i.e., a density operator
corresponding to an quantum state probability distribution with only one entry),
and a mixed state is a density operator that cannot be written as |Ψ〉〈Ψ|.

Lemma 2 The set S(H) consists of all positive Hermitian matrices with trace 1.

Due to its mathematical simplicity, one usually takes Lemma 2 as the definition of
density operators.

Definition 35 (Unitary transformation) Let U be a unitary matrix on H. Let ρ ∈
S(H) be a density operator over H.

Then applying U to the state ρ leads to the state UρU †.

Definition 36 (Measurement) Let M = {Q1, . . . , Qn} be a projective measurement
over H consisting of projectors Qi. Let ρ ∈ S(H) be a density operator over H.

If we measure the state ρ with M , the outcome j has probability

Pr[Outcome j] = trQjρQ
†
j = trQjρ.

After measuring the outcome j, the system state is
QjρQ

†
j

trQjρQ
†
j

.

Definition 37 (Extending the state space) Let ρ ∈ S(H) be a density operator
over H.

Then extending the state ρ by adding another quantum system described by σ ∈ S(H′)
results in the density operator ρ⊗ σ over H⊗H′

The following theorem states that density operators characterise physical indistin-
guishability of quantum state probability distributions.

Theorem 2 Let E,E′ be quantum state probability distributions over H and ρ, ρ′ the
corresponding density operators. Then E and E′ are physically indistinguishable if and
only if ρ = ρ′.

Since in physics, there is no reason to assume that some distinction exists if it is
principally impossible to measure it, one usually directly says that the physical system is
in the state ρ and does not assume that there is some hidden quantum state probability
distribution behind this state that contains more information than the density operator
ρ.

Further reading: [NC00, Section 2.4.1 and 2.4.2]. Note that they define a density
operator as being positive Hermitian (and omit the condition tr ρ = 1).

15

10 Partial Trace and Purification

Definition 38 (Partial trace) Let a bipartite system HA ⊗HB be given.
The partial tracetrB : S(HA ⊗HB)→ S(HA) is the linear transformation defined by

trB σ ⊗ τ = σ · tr τ σ ∈ S(HA), τ ∈ S(HB).

We say that HB (or just B) is traced out. Analogously we can also trace out HA or
consider multipartite systems.

Given a state ρ ∈ S(HA⊗HB), the state ρA := trB ρ describes the state resulting from
destroying (or locking away) the B-part of the system. Or equivalently, ρA represents
all information that can be extracted about the state ρ from the A-part of the system
alone.

Theorem 3 (Purification) Let a state ρ ∈ S(HA) be given. Then for any space HB

such that dimHB ≥ dimHA, there is a quantum state |Ψ〉 ∈ HA ⊗HB such that

trB |Ψ〉〈Ψ| = ρ.

We call Ψ a purification of ρ. Note that the purification is not unique.
This theorem means that any mixed state can be considered as a part of some larger

pure state (we usually call the added subsystem HB the environment).
In many cases, analysing a pure system may be simpler than analysing a mixed one.

In these cases Theorem 3 allows to simplify the analysis.

Further reading: [NC00, Section 2.4.3] for the partial trace and [NC00, Section 2.5]
for purification.

11 Quantum Operations

Definition 39 (Quantum Operations) A quantum operation E is a map E : S(H)→
S(H′) of the form

E(ρ) =
∑

k

EkρE
†
k (1)

where Ek : H → H′ are linear operators satisfying
∑

k E
†
kEk = I (where I is the identity

on H).
We sometimes write E = {Ek}k to denote the fact that E is the operation defined

by (1). The operator Ek are called the Kraus operators of E.

Quantum operations describe all operations that can be applied to a mixed state ρ,
including unitary transformations, measurements (when the outcomes are erased). Also
the partial trace is an example of a quantum operation.

Quantum operations are also called superoperators.

16

Definition 40 (Composing operations) Let E and F be two quantum operations
(over HE and HF , respectively). Then E ⊗ F is the linear operation defined by

(E ⊗ F)(σ ⊗ τ) = E(σ)⊗F(τ).

Note that E ⊗ F is a quantum operation over HE ⊗HF .

Theorem 4 E : S(H) → S(H′) is a quantum operation if and only if it satisfies the
following three conditions:

• It is linear.

• It is trace-preserving (i.e., tr E(ρ) = tr ρ).

• It is completely positive. That is, for any vector space H̃ and any positive ρ ∈
S(H ⊗ H̃), we have that (E ⊗ I)(ρ) is positive, too. (Here I is the identity on H̃.)

Further reading: [NC00, Section 8.2].

12 Trace distance

Note: In the following, we will use random variables and probability distributions inter-
changeably. That is, if we say “X is a probability distribution over A”, we may then
use X as a random variable taking values in A and write Pr[X = a] for the probability
assigned by the distribution X to a.

Definition 41 (Statistical distance) Let X and Y be probability distributions over
some (countable) set A. Then the statistical distance SD(X,Y) between X and Y is
defined as

SD(X,Y) := max
T⊆A

∣∣Pr[X ∈ T]− Pr[Y ∈ T]
∣∣.

Intuitively, the statistical distance tells us how good a sample chosen according to the
distribution X and a sample chosen according to Y can be distinguished by an optimal
statistical test T .

Lemma 3 (Alternative definition of statistical distance) Let X and Y be proba-
bility distributions over some (countable) set A. Then

SD(X,Y) = 1
2

∑

a∈A

∣∣Pr[X = a]− Pr[Y = a]
∣∣.

This lemma is often taken as the definition of statistical distance. However, it does not
have an operational meaning like Definition 41 and it does not generalise to uncountable
sets A.

The statistical distance is often used in cryptography in definitions of security against
computationally unlimited adversaries: If we have some random variable I that describes

17

what the output/communication of the protocol should ideally look like (e.g., it should be
stochastically independent of the secrets used in the protocol), and the random variable R
describes the actual output/communication, then one would require that SD(R, I) is
sufficiently small.

Lemma 4 • The statistical distance SD is a metric (on the set of probability distri-
butions over a given set A).

• For any (possibly randomized) function F we have that

SD(F (X), F (Y)) ≤ SD(X,Y)

If F is injective, equality holds.

(This means that applying a function to some data may not make it more distin-
guishable, it may only loose information.)

• Let X,Y,Z be stochastically independent. Then

SD((X,Z), (Y,Z)) ≤ SD(X,Y)

where (X,Z) is the random variable describing pairs chosen according to X and Z.

(Adding independent information does not help in distinguishing.)

Definition 42 (Trace distance) Given density operators σ, ρ ∈ S(H), we define the
trace distance TD(σ, ρ) as

TD(σ, ρ) := 1
2 tr|σ − ρ|.

Here |M | denotes the absolute value of the matrix M , see Definition 7.

Lemma 5 (Alternative definition of the trace distance) Given density operators
σ, ρ ∈ S(H) we have that

TD(σ, ρ) = max
P

∣∣trPσ − trPρ
∣∣.

Here P ranges over all orthogonal projectors on H.

In other words, the trace distance tells us how good we can distinguish the states σ
and ρ by a measurement {P, 1−P}. This is analogous to Definition 41 since a quantum
measurement is the analogue of a statistical test in the classical world.

This analogy is made even stronger by the following lemma:

Lemma 6 Let X and Y be probability distributions over A. Let

ρX :=
∑

a∈A
Pr[X = a] |a〉〈a| ∈ S(CA)

(in other words, ρX describes the distribution X over classical states |a〉) and ρY analo-
gous.

Then SD(X,Y) = TD(ρX , ρY).

18

Lemma 7 • The trace distance TD is a metric (on S(H)).

• For any quantum operation E and any σ, ρ ∈ S(H) we have that

TD(E(σ), E(ρ)) ≤ TD(σ, ρ).

If E applies a unitary (i.e., E(ρ) := UρU †), then equality holds.

• Let σ, ρ ∈ S(H) and τ ∈ S(H′). Then

TD(σ ⊗ τ, ρ⊗ τ) = TD(σ, ρ).

Note the one-to-one correspondence with the properties in Lemma 4.

Lemma 8 Let P be an orthogonal projector on H, let ρ ∈ S(H), let ε ≥ 0. Assume that
trPρ ≥ 1 − ε (i.e., the measurement {Pyes := P,Pno := 1 − P} returns yes with high
probability).

Then there is a state ρ′ ∈ S(H) such that

(a) TD(ρ, ρ′) ≤ √ε.

(b) There are states |Ψi〉 ∈ imP and values pi with
∑

i pi = 1, pi ≥ 0 such that ρ′ =∑
i pi|Ψi〉〈Ψi|. (In other words, when measuring ρ′, the measurement would always

return yes, i.e., ρ′ satisfies the property specified by P .)

This lemma gives a criterion to show that the trace distance between some state ρ
and some set of states S is small: Find a projector P such that S consists of all states
satisfying (b). Then show that with high probability, measuring P would succeed.

Lemma 9 (Convexity of the trace distance) Let ρ =
∑

i piρi and σ =
∑

i piσi with∑
i pi = 1, pi ≥ 0. Then

TD(ρ, σ) ≤
∑

i

piTD(ρi, σi).

This lemma is sometimes useful because it allows to remove some initial random choices
from the analysis

A generalisation of this lemma that does not require the probabilities pi to be the
same in ρ and σ also exists.

Further reading: [NC00, Section 9.2.1].

19

13 Quantum key distribution

The goal of quantum key distribution (QKD, a.k.a. quantum key exchange) is the fol-
lowing. Two parties Alice and Bob communicate over two kinds of channels. The first
channel allows to send classical information and is authenticated (but not secret). The
second channel allows to send qubits but is insecure (under the control of the adversary).
Alice and Bob want to agree on a secret key by communicating only over these channels
such that even a computationally unlimited adversary Eve that eavesdrops on the classi-
cal channel and controls the quantum channel cannot learn anything about the key. (But
Eve is allowed to disrupt the communication.)

The basic idea of quantum key exchange is the following: If Alice sends to Bob qubits
encoded in a random basis (unknown to Eve), then if Eve measures the qubits she will
necessarily introduce disturbances. Then Alice and Bob perform some checks on the
qubits received by Bob, and if Eve eavesdropped, we may expect some of these checks
to fail and Alice and Bob will abort the protocol. Otherwise, Alice and Bob use the
transmitted qubits to derive a shared secret key.

There are various desirable properties that a QKD protocol should have:

• Provable security. It should be possible to actually prove the security of the protocol.
This is a must, otherwise we do not gain much over the classical key exchange
protocols.

• Error tolerance. The key exchange protocol should work even if the communication
channel is noisy (introduces errors). This is difficult because a noisy channel also
introduces disturbances that look similar to those introduced by an eavesdropper.
So if Alice and Bob abort whenever there is a disturbance, the protocol will never
succeed. If they choose not to abort, Eve may learn some information.

• Realisability. The protocol should not need to use a quantum computer. It should
be executable using only simple operations like sending polarised photons and mea-
suring the polarisation.

• Arbitrary distance. The key exchange protocol should work over an arbitrary dis-
tance. In realistic channels, the noise increases with the distance. From some
distance on, the noise is too large to make key exchange possible. One solution is
to add relays on the way that correct errors or perform other computations, but
these relays should not be assumed to be secure (they might be under the control
of Eve). Quantum error correction can be used in untrusted relays, but this needs
a quantum computer.

The (rough) state of the art is listed in the following table:

BB84 and others Lo-Chau this lecture

Provable security yes yes yes
Error tolerance yes yes no
Realisability yes no no
Arbitrary distance no yes no

20

Here BB84 and other stands for most of the currently investigated protocols of which
(variations of) BB84 [BB84] are the most well-known. Lo-Chau stands for the protocol
proposed in [LC99].

In this lecture, we analyse a simplification of the Lo-Chau protocol that does not
need to use quantum error correction.

Most research today concentrates on trying to improve the range (distance) of QKD
protocol with available technology. Current records lie in the order of 250 km [SWV+09],
and about 140 km through a wireless connection [SMWF+07].

Definition 43 (Security of QKD) Let a QKD protocol π be given. Let n ∈ N. Let
ε > 0.

Let an adversary Eve be given (that has full control over the quantum channel between
Alice and Bob, but can only listen to but not modify the classical channel between Alice
and Bob). Then let ρReal

ABE ∈ S(HA ⊗ HB ⊗ HE) be the density operator describing the
joint state of Alice’s, Bob’s and Eve’s system in the case that Alice and Bob do not abort.
Here HA = HB = C2n because Alice’s and Bob’s final state consist of an n-bit key, and
HE is some arbitrary Hilbert space defined by Eve.

Let SIdeal ⊆ S(HA ⊗HB ⊗HE) be the set of all states of the form

(∑

k∈{0,1}n
2−n(|k〉〈k| ⊗ |k〉〈k|)

)
⊗ ρE , ρE ∈ S(HE).

By Psuccess denote the probability that Alice and Bob do not abort the protocol and
thus output a key (given a particular adversary Eve).

We say that π is ε-secure if the following holds: For every adversary Eve, we have
that

∃ρIdealABE ∈ SIdeal : TD(ρReal
ABE , ρ

Ideal
ABE) · Psuccess ≤ ε.

Intuitively this means that the keys output by Alice and Bob are the same with high
probability, that these keys are almost uniformly distributed, and that Eve’s information
is almost independent of that key.

Definition 44 (Bell states) The four Bell states are:

|β00〉 =
1√
2
|00〉 + 1√

2
|11〉

|β01〉 =
1√
2
|01〉 + 1√

2
|10〉

|β10〉 =
1√
2
|00〉 − 1√

2
|11〉

|β11〉 =
1√
2
|01〉 − 1√

2
|10〉

The four Bell states form a basis of C4.

21

As a shorthand, we write |x̃y〉with x, y ∈ {0, 1}n for the state |βx1y1〉 ⊗ |βx2y2〉 ⊗
|βx3y3〉 ⊗ . . . ⊗ |βxnyn〉. In particular, |0̃ . . . 0〉 = |β00〉⊗n = 2−n/2

∑
x∈{0,1}n |x〉 ⊗ |x〉.

(Note: we implicitly assume here that the qubits are reordered that the first qubits of
each Bell state come before all the second qubits.)

The states |x̃y〉 with x, y ∈ {0, 1}n form a basis of C22n (2n-qubit systems).
We will analyze the following QKD protocol:

Definition 45 (QKD protocol)
Parameters:

• m: Number of qubits exchanged over the channel.
• q: Number of qubit pairs checked during Bell test (q < n).
• n: Length of raw key (n = m− q).
• t: Maximum number of errors in raw key.
• H: Parity check matrix of a linear binary error correcting code with n bit codewords,

correcting t errors. (See Definition 48.)

• k: Bitlength of unencoded messages in that code. (H is a F
(n−k)×n
2 matrix.)

• ℓ: The length of the final key.
• s: the length of the seed of the universal hash function.
• F : {0, 1}s × {0, 1}n → {0, 1}ℓ: a universal hash function. (See Definition 51.)

Protocol:

Step 1. Alice prepares the 2m-qubit state |0̃0〉 and sends the second half of each qubit pair
to Bob over the insecure quantum channel. (We call the joint state of Alice, Bob,
Eve after this state ρinit .)

Step 2. Alice and Bob perform the “Bell test” (see Definition 46 below). (This reduces
the number of qubit pairs from m to n. We call the joint state ρtest .)

Step 3. Alice and Bob measure their respective n-qubit quantum systems in the compu-
tational basis. Call the measurement outcomes KA, KB. (“Raw keys.”. We call
the joint state ρraw .)

Step 4. Alice sends σ := HKA to Bob (over the authenticated channel). Bob finds e with
He = σ + HKB and |e| ≤ t. Then Bob updates his key to be K ′

B := KB ⊕ e.
(Such an e is unique and can efficiently be found if it exists by definition of error
correcting codes. We call the joint state ρcorr .))

Step 5. Privacy amplification: Alice picks S ∈ {0, 1}s and sends S to Bob. Alice com-
putes K ′′

A := F (S,KA), Bob computes K ′′
B := F (S,K ′

B). K ′′
A and K ′′

B are the
final key. (If all goes well, K ′′

A = K ′′
B.)

We claim that for suitable choices of parameters, this protocol is a secure QKD
protocol in the sense of Definition 43. We now proceed to analyze the protocol step by
step. After Step 1, Alice and Bob have m qubits each, but besides that, we make not
claims about the structure of ρinit . (Since the communication went over the insecure
channel, Eve could have modified it arbitrarily.)

22

13.1 Bell test

We now describe Step 2 in more detail, and analyze what we can say about the state
ρtest after that step.

Definition 46 Let a state ρ ∈ S(HA ⊗HB ⊗HE) be given with HA = HB = Cm. Let
q ∈ N, q ≤ m. The Bell test is the following procedure:

• Choose q distinct indices i1, . . . , iq ∈ {1, . . . ,m}.

• For each index i, measure the i-th Alice-Bob qubit pair of ρ using one of the following
measurements:

– Pyes := |β00〉〈β00| + |β01〉〈β01| and Pno := 1 − Pyes . (I.e., we check that the
state is not |β10〉 or |β11〉.)

– Pyes := |β00〉〈β00| + |β10〉〈β10| and Pno := 1 − Pyes . (I.e., we check that the
state is not |β01〉 or |β11〉.)

• If this measurement returned no, abort.

Note that this test cannot be directly implemented by Alice and Bob because it per-
forms measurements on the joint state of Alice and Bob that cannot be implemented
locally. On the exercise sheet, however, we devise an equivalent test that can be im-
plemented with local operations and classical communication (the latter will then be
performed through the authenticated channel).

For the analysis, we fix the following notation:
For x, y ∈ {0, 1}m, by |xy| we denote the number of bitpairs in xy that are not 00.

More precisely, |xy| = |{i : xi 6= 0 ∨ yi 6= 0}|.
Let Pok be the projector

∑
|xy|≤t|x̃y〉〈x̃y| ⊗ IE (where IE is the identity on Eve’s

system HE). That is, intuitively Pok projects onto states that have at most t wrong

qubit pairs. For notational convenience, we write Pok (ρ) := PokρP
†
ok .

Let T denote the (not trace-preserving) quantum operation describing the Bell test.
More precisely, given a state ρ ∈ S(HA ⊗ HB ⊗ HE), T (ρ) := pρ̃ where ρ̃ is the state
after passing the Bell test and p is the probability of passing the Bell test. Note that
ρ̃ = T (ρ)

tr T (ρ) .
7

Recall that ρinit is the state that Alice and Bob hold in the QKD protocol before

the Bell test. If ρinit = |0̃ . . . 0〉〈0̃ . . . 0| (i.e., Eve has not disturbed the state), then the
Bell test passes with probability 1. If ρinit = |x̃y〉〈x̃y| where for more than t indices i,
xiyi 6= 00 (i.e., Eve has disturbed a lot), the Bell test passes with probability at most
δq := (1 − t+1

2m)q. Note that for t = 0, even for q = m, this does not converge to 0, so
we cannot use this test to ensure that there are no errors in the state. However, if t is a
fixed fraction of m, δq converges exponentially fast to 0 for m, q →∞.

7This encoding of the Bell test is analogous to Pok(ρ) where also both the post-measurement state
and the probability are encoded in the operator Pok (ρ) of trace ≤ 1.

23

Lemma 10 Let a state ρ ∈ S(HA ⊗ HB ⊗ HE) be given with HA = HB = C

m. Let
q ∈ N, q ≤ m.

Let ρ̃ := T (ρ)
tr T (ρ) (the state after passing the Bell test). Let Psuccess := trT (ρ) (the

probability of passing the Bell test).

Then trPok (ρ̃) ≥ tr T (ρ)−δq
trT (ρ) . That is, the (hypothetical) test whether ρ̃ indeed has at

most t bad qubits will fail with probability at most
δq

Psuccess
.

In the following, let t-Error denote the set of states |Ψ〉 that are a superposition of
states |x̃〉 with |x| ≤ t, and with an arbitrary state on Eve’s side. (In other words, in |Ψ〉,
at most t bad qubit pairs occur.) Formally,

t-Error := span{|x̃〉 ⊗ |ΨE〉 : |x| ≤ t, |ΨE〉 arbitrary}.

Let St-Error

Ideal be the set of all states that are mixtures of states in t-Error. Formally,

St-Error

Ideal :=
{∑

i

pi|Ψ̃i〉〈Ψ̃i| :
∑

i

pi = 1,∀i. pi ≥ 0,∀i. |Ψi〉 ∈ t-Error
}
.

We have

Lemma 11 For any adversary Eve, there exists a state ρidealtest ∈ St-Error

Ideal such that
TD(ρtest , ρ

ideal
test) · Psuccess ≤

√
δq. Here Psuccess is the probability of passing the Bell

test.

To see this, note that ρtest =
T (ρinit)
tr T (ρinit)

and Psuccess = trT (ρinit), and that St-Error

Ideal is

the set of all states
∑

i pi|Ψi〉 with |Ψi〉 ∈ imPok . Then Lemma 8 implies TD(ρ̃, ρ′) ≤√
δq

Psuccess
from we TD(ρtest , ρ

ideal
test) · Psuccess ≤

√
δq immediately follows.

Note: compare this lemma with the definition of secure QKD schemes (Definition 43).
Basically, the lemma shows that the protocol until Step 2 is a secure QKD-protocol,
except that the set of ideal state SIdeal is replaced by St-Error

Ideal which consists of states
where Alice and Bob have Bell pairs with at most t errors. So basically, we have shown
that we have a

√
δq-secure “t-error Bell state distribution protocol”.

13.2 Measuring the raw key

In Step 3, Alice and Bob measure the raw key KA,KB . Note that the raw key is not
necessarily a good key yet. For example, we do not have the guarantee that KA = KB ,
and Eve might have partial information about KA or KB .

But the raw key is not all bad. In this section we analyze what useful properties it
does have.

Lemma 12 If ρtest ∈ St-Error

Ideal , then, after Step 3, with probability 1 we have |KA⊕KB| ≤
t.

This was proven on a homework sheet. Since Lemma 11 guarantees that ρtest will be
close to St-Error

Ideal , we know that |KA ⊕KB | ≤ t with high probability.

24

Lemma 13 If ρtest ∈ St-Error

Ideal , then, for any algorithm that accesses only Eve’s state in
ρraw and outputs a guess KE of Alice’s key, we have Pr[KA = KE] ≤ (3n + 1)t2−n.

This was shown in the practice session.
Lemma 13 allows us to quantify the so-called min-entropy of the raw key. The min-

entropy is a measure of uncertainty that has a lot of importance in cryptography, and is
defined as follows:

Definition 47 (Min-entropy) Let HK ⊗ HB ⊗ HE with HK = C

K be a tripartite
system. Let ρ be a cqq-state8 on this system. (HK represents the part of the state
containing the key, HE Eve’s part of the system, and HB any other parts of the system
not belonging to the key or Eve.)

We define the min-entropy as:

H∞(K|E)ρ := − log max
M

Pr[K =M given ρ].

Here M ranges over arbitrary quantum algorithms with input in HE and classical output.
By “Pr[K =M given ρ]” we mean the following probability: Measure the system HK

in the computational basis. Run the algorithm M on system HE. Then the outcomes of
the two measurements are equal.

The intuition behind this definition is again that 2−H∞(K|E)ρ is the maximum prob-
ability that Eve guesses the key K (contained in HK) while having access to the system
HE. Notice that the definition assumes that the subsystem HK contains a classical key.
The definition of min-entropy generalizes to the case that all systems contain quantum
data. However, in that case the definition is considerably less intuitive.

By definition of H∞, we can restate Lemma 13 as follows:

Lemma 14 If ρtest ∈ St-Error

Ideal then

H∞(KA|E)ρraw ≥ − log
(
(3n+ 1)t2−n

)
= n− t log(3n + 1).

(Here in slight abuse of notation we write KA for Alice’s subsystem.)

Let

Sraw
Ideal := {ρ : KA,KB are classical in ρ, H∞(KA|E)ρ ≥ n− t log(3n + 1),

|KA ⊕KB | ≤ t in ρ}

From Lemma 13 and Lemma 14 we immediately get:

Lemma 15 If ρtest ∈ St-Error

Ideal then ρraw ∈ Sraw
Ideal.

And combining this with Lemma 11, we get

8A cqq-state means a state that is classical (c) in the first component, and potentially quantum (q)
in the second and third. More precisely, ρ =

∑
x pi|x〉〈x| ⊗ ρi with ρi ∈ S(HB ⊗HE).

25

Lemma 16 For any adversary Eve, there exists a state ρidealraw ∈ Sraw
Ideal such that

TD(ρraw , ρ
ideal
raw) · Psuccess ≤

√
δq. Here Psuccess is the probability of passing the proto-

col up to this point.

(We used here implicitly that the trace distance can only decrease under quantum
operations (Lemma 7) and that Step 3 is a quantum operation. We also used that the
probability of success Psuccess does not change after the Bell test any more, since the
protocol can only abort during the Bell test.)

Basically, Lemma 16 shows that until Step 3, we have a
√
δq-secure “leaky and not-

exactly-the-same key distribution protocol”.

13.3 Error-correction

In Step 4, make sure that Alice and Bob have the same key. To understand this step, we
need some basics about error correcting codes, first.

Definition 48 (Error correcting code) A (linear binary) error correcting code with
codewords of length n, messages of length m, and correcting t errors consists of the
following parts:

• A polynomial-time encoding algorithm that maps m ∈ {0, 1}k into a codeword c ∈
{0, 1}n. Since the code is linear, c = Gm for some fixed matrix G ∈ Fn×k

2 (the
“generator matrix”). Let C be the set of all codewords, i.e., the image of G.

• A polynomial-time decoding algorithm that maps a codeword c ∈ C to the original
message m with c = Gm. (This can be done, e.g., by solving the linear equation
system c = Gm for unknown m.)

• A parity check matrix H, that is defined such that Hc = 0 iff c ∈ C. We call Hc′

the syndrome of c′. Since H(c ⊕ e) = He for c ∈ C, the syndrome of a codeword
with errors e only depends on the errors e, not on c.

• A polynomial-time error correction algorithm. Given a c′ ∈ {0, 1}n such that there
exists a c with |c ⊕ c′| ≤ t, the algorithm finds c. (Think of c′ as a codeword with
errors.)

Note that if H is a parity check matrix of a code that corrects t errors, then we have
the following property: Given σ = He for some e with |e| ≤ t, we can efficiently find e.
This is done as follows: Find some c′ with Hc′ = σ. Then H(c′⊕e) = 0, hence c := c′⊕e
is a valid codeword, and |c ⊕ c′| ≤ t. Thus the decoding algorithm applied to c′ returns
c. And thus we can compute e := c⊕ c′.

This is what we do in Step 4. Assume that |KA ⊕KB| ≤ t. Then Bob searches an e
such that He = H(KA ⊕KB). This will be e = KA ⊕KB . Hence K ′

B = KA. Thus we
have:

Lemma 17 If ρraw ∈ Sraw
Ideal, then in ρcorr we have K ′

B = KA. (With slight abuse of
notation, we now refer to Bob’s system by K ′

B.

Thus Step 4 makes sure that Alice and Bob have the same key. However, sending σ over
the network means that Eve learns additional information about the key. The following

26

fact about min-entropy shows that Eve cannot learn more than n− k bits (where n− k
is the length of σ).

Lemma 18 (Chain rule) For any density operator ρ, H∞(X|Y E)ρ ≥ H∞(XY |E)ρ−ℓ
if Y is an ℓ-bit system.9

From Lemma 18, we can conclude that the min-entropy decreases at most by n− k,
hence:

Lemma 19 If ρraw ∈ Sraw
Ideal, then H∞(KA|E)ρcorr ≥ H∞(KA|E)ρraw − (n − k) ≥ k −

t log(3n+ 1).

Let

Scorr
Ideal := {ρ : KA,K

′
B are classical in ρ, H∞(KA|E)ρ ≥ k−t log(3n+1), KA = K ′

B ≤ t in ρ}

From Lemma 17 and Lemma 19 we then immediately have:

Lemma 20 If ρraw ∈ St-Error

Ideal then ρcorr ∈ Scorr
Ideal.

And combining this with Lemma 16, we get

Lemma 21 For any adversary Eve, there exists a state ρidealcorr ∈ Scorr
Ideal such that

TD(ρcorr , ρ
ideal
corr) · Psuccess ≤

√
δq. Here Psuccess is the probability of passing the proto-

col up to this point.

(We used here implicitly that the trace distance can only decrease under quantum
operations (Lemma 7) and that Step 4 is a quantum operation on the joint state of Alice,
Bob, Eve. We also used that the probability of success Psuccess does not change after the
Bell test any more, since the protocol can only abort during the Bell test.)

Basically, Lemma 24 shows that until Step 4, we have a
√
δq-secure “leaky key distri-

bution protocol”.

13.4 Privacy amplification

After Step 4, Alice and Bob have the same key (with high probability), but Eve might
still have partial information about that key. To get rid of the remaining knowledge of
Eve, Alice and Bob perform “privacy amplification”. The idea here is to apply a function
F to the key such that, if Eve has only partial knowledge of the input KA to F , then
Eve has (close to) no knowledge about the output of F . That is, F should transform
something weakly random into something (close to) uniformly random. The main tool is
a so-called strong quantum randomness extractor (or simple strong quantum extractor).

9This even holds if X and Y are not classical. Notice that our definition of H∞ only allows to talk
about classical X,Y , but more general definitions exist [Ren05].

27

Definition 49 (Strong quantum extractor) A function F : S ×X → Y is a strong
(k, ε)-quantum extractor iff the following holds:

Consider a multi-partite quantum system HX ⊗HE with HX = CX . Let HS := CS,
HY := CY . Consider a cq-state ρ (i.e., ρ is of the form ρ =

∑
x px|x〉〈x| ⊗ ρx). Assume

that H∞(K|E)ρ ≥ k.
Let

ρextr :=
∑

x,s

1
|S|px|F (s, x)〉〈F (s, x)| ⊗ ρx ⊗ |s〉〈s| ∈ S(HY ⊗HE ⊗HS).

That is, ρextr is the result of adding a register S containing a random value (the seed) to
ρ and then replacing X by F (S,X).

Let

ρperf :=
(∑

y

1
|Y | |y〉〈y|

)
⊗

(∑
x
pxρx

)
⊗

(∑
r

1
|R| |r〉〈r|

)
∈ S(HY ⊗HE ⊗HS).

That is, ρperf is the result of adding a register S containing a random value (the seed) to
ρ and then replacing X by a random value from Y .

Then TD(ρextr , ρperf) ≤ ε.

Intuitively, this means that as long asH∞(K|E)ρ ≥ k, one cannot distinguish between
F (S,X) and uniformly random Y , even given E and S.

For comparison, here is the definition of a classical strong extractor:

Definition 50 (Strong extractor) A function F : S × X → Y is a strong (k, ε)-
extractor iff the following holds:

Consider random variables X ∈ X and E with H∞(X|E) ≥ k. Let S ∈ S and Y ∈ Y
be uniformly random and independent of each other and X,E.

Then
SD

(
(F (S,X), E, S); (Y,E, S)

)
≤ ε.

This is the same as the strong quantum extractor, except that now all registers are
classical (even E), which makes notation much simpler. In particular, a strong (k, ε)-
quantum extractor is a strong (k, ε)-extractor.

Examples for strong quantum extractors are so-called universal hash functions
(a.k.a. two-universal hash functions):

Definition 51 (Universal hash function) A function f : S ×X → Y is a universal
hash function (UHF) iff for all x, y ∈ X with x 6= y, we have that

Pr[f(s, x) = f(s, y) : s
$← S] ≤ 1

|Y | .

Here s
$← Smeans that s is uniformly randomly chosen from S.

Universal hash functions are known to be strong extractors, even in the quantum
case:

28

Lemma 22 (Leftover hash lemma, quantum-variant) Let f : S × X → Y be a

universal hash function with |Y | ≤ 2ℓ. Let k ≥ 0. Let ε := 2−
1

2
(k−ℓ)−1. Then f is a

strong (k, ε)-quantum extractor.

We can now analyze Step 5. Before Step 5, we have the state ρcorr . If ρcorr ∈ Scorr
Ideal,

then KA = K ′
B in ρcorr , and thus also K ′′

A = K ′′
B in ρpriv .

Furthermore, if ρcorr ∈ Scorr
Ideal, then H∞(KA|E)ρcorr ≥ k − t log(3n + 1) =: d. Let

ρAE
corr := trB ρcorr and ρAE

priv := trB ρpriv . Note that ρpriv differs from ρcorr besides other
things in that the seed S is now added to Eve’s state E. Then H∞(KA|E)ρAE

corr
≥ d,

and ρAE
priv is the state ρextr from Definition 49 (if we set ρ := ρAE

corr in that definition).

Since F is a strong (d, γ)-quantum extractor by Lemma 22 for γ := 2−
1

2
(d−ℓ)−1, it follows

by Definition 49 that ρAE
priv has statistical distance γ from a state of the form ρAE

ideal :=(∑
y

1
|Y | |y〉〈y|

)
⊗ρE for some ρE . (ρE here contains the second and the third tensor factor

of ρpriv from Definition 49.)
Let E denote the quantum operation that copies the (classical) register A into a

register B. Since K ′′
A = K ′′

B in ρpriv (still assuming ρcorr ∈ Scorr
Ideal), we have that

ρpriv = E(ρAE
priv). Let ρideal := E(ρAE

ideal). Since TD(ρAE
priv , ρ

AE
ideal) ≤ γ, with Lemma 7

we get TD(ρpriv , ρideal) = TD(E(ρAE
priv), E(ρAE

ideal)) ≤ γ. Furthermore, note that ρideal =(∑
y

1
|Y | |y〉〈y| ⊗ |y〉〈y|

)
⊗ ρE ∈ SIdeal.

Thus we have:

Lemma 23 If ρcorr ∈ Scorr
Ideal, then there is a ρideal ∈ SIdeal with TD(ρpriv , ρideal) ≤ γ.

Combining this with Lemma 24 we get

Lemma 24 For any adversary Eve, there exists a state ρideal ∈ SIdeal such that
TD(ρpriv , ρ

ideal) · Psuccess ≤
√
δq + γ. Here Psuccess is the probability of passing the

protocol up to this point.

Since ρpriv is the final state of the protocol from Definition 45, and δq = (1 − t+1
2m)q

and γ = 2−
1

2
(k−t log(3n+1)−ℓ)−1, we immediately get:

Theorem 5 (Security of QKD) The protocol from Definition 45 is ε-secure in the
sense of Definition 43 for

ε :=
(
1− t+1

2m

)q/2
+ 2−

1

2
(k−t log(3n+1)−ℓ)−1.

Further reading: [NC00, Section 12.6]. (However, things are a very vague there.)

14 Quantum Commitments

A commitment protocol is a protocol with two parties, Alice and Bob (or sender and
recipient). It consists of two phases, the commit and the open phase (also known as

29

unveil phase). In the commit phase, Alice runs with some input b ∈ {0, 1} and Bob has
no input. No output is made. In the open phase, both Alice and Bob have no input. Bob
outputs a bit b′ ∈ {0, 1} or aborts.10 Intuitively, we require that Bob will output the bit
b′ that Alice committed herself to in the first phase, that is, Alice cannot change her mind
about the bit (binding property). On the hand, we do not want Bob to learn the bit b
before the open phase (hiding property). In the following, we assume that Alice and Bob
are quantum machines and have a quantum channel between them. Since commitments
are not supposed to give security against outside adversaries (but rather against the case
that Alice or Bob cheats), we do not need any authenticated or secret channels.

Formally, a secure commitment scheme is one that has the properties: correctness,
hiding, and binding.

Definition 52 (Correctness) We call a commitment protocol εC-correct if for honest
Alice and Bob, and for any Alice-input b ∈ {0, 1}, when executing the commit and the
open phase, the probability that Bob outputs b′ = b in the open phase is at least 1− εC .

Definition 53 (Hiding) We call a commitment protocol εH -hiding if the following
holds: Fix some malicious Bob. Let ρb be the state of honest Alice’s and malicious
Bob’s system after performing the commit phase with Alice-input b. Then

TD(trA ρ0, trA ρ1) ≤ εH .

Definition 54 (Binding) We call a commitment protocol εB-binding if the following
holds: Fix some machines A,A0, A1. Let Pb be the probability that honest Bob outputs
b′ = b after interacting with A in the commit phase and Ab in the open phase. Then

P0 + P1 ≤ 1 + εB .

Intuitively, this means that Alice cannot open as b when she learns b after the commit
phase. Note that it is always possible to get P0 + P1 = 1 since A might just randomly
choose b with probability Pb and then perform an honest commit.

Lemma 25 (Schmidt decomposition) Fix some bipartite Hilbert space HA⊗HB and
some quantum state |Ψ〉 ∈ HA ⊗HB. Then there are orthonormal sets of states

{|αi〉} ⊆ HA and {|βi〉} ⊆ HB

and reals λi ≥ 0 with
∑

i λ
2
i = 1 such that

|Ψ〉 =
∑

i

λi|αi〉 ⊗ |βi〉.

10We assume that Alice never aborts and that Bob does not abort in the commit phase. This is
possible without loss of generality, since instead of aborting they may just send dummy messages.

30

Lemma 26 (Simultaneous Schmidt decomposition) Fix some bipartite Hilbert
space HA ⊗HB and two quantum states |Ψ〉, |Ψ̃〉 ∈ HA ⊗HB. Assume that trA|Ψ〉〈Ψ| =
trA|Ψ̃〉〈Ψ̃|. Then there are orthonormal sets of states

{|αi〉} ⊆ HA and {|α̃i〉} ⊆ HA and {|βi〉} ⊆ HB

and reals λi ≥ 0 with
∑

i λ
2
i = 1 such that

|Ψ〉 =
∑

i

λi|αi〉 ⊗ |βi〉.

and
|Ψ̃〉 =

∑

i

λi|α̃i〉 ⊗ |βi〉.

This lemma intuitively states that if two states are indistinguishable when looking only
at the second system, then the corresponding vectors |βi〉 in the Schmidt decomposition
can be chosen to be the same for both states.

Lemma 27 (Purification of the commit phase) Assume a commitment protocol π
that is εC -correct, εH-hiding, and εB-binding. Then there is a commitment protocol π̃
that is εC -correct, εH-hiding, and εB-binding and that performs only unitary operations
during the commit phase (that is, no honest party measures, and no classical channel is
used between the parties).

The basic idea of the transformation underlying Lemma 27 is to do the following:

• First, replace any use of a classical channel by sending the classical bit on a quantum
channel, encoded in the computational basis. Here both the sender and the recipient
measure the bit before/after sending to ensure that it is classical even if the other
party is cheating.

• Second, generate random bits as follows: If a random bit is needed, take a bit in
the |0〉 state, apply Hadamard to it (resulting in the |+〉 state), and measure the
bit in the computational basis.

• Third, replace every measurement (including those introduced in the steps before)
by a CNOT that stores the result the measurement would have onto a fresh quan-
tum register. This register is never used again, thus storing the information in this
register has the same effect as measuring.

Theorem 6 (Impossibility of quantum bit commitment) There is no 0-correct 0-
binding 0-hiding commitment protocol.

Note that this theorem does not exclude the possibility of quantum bit commitment
under additional assumptions, e.g., if the adversary is computationally bounded, or if it
is bounded in the size of its quantum memory (see next section).

As stated, the theorem does not exclude that εC-correct εH -hiding εB-binding com-
mitment protocols might exist for small but non-zero εC , εH , εB . A more careful analysis,
however, excludes this [May97].

31

14.1 Bounded quantum storage model

In the bounded quantum storage model, we assume that there is an upper bound n
on the amount of quantum memory the adversary can store over a longer period of
time (where we do not specify that period of time, but require that between commit
and open at least that time passes). In the bounded quantum storage model more is
possible to design secure quantum commitment protocols without having to resort to
any unproven computational assumption like the hardness of inverting some function
(one-way function).

Consider the following protocol from [DFSS05]:

• Let m be some parameter.

• Commit phase: In the commit phase, Bob (the recipient) chooses m bits xi ∈ {0, 1},
and m bits bi ∈ {0, 1}. Then Bob encodes each xi in a basis specified by bi; call the
resulting qubit Ψi. More precisely, if bi = 0, then xi is encoded in the computational
basis |0〉, |1〉; if bi = 1, then xi is encoded in the diagonal basis |+〉, |−〉. Then Bob
sends the qubits |Ψ1〉, . . . , |Ψm〉 to Alice.

If c = 0 (Alice wants to commit to 0), then Alice measures all qubits in the
computational basis; if c = 1 (Alice wants to commit to 1), then Alice measures all
qubits in the diagonal basis. Let the results of these measurements be x̃i.

• Open phase: Alice sends c and all the bits x̃i to Bob. Bob checks whether xi = x̃i
for all i with bi = c. If so, Bob outputs c′ := c. Otherwise, Bob aborts.

Theorem 7 (Commitment in the quantum bounded storage model [DFSS05])
Fix some constant δ > 0. Let n denote the security parameter and assume that n is
also the quantum memory bound of the adversary. Assume that in the above protocol,
m ≥ (4 + δ)n. Then there is a negligible function µ such that the above protocol is
perfectly correct and hiding (i.e., 0-correct and 0-hiding) and µ(n)-binding.

Note that the protocol does not need any quantum storage on the side of Alice and
Bob. Current technology does not allow to implement this protocol because it assumes
that no errors occur on the quantum channel. However, a straightforward modification
in which Bob accepts a certain amount of errors in his check in the open phase can be
shown to be secure.

For the proof of Theorem 7, we need a variant of the definition of min-entropy, the
smooth min-entropy. We only give the formal definition in the classical case:

Definition 55 (Smooth min-entropy) Fix ρ ∈ S(HX⊗HY ⊗HZ). The (conditional)
smooth min-entropy Hε

∞(X) is defined as Hε
∞(X|Y)ρ := supρ′ H∞(X|Y)ρ. Here ρ′

ranges over all positive ρ′ with tr ρ ≤ 1 and TD(ρ, ρ′) ≤ ε.

Intuitively, having smooth min-entropy α = Hε
∞(X) means having min-entropy α

except in rare cases which happen with probability at most ε.

32

Note: we quantify over all ρ′ with tr ρ ≤ 1, which makes the definition less intuitive,
because ρ′ is not a quantum state in that case. If you change the definition to require
“tr ρ = 1”, you get a similar definition, and the results in this section still apply (possibly
with slightly changed values for the ε’s). However, the definition as defined here behaves
better in certain settings and was introduced in [Ren05]. Some definitions also use a
different distance measure than TD, e.g., the “purified distance” [Tom16].

Theorem 8 (Uncertainty relation) Fix a constant λ > 0. Let ρ ∈ S(HX ⊗ HY)
with HX = C

2m and with Y being classical. Let b1, . . . , bm ∈ {+,×} be uniformly and
independently chosen bases (+ denotes the computational, and × the diagonal basis). Let
xi denote the result of measuring the i-th bit of X in ρ in basis bi. Then there exists a
negligible ε such that

Hε(m)
∞ (x1, . . . , xm|b1, . . . , bm, Y) ≥ 0.48m.

This theorem states that if we are given an arbitrary state ρ (that about which we may
know as much as we like), and then a basis is randomly chosen, then we will necessarily
have approximately m/2 bits of uncertainty about the outcome of measuring the state
in this basis. In other words, for no state can we know what would be the outcome of
measuring that state for each possible basis. (Although for particular fixed bases, we can
certainly know the output: For example, if b is the computational basis and x = |0〉.)

Theorem 8 is shown in [DFR+07] (Corollary 3.4 in the full version). (Without the Y
register.)

The chain rule (Lemma 18) also holds for smooth min-entropy:

Lemma 28 (Chain rule [Ren05]) For any density operator ρ, Hε
∞(X|Y E)ρ ≥

Hε
∞(XY |E)ρ − n if Y is an n-bit system.11

Lemma 29 (Min-entropy splitting) Let X0,X1, B be random variables. Fix ε, ε′ > 0.
Then there exists a function C with range {0, 1} such that

Hε+ε′
∞ (XC̄ |C,B) ≥ Hε

∞(X0,X1|B)/2− 1− log 1
ε′

where C := C(X0,X1, B) and C̄ := 1− C.

Intuitively, this lemma means that if we have an uncertainty α about X0,X1, then
we have uncertainty approximately α/2 about X0 or X1. (Where the random variable C̄
indicates which of the X0,X1 is currently the uncertain one.)

Lemma 29 is shown in [DFR+07] (Corollary 4.3 in the full version).

Lemma 30 Let ε > 0. Let ρ be a cq-state consisting of quantum systems X and E. I.e.,
we have a state ρ =

∑
xb pxb|x〉〈x| ⊗ ρx.

Let X̃ denote the outcome of applying some quantum operation E to E and then mea-
suring E in some basis. Let X denote the outcome of measuring X in the computational
basis.

Then
Pr[X = X̃] ≤ 2−Hε

∞(X|E) + 3
2ε.

11This even holds if X and Y are not classical.

33

Notice that for ε = 0, this follows from the definition of min-entropy (Definition 47).

Further reading: For the Schmidt decomposition, see [NC00, Section 2.5]. For the
impossibility of quantum commitment, see [May97]. For commitment in the bounded
quantum storage model, see [DFSS05] and [DFR+07]. For definitions of min-entropy in
the quantum case and a lot of results concerning these, see [Ren05]. A proof that the
definition of min-entropy as given here is equivalent to that in [Ren05] can be found in
[KRS09].

15 Revocable quantum time vaults

A time vault TV is, intuitively, a kind of encryption which can be broken in time T , but
not in time ≪ T .

The idea behind this is that one can use a time vault to send messages into the future.
If Alice wants Bob to have some information m after time T , but not before that, she
sends TV (m) to Bob, and Bob will only be able to compute m after time T .

A physical intuition for a time vault is that of a strong box with a timer. The strong
box opens automatically at time T , but cannot be opened earlier.

Mathematically, a time vault is modeled as a probabilistic algorithm TV that takes
a message m and returns a time vault TV (m). Additionally, there should be another
algorithm Dec that the honest recipient can use to recover m from TV (m).

A time vault should, ideally, have the following security:

Definition 56 (T -hiding time vault) We call a time vault TV T -hiding if the follow-
ing holds: For any probabilistic T -time adversary B∗, there is a negligible µ such that for
for any η, and any m0,m1 (in the message space of TV), we have that |Pr[P0 − P1]| is
negligible in η where Pi := Pr[b = 1 : V ← TV (mi), b← B∗(1η , V)].

Here T and TV may implicitly depend on the security parameter η. And x
$← Ameans

that x that is the output of algorithm A.
We say TV is T -hiding against quantum adversaries if the above holds for all quantum

T -time adversaries B∗.

This means that before time T , no adversary can find out anything about the mes-
sage m from TV (m) (except with negligible probability).

However, T -hiding time-vaults do not capture all the useful properties that strong-
boxes with timers have. Consider as an example the following situation (that might come
straight from a movie). Alice has to go to a meeting with criminals. Alice fears that she
might not survive the meeting, unless she has some way to pressure the criminals into
letting her leave alive. A possible approach is to leave some compromising information
about the criminals in the hands of some trusted friend Bob (e.g., evidence photos). If
Alice does not return within a day, Bob is supposed to reveal the information to the po-
lice. The problem with this is that Alice might not wish Bob to get these photos except
if Alice does not return from the meeting safely. Using strongboxes with timers, Alice

34

could achieve her goal: She puts the information into the strongbox, and puts the timer
to T := 1 day . If Alice does not return alive, Bob can open the strongbox after a day
and deliver the information to the police. If Alice does return alive before time T , she
asks the strongbox back. When she gets it back, she will know that Bob did not keep
the information and cannot deliver it to the police or anyone else.12

What happens if we use (digital) time vaults to implement the above? In this case,
there is no way how Bob can give back the time vault to Alice. Of course, he could
just give back the bitstring TV (m) to Alice, but that will not convince her of anything,
because Bob could have made a copy of TV (m). So Alice will never know whether Bob
did not decrypt a copy of TV (m) at his leisure. So, the following property is obviously
impossible with classical time vaults:

Definition 57 (Revocably hiding time vaults – informal) We call a time vault
TV T -revocably hiding if there is some algorithm Rev(revocation) such that the following
holds (even for malicious Bob): If Alice sends TV (m) to Bob, and Bob sends back some
value X after time at most T , and Alice runs Rev(X), and Rev returns 1, then Bob does
not learn anything about m later (even when computing considerably more time than T).

Note that the reason that revocably hiding time vaults are impossible in the classical
setting comes from the fact that a malicious Bob can just copy TV (m). So, an obvious
idea is to use a quantum state as a time vault. Then, at least, it is not obvious that Bob
can just break the protocol by copying TV (m).

The following protocol is a first candidate for a revocable time vault:

Definition 58 (A quantum time vault) Assume a T -hiding time vault TV that is
secure against quantum adversaries. Then the quantum time vault QTV is defined as
follows:

• Upon input a message m ∈ {0, 1}n, pick n random bases B = B1 . . . Bn ∈ {+,×}n.
• Encode the bits of m using in the bases B1, . . . , Bn. We call the resulting state |m〉B.
• Compute V ← TV (B).
• Return (|m〉B , V) (for sending to Bob).

The revocation algorithm Rev is as follows:
• Input: An n-bit quantum register X (supposedly the state |m〉B that Bob returned

to Alice).
• Measure X in bases B, call the outcome m′.
• If m = m′, Rev returns 1.

Unfortunately, QTV does not guarantee that Bob learns nothing about m. Bob can
guess some of the bases B correctly, and thus get some of the bits of m. Thus QTV

is not T -revocably hiding in the sense of Definition 57. We can only show the weaker
property that Bob cannot guess all of m (for a uniformly random message m) assuming
the revocation succeeded. We say that QTV is T -revocably one-way. Strengthening

12Of course, Bob can just refuse to give the strongbox back. But in that case, Alice will at least know
that Bob is cheating her, and this might already be sufficient to deter Bob.

35

QTV to be T -revocably hiding is ongoing research (but it looks promising). Formally,
what we can show is the following:

Lemma 31 For any pair B∗
1 , B

∗
2 of machines such that B∗

1 runs in quantum-time T
and B∗

2 runs in quantum polynomial-time, there is a negligible µ such that for all η the
following holds:

Pr[m = m∗ and ok = 1 : m
$← {0, 1}η ,X ← QTV (m),

X ′ ← B∗
1(1

η ,X), ok ← Rev(X ′),m∗ ← B∗
2(1

η)] ≤ µ(η).

Here B∗
1 , B

∗
2 may share state (i.e., whatever B∗

1 has stored, B∗
2 has later access to).

Proof sketch. The lemma is shown by considering a sequence of “games”. The first
represents what happens in the lemma, and all subsequent games are slight modifications
of it. We derive the lemma by deriving various facts about the games. Differences between
the games are highlighted in blue.

Game 1 (Original protocol)

(a) B
$← {+,×}η.

(b) V ← TV (B).

(c) m
$← {0, 1}η .

(d) Initialize the quantum register X with |m〉B.
(e) Adversary B∗

1 gets V,X.
(f) Measure X in basis B, outcome m′.
(g) ok := 1 iff m = m′.
(h) Adversary B∗

2 is run. Returns m∗.

Game 1 describes the situation in the lemma. Thus to show the lemma, we need to
show that Pr[m = m∗ ∧ ok = 1 : Game 1] is negligible. (The notation Pr[E : Game i]
means the probability that E holds in Game i.)

We now modify the previous game. Instead of picking m at random and initializing
X with |m〉B , we put Bell pairs into XY , and then measure Y in the basis B to figure
out what m is.

Also, instead of testing whether m = m′ where m and m′ are what we get when
measuring X,Y in basis B, we directly measure whether X and Y have the same state
in basis B. More formally, we apply to XY the measurement described by the projector
P=
B where P=

B =
∑

m|m〉〈m| ⊗ |m〉〈m|.

Game 2 (Using EPR pairs)

(a) B
$← {+,×}η.

(b) V ← TV (B).

(c) m
$← {0, 1}η .

(d) Initialize the quantum registers XY with |β00〉⊗η.
(e) Adversary B∗

1 gets V,X.

36

(f) Measure X in basis B, outcome m′.
(g) ok := 1 iff m = m′.
(h) Apply measurement P=

B to XY . ok := 1 if measurement succeeds.
(i) Measure Y in basis B, outcome m.
(j) Adversary B∗

2 is run. Returns m∗.

We have that

Pr[m = m∗ ∧ ok = 1 : Game 1] = Pr[m = m∗ ∧ ok = 1 : Game 2] (2)

Roughly, the reason is that we also get the state |m〉〈m|B in X when we initialize XY
with Bell pairs and compute x by measuring Y in basis B.

Next, we remove all computations that take more than time T from the game. This
will allow us to use the T -hiding property of TV later on. Instead, we apply a test
that tells us whether the state of the system is such that Bob (B∗

2) cannot ever guess m.
The test that we do is whether XY contains Bell pairs (with up to t errors for suitably
chosen t). For this, we apply the measurement described by the projector PBell

t where
PBell
t is the projector onto t-Error (which in turn is defined in Section 13).

Game 3 (Testing the state)

(a) B
$← {+,×}η.

(b) V ← TV (B).
(c) Initialize XY with |β00〉⊗η.
(d) Adversary B∗

1 gets V,X.
(e) Apply measurement P=

B to XY . ok := 1 if measurement succeeds.
(f) Apply measurement PBell

t to XY . tErr := 1 if measurement succeeds.
(g) Measure Y in basis B, outcome m.
(h) Adversary B∗

2 is run. Returns m∗.

We have the following fact:

Pr[tErr = 0 ∧ ok = 1 : Game 3] negl. =⇒ Pr[m = m∗ ∧ ok = 1 : Game 2] negl. (3)

The reason for this is that tErr = 1 only (up to negligible error) if the state in XY is close
to a t-error state in Game 3. (Essentially by Lemma 8.) Since up to the measurement
PBell
t , the two games are identical, this implies that also the state in XY in Game 2

is close to a t-error state. However, if XY is close to a t-error state, then B∗
2 will have

negligible probability of guessing m, the result of measuring Y (assuming suitably chosen
t). (This is analogous to showing that in a QKD protocol without entanglement purifi-
cation/privacy amplification, the probability of guessing the key is negligible. Cf. ??.)

We can now replace TV (B) by TV (0).

Game 4 (Using fake TV)
(a) V ← TV (0).
(b) Initialize XY with |β00〉⊗η.

37

(c) Adversary B∗
1 gets V,X.

(d) B
$← {+,×}η.

(e) Apply measurement P=
B to XY . ok := 1 if measurement succeeds.

(f) Apply measurement PBell
t to XY . tErr := 1 if measurement succeeds.

We have that
∣∣∣Pr[tErr = 0 ∧ ok = 1 : Game 3]− Pr[tErr = 0 ∧ ok = 1 : Game 4]

∣∣∣ is negligible. (4)

This is because we have removed the call to B∗
2 , and B∗

1 runs in time T .13 By definition of
T -hiding no T -time algorithm can distinguish between TV (B) and TV (0), in particular
not the code in Game 3.

Finally, we have

Pr[tErr = 0 ∧ ok = 1 : Game 4] is negligible. (5)

Reason: Picking B at random and then testing whether X,Y are equal in that basis (P=
B)

is essentially a Bell test. (Here it is important that now B is not used before applying
P=
B , otherwise we could not consider it random.) Remember that in the analysis of our

QKD protocol, after successfully performing the Bell test, the probability of not passing
a measurement that checks if there are at most t errors, is negligible. A very similar
computation shows (5).

We can now finish the proof. By (4,5) we have that Pr[tErr = 0 ∧ ok = 1 : Game 3]
is negligible. By (3), this implies that Pr[m = m∗ ∧ ok = 1 : Game 2] is negligible. And
finally, by (2), this implies that Pr[m = m∗ ∧ ok = 1 : Game 1] is negligible. Since
Game 1 describes the situation in Lemma 31, that lemma follows. �

How to construct revocably hiding quantum time vaults? The protocol QTV

from Definition 58 has the disadvantage that partial information about the message m
is leaked. We would like a T -revocably hiding quantum time vault (as in Definition 57).
This is ongoing research, we currently have two approaches (that both probably work):

• Encode m in a larger codeword w such that knowledge about a part of w does not
reveal anything about m. The challenge here is choosing the right encoding and how
to extend the proof idea of Lemma 31 to show that indeed no information about m
is leaked.

• Use the hashed message as key. To send a message m, we first pick a random
k, then we send (QTV (k),H(k) ⊕m) where H is a suitable hash function. Even
though QTV (k) leaks some information about k, k is sufficiently uncertain that we
do not learn anything about H(k). Since nothing is known about H(k), H(k)⊕m
hides m. Probably the security of this scheme can only be shown in the so-called
random oracle model. (Meaning the proof is based on a heuristic.)

13Here we are simplifying by assuming that all the other computation steps in Game 3 take no time
at all. A precise proof would take these into account, then we would need that TV is a (T + T ′)-hiding
time vault, where T ′ is the time spent in these additional computation steps.

38

16 Zero-knowledge proofs

A zero-knowledge proof is, intuitively speaking, a protocol in which a prover P is able to
convince a verifier V of the truth of a statement x in such a way that the verifier learns
nothing (except, of course, the fact that x is true).

More formally, we first fix a relation R. If (x,w) ∈ R, we say that w is a witness for
the statement x. We defined the language LR of true statements as follows:

LR := {x : ∃w.(x,w) ∈ R}.

In other words, x ∈ LR iff there is a witness for x.
We first define what it means for (P, V) to form a proof system (in the classical case).

For this, we first introduce the following notation: For two machines A,B, 〈A(a), B(b)〉
denotes the output of B after an interaction of A and B where A gets input a and B
gets input b.

Definition 59 (Proof systems) We call a pair (P, V) of interactive machines a proof
or proof system for the relation R with soundness-error ε iff the following two conditions
are fulfilled:

• Completeness: For any (x,w) ∈ R, we have that Pr[〈P (x,w), V (x)〉 = 1] = 1. (I.e.,
when the prover gets a valid witness w for x, then he manages to convince V of the
truth of x.)14

• Soundness: For any (potentially computationally unlimited) machine P ∗, and for
any x /∈ LR, we have Pr[〈P ∗(), V (x)〉 = 1] ≤ ε. (I.e., except for probability ε, no
prover can convince V of a wrong statement x.)

We can now define what it means that the verifier does not learn anything:

Definition 60 (Zero-knowledge) A pair (P, V) of interactive machines is statistical
zero-knowledge if for any polynomial-time15 V ∗ there exists a polynomial-time S and a
negligible µ such that for all (x,w) ∈ R and all z ∈ {0, 1}∗, we have

SD(〈P (x,w), V ∗(x, z)〉, S(x, z)) ≤ µ(|x|).

(I.e., the simulator can simulate anything V ∗ learns without knowing the witness w.)

An example for a zero-knowledge proof is the following:

Definition 61 (Graph isomorphism) The relation RGI is defined as follows: (x,w) ∈
RGI iff x = (G1, G2) and w = φ where G1, G2 are graphs and φ : G1 → G2 is a graph
isomorphism.

14Of course, one could also relax this condition and allow a certain error in the completeness instead
of requiring probability 1. For simplicity, we stick to the present definition.

15In this section, we will call a machine polynomial-time its running-time is bounded by a polynomial
in the length of its first argument.

39

Definition 62 (Graph isomorphism proof system) Let GIP denote the following
protocol between machine P and V :

• P gets inputs x = (G1, G2) and w = φ.
• V gets input x.
• P picks a uniformly random permutation ψ1 on the vertices of G1 and computes
H := ψ1(G1). (Notice that now ψ1 : G1 → H is an isomorphism.)

• P sends H to V .
• V picks i ∈ {1, 2} uniformly and sends i to P .
• P computes ψ2 := ψ1 ◦ φ−1 and sends ψi : Gi → H.
• V checks whether ψi : G1 → H is an isomorphism. If so, V outputs 1.

Theorem 9 GIP is a statistical zero-knowledge proof system.

We now present the definitions of zero-knowledge proofs for the quantum case. For
two quantum or classical machines A,B, 〈A(a), B(b)〉 denotes the quantum state of B
(or, if B is classical, its output) after an interaction of A and B where A gets input a
and B gets input b. Here a and b may be classical values or density operators.

The definition of being a proof system (i.e., completeness and soundness) is word for
word the same as in the classical case (Definition 59), except that P ∗ is allowed to be a
quantum machine.

More interesting is the definition of statistical quantum zero-knowledge:

Definition 63 (Quantum zero-knowledge) A pair (P, V) of interactive machines is
statistical quantum zero-knowledge if for any polynomial-time quantum-machine V ∗

there exists a polynomial-time quantum-machine S and a negligible µ such that for all
(x,w) ∈ R and all density operators ρ, we have

TD(〈P (x,w), V ∗(x, ρ)〉, S(x, ρ)) ≤ µ(|x|).

(I.e., the simulator can simulate anything V ∗ learns without knowing the witness w.)

Note that in this case, the “auxiliary input” that V ∗ gets (called z in the case of
Definition 60) is a quantum state.

To show that GIP is statistical QZK, we need to construct a suitable simulator S.
However, it turns out that the construction from the classical case does not directly carry
over. The reason is that the simulator in the classical case uses rewinding: It tries to
produce a simulation, and, if it fails, it tries again. In the quantum case, trying again is
not necessarily an option, because the first try may have destroyed the input state ρ, so
the second try will fail.

What does work, however, is constructing a polynomial-time simulator S1 that tries to
produce a simulation and either produces a perfect simulation or aborts, and that aborts
with probability exactly 1

2 . (More precisely, if (x,w) ∈ R and ρ′ is the state output by
the simulator S1(x, ρ), then trP⊥ρ′ =

1
2 and P⊥ρ′P⊥/ trP⊥ρ′P⊥ = 〈P (x,w), V ∗(x, ρ)〉

where P⊥ projects on the state denoting abort.)

40

The construction of this simulator is analogous to the classical case and the proof
that it produces a perfect simulation with probability 1

2 also follows very closely the lines
of the proof in the classical case.

To produce a simulator S in the sense of Definition 63 from S1, we cannot directly
follow the classical proof. Instead, we use the following lemma:

Lemma 32 (Quantum rewinding lemma [Wat09]) Let Q be a unitary operation
from Hin ⊗Hanc to Hout ⊗Hsucc with Hsucc = C2. (This implies that dimHin ⊗Hanc =
dimHout ⊗Hsucc since a unitary operation is a square matrix.)

Assume that there is a value p ≤ 1
2 such that for any |Ψ〉 ∈ Hin , we have that apply-

ing Q to |Ψ〉 ⊗ |0〉 and then measuring Hsucc in the computational basis gives outcome 1
(success) with probability p (not ≥ p). Let |φ̃succ〉 denote the post measurement state
in Hout in that case.

Consider the following algorithm (depending on a parameter q):
1. Let |Ψ〉 denote the input of the algorithm (in Hin)
2. Initialize Hanc with |0〉.
3. Apply Q.
4. Measure Hsucc in the computational basis.
5. If the outcome is 1, exit (successfully).
6. Apply Q†.
7. Apply FLIP to Hanc where FLIP |0〉 := |0〉 and FLIP |x〉 := −|x〉 for x 6= 0.
8. Go to 3. (But at most q times.)

Then for a suitable q ∈ poly(1/p), we have that
• The probability that R exits successfully is overwhelming.
• The post measurement state in Hout in that case is |φ̃succ〉.

This lemma can be used to construct the simulator S from S1: First, we purify S1
(i.e., replace measurements by CNOTs on ancilla qubits in Hanc initialized with |0〉),
resulting in Q. Then S runs R and outputs the state |φ̃succ〉.

Notice that in the classical case, it is sufficient that S1 succeeds with probability
≥ p (possibly dependent on the auxiliary input z), while in the quantum case, we need
that the simulator S1 succeeds with a probability p that is independent of the auxiliary
input ρ.

Notice further that the above lemma only covers the case where the simulation is
perfect. There is a variant of that lemma which also covers the case where S1 produces
a state that has negligible trace distance from 〈P (x,w), V ∗(x, ρ)〉. This allows to cover
a wider range of protocols and even protocols that are only computationally QZK.

Further reading: An overview over zero-knowledge proofs in the classical case can be
found in [Gol01, Chapter 4]. For quantum zero-knowledge, see [Wat09].

41

17 Factoring

Note: The following section will contain only a simplified exposition that is not complete
but will give the rough idea of how to factor integers using quantum computers.

Definition 64 (Factoring problem) Given a non-prime integer m > 1, find an inte-
ger d | m with d 6= 1, d 6= m (a non-trivial divisor).

Definition 65 (Order finding problem) Let G be a (multiplicative) group. Given
a ∈ G, find the smallest r > 0 such that ar = 1 in G. This value r we denote ord a.

Lemma 33 (Reducing factoring to order-finding) Given an oracle that solves the
order finding problem in groups G = Z×

m (for arbitrary m > 1), we can solve the factoring
problem with probability at least 1

4 in polynomial-time using a single query to the order-
finding oracle.

The idea of the reduction is to compute gcd(xr/2 + 1,m) and gcd(xr/2 − 1,m) for
random x. With probability at least 1

4 one of the two gcds will be a non-trivial divisor
of m.

Definition 66 (Discrete Fourier transform) The discrete Fourier transform (DFT)
is a linear transformation on CN represented by the matrix DN = 2−N/2 ((e2iπkl/N))kl ∈
C

N×N .

Note that since 2iπkl/N is an imaginary number, all entries of DN have absolute
value 1.

Lemma 34 (Properties of the discrete Fourier transform)

• The discrete Fourier transform DN is unitary.

• Frequency analysis: Given a vector x which is p-periodic (i.e., xi = xi+p mod N

for all i; a special case would be a vectors with 1’s at every p-th position), DNx
has entries (non-zero values) on the multiples of N/p.16 Note that N/p intuitively
represents the frequency of x.

Theorem 10 (Realising the discrete Fourier transform) There is a quantum al-
gorithm taking an n qubit state |Ψ〉 as input and returning DN |Ψ〉 where DN is the
Fourier transform on CN with N = 2n. This algorithm runs in polynomial time in n.

Theorem 11 (Order-finding) Assume a group G in which exponentiation is feasible
in polynomial-time. There is a polynomial-time quantum algorithm that returns ord a on
input of a ∈ G.

16If p ∤ N , this holds only approximately. In this exposition, we will not formulate exact bounds for
the approximation.

42

The algorithm roughly goes as follows: Let a ∈ G. Let N = 2n be sufficiently larger
than |G|. The algorithm starts with a quantum state |0〉|0〉 ∈ HX ⊗HY , the first system
HX := CN encoding integers {0, . . . , N − 1}, and the second system HY encoding group
elements of G. It applies the Hadamard transform to every qubit of HX . This results in
the state |Ψ1〉 ∝

∑
x∈{0,1}n |x〉|0〉 (∝means equal up to a normalization factor). We can

implement the unitary transformation U that takes |x〉|y〉 to |x〉|y ⊕ ax〉. By applying
U to |Ψ1〉, we get |Ψ2〉 ∝

∑
x∈{0,1}n |x〉|ax〉. We then measure the system HB in the

computational basis. This results in a measurement outcome o = ax
′
for some x′. The

state after this measurement is |Ψ3〉 ∝
∑

a|a〉 where the sum ranges over all a with
ax = o = ax

′
, i.e., x = x′ + k ord a for some k ∈ Z. Hence |Ψ3〉 is ord a-periodic. Thus,

if we apply the Fourier transform DN , we get a vector DN |Ψ3〉 which has entries on
multiples of N/ ord a (approximately). If we measure the system in the computational
basis, we get a multiple of N/ ord a. From this we can compute an approximate divider
of ord a. Additional work needs to be done to recover the exact value of ord a from this,
but this is a classical computation and omitted here.

Definition 67 (Discrete logarithm problem) Let G be a (multiplicative) group
and g a generator. Given y ∈ G, find y with gx = y. (That value x is called the
discrete logarithm dlog y of y.)

Theorem 12 Assume a group G with generator g in which exponentiation is feasible in
polynomial-time. There is a polynomial-time quantum algorithm that returns dlog a on
input of a ∈ G.

Further reading: [NC00, Sections 5.1–5.3]

18 Quantum money

Real-world cash (implemented in terms of coins and bank notes) has the following prop-
erties:

• Issued by bank. There is an entity (called the bank) that can produce pieces of cash
(called “coins” in the following for simplicity.

• Unforgeability. No-one besides the bank can produce more coins. Specifically, we
wish that when given q valid coins, it is not possible to make q + 1 valid coins out
of it.

• Transferability without involving the bank. The current owner of a coin can pass
on that coin to another party without needing to interact with the bank in the
process.

• Public verifiability. Anyone can, given a coin, check whether it is indeed a coin
(without involving the bank). With real-world cash, this is done by ensuring

43

that there are a number of publicly known but hard to reproduce features that
a coin/banknote should have.

• Anonymity. When performing transactions (transferring coins), the identity of the
involved parties does not have to be involved.

Notice that this only applies to cash. Money that is stored on a bank account does not
have the transferability property, since we have to involve the bank to transfer the money
to another account. Also, verification involves the bank here, too. (Anonymity typically
is not given either, but could be implemented.)

Instead of physical coins and banknotes, we are interested in a cryptographic solution
that satisfies the above four properties. With classical cryptography, this is impossible:
If A has a coin c, then A can run the transfer protocol to give c to B. Then B has c.
However, since A can, before running the transfer protocol, make a copy of his state, A
will also still have c. Thus two coins c exist now, violating unforgeability. With quantum
cryptography, this attack can be avoided. If the coin c involves a quantum state, then
copying c might not be possible, thus after transferring c to B, A will not possess c any
more (hopefully).

18.1 Wiesner’s protocol

The first quantum money scheme was proposed by Wiesner already in the 1970s [Wie83].
That scheme does not have public verifiability, but its advantage is that it is quite simple
to define and to analyze.

Definition 68 (Wiesner’s quantum money) Let η be the security parameter.

• Issuing money. The bank picks s, x
$← {0, 1}η , B $← {+,×}η. We call s the serial

number. Then the bank encodes |Ψ〉 := |x〉B. (I.e., the i-th qubit of |Ψ〉 is x encoded
in basis B.) It issues the coin (s, |Ψ〉) and stores (x,B) in its database at index s.

• Transferring money. To transfer a coin (s, |Ψ〉) to another party, one just sends
(s, |Ψ〉).

• Verification (by the bank). Given a coin (s, C) where C is a quantum register,17,
then the bank looks up (x,B) in the database at index s, measures C in bases B,
and checks whether the outcome is x. If the database lookup and the check succeed,
the bank accepts the coin. (Note: measuring in B and comparing with x is the same
as measuring using the projector |Ψ〉〈Ψ| with |Ψ〉 := |x〉B.)

We do not formalize the notion of unforgeability of quantum money here, but the
following lemma states the essence of the unforgeability property of Wiesner’s quantum
money:

Lemma 35 Fix an adversary A. Let Bank denote the bank’s issuing algorithm, we write
C, s, x,B ← Bank to denote that C contains the quantum part of the coin, s is the serial

17We do not write |Ψ〉 instead of C here, because that notation would imply that C is not entangled
with other qubits the adversary may hold.

44

number, and x,B the information stored by the bank. Let Ver be the verification routine,
we write ok ← Ver(C, s, x,B) to denote the verification of (s, C) with when x,B are
the information stored by the bank for serial number s. We leave the security parameter
implicit.

Then

Pr[ok1 = 1 and ok2 = 1 : (C, s, x,B)← Bank , (C1, C2)← A(C, s),

ok1 ← Ver(C1, s, x,B), ok 2 ← Ver(C2, s, x,B)]

is negligible in η.

The proof of this fact uses techniques we already know from the analysis of quantum
key distribution and quantum time vaults.

Attacking Wiesner’s scheme. However, besides the fact that it does not support
verification, Wiesner’s scheme has the problem that it is susceptible to a forgeability
attack by an adversary that has access to a bank that verifies coins for him. (And such a
public service should exist if Wiesner’s money is make sense.) More specifically, assume
that bank will, given some coin (s, C) submitted by A, perform the verification, tell A
whether verification succeeded, and then return (s, C) (i.e., the post-measurement-state
after measuring whether verification succeeded). Then A can produce a copy of the coin
(s, C) as follows:

• Denote the η qubits of C by C1, . . . , Cη.

• For i = 1, . . . , η do:

– Repeat until xi, Bi are determined:

– Pick x̂i
$← {0, 1}, B̂i

$← {+,×}.
– Send (s, C1 . . . Ci−1|x̂i〉B̂i

Ci+1 . . . Cη) to the bank for verification. Note that
even in case of a failed verification, the verification measurement does not
change the states of C1, . . . , Cη.

– If verification fails, x̂i, B̂i are not the correct values for xi, Bi.

– As soon as all but one value of (x̂i, B̂i) are excluded in this way, xi, Bi are
determined.

• Now x = x1 . . . xη and B = B1 . . . Bη are determined and A can produce arbitrarily
many valid coins (s, |x〉B).

Note that this attack only works if the bank hands back the coin even if verification
fails. If we require the bank to destroy the coin upon failed verification, a more involved
attack is needed, using techniques from the bomb tester (Section 3).

45

18.2 Aaronson-Christiano quantum money.

In [AC12], Aaronson and Christiano propose a quantum money scheme with public veri-
fication. To define this scheme, we first introduce some notation:

Let F2be the finite field of size 2. (I.e., elements of F2 are essentially bits, with +
being the XOR operation, and · being normal multiplication.) Then Fn

2 is a vector space
(over F2). For a subspace A ⊆ Fn

q , let |A〉 := |A|−1/2
∑

x∈A|x〉. Furthermore, let A⊥ be

the orthogonal complement of A, i.e., A⊥ = {y ∈ Fn
2 : ∀x ∈ A. x · y = 0} where x · y is

the inner product of x and y. Given polynomials p1, . . . , pm, let Pp denote the projector∑
x|x〉〈x| where x ranges over all x ∈ Fn

2 with p1(x) = . . . pm(x) = 0.

Definition 69 (Aaronson-Christiano quantum money.) The scheme is
parametrized by n, d,m. Here d could be small (e.g., d = 4) and n,m would typi-
cally grow linearly with the security parameter.

• Setup. The bank picks a public/private key pair for a quantum secure signature
scheme and publishes the public key.

• Issuing money. The bank picks a random subspace A ⊆ Fn
2 of dimension n/2. (This

can be done with high probability by picking n/2 random elements of Fn
2 and use

them as a basis for A.)
Then the bank picks m uniformly random multivariate polynomials p1, . . . , pm in
n variables and of degree d such that pi(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ A.
(Essentially, these pi serve to describe the space A in a way that does not allow an
adversary to recover A efficiently. There is an O(nd)-time algorithm for picking
the polynomials.)
Then the bank picks m uniformly random multivariate polynomials q1, . . . , qm in n
variables and of degree d such that qi(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ A⊥.
(The qi describe A⊥ which is redundant in principle because the pi determine A
and A determines A⊥. But for efficient verification, we will need qi, too.)
The bank produces a signature σ on (p1, . . . , pm, q1, . . . , qm). Finally, it returns the
coin (|A〉, p1, . . . , pm, q1, . . . , qm, σ).

• Transferring money. To transfer a coin (|A〉, p1, . . . , pm, q1, . . . , qm, σ) to another
party, one just sends (|A〉, p1, . . . , pm, q1, . . . , qm, σ).

• Verification (by anyone knowing the banks public key). Given a coin
(C, p1, . . . , pm, q1, . . . , qm, σ) where C is a quantum register, the verifier first ver-
ifies whether σ is a valid signature on (p1, . . . , pm, q1, . . . , qm). (This ensures that
(p1, . . . , pm, q1, . . . , qm) are indeed issues by the bank and describe a valid coin.)
To check if C indeed contains |A〉 with A = {x ∈ Fn

2 : ∀i. pi(x) = 0} (as it should
if it is a valid coin), we measure C with Pp, then apply H⊗n, then measure C with
Pq, then apply H⊗n.
Verification succeeds if the signature check and the two measurements succeed.

To see that verification actually succeeds, we need the following facts: The projector
implemented by the measurements in the verification is H⊗nPqH

⊗nPp =: P . First, for
suitably chosen parameters n,m, d, with overwhelming probability we have that x ∈ A iff

46

∀i.pi(x) = 0, and that x ∈ A⊥ iff ∀i.qi(x) = 0. Thus P = H⊗nPA⊥H⊗nPA where PA =∑
x∈A|x〉〈x| and PA⊥ analogous. Furthermore, it can be shown that H⊗n|A〉 = |A⊥〉.

Thus P |A〉 = H⊗nPA⊥H⊗nPA|A〉 = H⊗nPA⊥H⊗n|A〉 = H⊗nPA⊥ |A⊥〉 = H⊗n|A⊥〉 =
|A〉. Thus honest coins pass verification with overwhelming probability. In fact, one can
show that P = |A〉〈A|, so only honest coins pass verification.

Furthermore, [AC12] shows that the scheme is unforgeable given some (strong) as-
sumption about the hardness of finding solutions of multivariate polynomials.

Further reading: See [Wie83] for Wiesner’s original proposal and [MVW12] for a
security proof of that scheme. See [AC12] for the Aaronson-Christiano scheme.

19 Position-verification

In this section, we give an example how quantum cryptography may enable tasks that
are impossible classically. We already saw one example, namely information-theoretically
secure key distribution. In that case, however, we only get something that could also be
achieved classically when using computational assumptions. Now, we consider a task that
is impossible classically even if the adversary is assumed to be computationally limited,
while in the quantum setting, security against computationally bounded adversaries may
be achievable. (The latter is still a question of open research.)

The task we are considering is “position-verification”. In this task, we have an entity,
called the “prover” P who wishes to convince a “verifier” that he can be found as a given
location. As a motivating example, assume that the prover wishes to access an online
service that is only accessible to people that at a certain location, say inside a mall.

Distance bounding. The simplest special case of this problem is distance bounding.
In this case, the (honest) prover is in close proximity to the verifier. Now a protocol such
as the following can be used: The verifier picks a random r ∈ {0, 1}η and sends it to the
prover. The prover sends r back to the verifier. The verifier measures the time ∆ until
he gets r back. Due to the limitation that information cannot travel faster than light,
the verifier now knows that the prover cannot be farther away than ∆c/2 where c is the
speed of light. So, the prover has proven that he (or at some entity he collaborates with)
is within distance ∆c/2 of the verifier, therewith proving his location.

However, the disadvantage of distance bounding is that it requires a verifier in imme-
diate proximity to the point where the prover supposedly is. This may be suitable for
some applications (e.g., a contactless payment card wants to be sure that it is close to a
reader before it transfers money to it). In other cases, however, we cannot assume that
the verifier can be close. For example, if we wish to prove that the prover is inside a
room, we would have to put up the verifier’s receivers in the middle of the room, in the
air, which is impractical (especially if the prover may be at any position in the room).

47

V1 P V2

Figure 1: Basic setup for position-verification. A prover P and two verifiers V1 and V2.

time

r1

r1

f1 (r1 , r2)

r2

r2

f2(
r1,
r2)

r1r2

V1 P ∗
1 P P ∗

2 V2

V2V1

Figure 2: Attack setting for position verification. P ∗
1 and P ∗

2 are malicious provers that
together try to convince the verifier that they are at position P .

Classical position-verification. We now describe the basic approach how one would
do position-verification in the classical setting, and why this does not work. For simplicity,
we consider a one-dimensional setting in the following. That is, both prover and the
verifier are on a line, with the verifier having two devices and the prover being in between.
(See Figure 1.) All the results described in this section also generalize to the higher
dimensional case, where we always assume that the prover is within the convex hull of
the verifiers (i.e., we will need four verifiers for three-dimensional position-verification).
We will also assume for simplicity that the distance between V1 and P is the same as
between V2 and P , namely d.

Now, the most immediate idea would be to generalize the distance bounding scheme
to the two-verifier case. That is, each verifier Vi sends a random number ri at the same
time to the prover. The prover is supposed to send each ri back to Vi immediately upon
reception. Each verifier checks that it gets the correct value ri back within time 2d/c.

Assume a malicious prover P ∗ who is not at position P . Without loss of generality,
assume P ∗ is farther to the left by a distance d∗. Then the distance between P and V2 is
(d+d∗), and the prover cannot send back r2 within time 2d/c (he needs time 2(d+d∗)/c.
Similarly, a prover farther to the right will not respond to V1 in time. It seems that the
protocol is secure.

However, we have overlooked one possible attack. The protocol may be secure if the
prover is only at a single location. But what if the malicious prover has several devices
(or equivalently, if several malicious provers collude)? Consider the setup in Figure 2
(but ignore the labels on the lines for now). There are two malicious provers P ∗

1 and P ∗
2

located at distance d/2 to each side of the position P . Upon reception of r1, P
∗
1 keeps r1

for the time it would take for r1 to reach P and come back to P ∗
1 (namely d/c). Then P ∗

1

48

forwards r1 back to V1. Similarly for P ∗
2 . In this attack, the time until ri comes back to

Vi is 2d/c, the same time as in the case when there is an honest prover P (dashed line).
What if we use a more complex protocol? In general, instead of P having to simple

echo r1 and r2 back to the respective verifier, we could require P to send fi(r1, r2) back
to Vi. In this case, the attack is still simple. Using the message flow depicted in Figure 2,
both verifiers will get the correct answer fi(r1, r2) in time.

This attack also easily generalize to the situation where the protocol has several
rounds, i.e., if the verifiers send several messages and the prover has to answer to all
of them. Altogether, this leads to a general impossibility for position-verification if the
malicious prover is allowed to have several colluding devices.

Notice also that this attack works even if the malicious prover is required to be
computationally limited: he does not perform any computation that is more complex
than that performed by the honest prover (namely, evaluation of fi).

Quantum position-verification. Notice that in the attack in against the general
classical position-verification scheme, the malicious prover P ∗

1 takes value r1 and forwards
it to P ∗

2 while keeping a copy of r1 to himself. If r1 was quantum data, this would not
in general be possible since P ∗

1 cannot copy quantum data. This leads to the following
protocol idea:

• V1 sends a qubit |Ψ〉 = HB |x〉 for random x,B ∈ {0, 1}.
• V2 sends a random c ∈ {1, 2}.
• The prover P forwards |Ψ〉 to Vc. I.e., the value c tells him where to forward |Ψ〉

to.
The attack described in the classical setting does not work here any more because P ∗

1

(who gets |Ψ〉 first) has to decide whether to forward |Ψ〉 or to keep it. He cannot make
the decision based on c, because he needs to forward |Ψ〉 before c can reach him. If he
forward |Ψ〉, P ∗

2 cannot send it back in time if c = 1. If he does not forward |Ψ〉, P ∗
2 will

not get |Ψ〉 in time if c = 2.
Unfortunately, the protocol is not secure. There is a non-trivial attack against the

protocol. For this, first recall the teleportation protocol:

|Ψ〉 • H measure

a •

|β00〉
X measure

b •

Y Z |Ψ〉

In this protocol, Alice and Bob share a Bell pair XY (lower two lines), and Alice has
a state |Ψ〉 (top line). Alice performs some operations on |Ψ〉 and her Bell pair half,
resulting in classical values a, b. Given these values, Bob can now apply operations to Y
that transform Y into |Ψ〉.

We can use teleportation to break the position-verification protocol as follows: As-
sume P ∗

1 and P ∗
2 share a Bell pair XY . When P ∗

1 receives |Ψ〉, he teleports |Ψ〉 to P ∗
2 .

In other words, he only sends the classical information a, b to P ∗
2 which P ∗

2 can use to

49

time

X Y
|Ψ〉

a, b

|Ψ〉 ‖ ∅

c

∅ ‖ Y

∅ ‖
|Ψ〉

a, b
Y ‖ ∅

V1 P ∗
1 P P ∗

2 V2

V2V1

Figure 3: Attacking the quantum protocol. On arrows labeled with t‖u, t is sent in case
c = 1 and u is sent in case c = 2. ∅ denotes an empty message.

reconstruct |Ψ〉 from Y . So, if c = 2 and P ∗
2 is supposed to send |Ψ〉 to V2, P

∗
2 can

reconstruct |Ψ〉 and forward it to V2 in time. This is depicted in Figure 3. (Consider
only the right hand side of ‖ in that figure for now.)

But what if c = 1? In this case, P ∗
1 needs to send |Ψ〉 to V ∗

1 , but he just “lost” the
state |Ψ〉 by teleporting it to P ∗

2 . (The teleportation circuit destroys the state on Alice’s
side.) The trick here is that the teleported qubit can be received whoever has the second
Bell pair half Y . So, if c = 1, P ∗

2 just has to send Y to P ∗
1 . As soon as Y reaches P ∗

1 ,
P ∗
1 can reconstruct |Ψ〉 from it, just in time to send it to V1. (P ∗

1 was able to send a, b
and keep it because a, b is classical information.) See Figure 3. (The messages sent in
case c = 1 are on the left of the ‖ symbols.) Notice that only classical information is
duplicated, and that V1 or V2 gets its answer at the same time it would get it from the
honest prover at location P (namely after time 2d/c).

The protocol has been broken.

Generalizing the attack. Now, this attack only shows that our first idea for a quan-
tum position-verification protocol can be broken. Unfortunately, the attack generalizes
to arbitrary protocols! The generalization is not trivial, but the basic idea is the same:
we teleport data from P ∗

1 to P ∗
2 and vice versa. And we move the end-point of the tele-

portation between P ∗
1 and P ∗

2 as needed. However, in the more general case, we may
even teleport the teleportation end-point! And the end-point of that teleportation. And
so on. With this idea (and nontrivial constructions), we get the following remarkable
result:

Theorem 13 (Impossibility of quantum position-verification [BCF+11]) For
any position-verification protocol communicating at most n qubits, there is an attack
using entanglement that uses at most 2O(n) qubits of preshared entanglement.

This shows that, like in the classical case, we cannot expect to get secure position-
verification without making any assumptions. Yet, this leaves the following possibilities:

50

time
state state

msg msg

X

Y

msg msg

V1 P ∗
1

B

P P ∗
2 V2

P ∗
1 P ∗

2

Figure 4: How to provide preshared entanglement without quantum storage. B is a
Bell pair source that sends n Bell pairs, the first halves (X) to the left, and the second
halves (Y) to the right. The actual protocol messages and the states that the provers
keep are denoted simple “msg” and “state” because we are only concerned with how to
get the preshared entanglement to P ∗

1 and P ∗
2 at the right moment, namely when the

messages from V1 and V2 arrive. denotes a mirror placed close to V1. (In more than
one dimension, X might be sent in a different direction, resolving the problem that the
mirror and V1 have to be in the same place.)

1. There might be a position-verification protocol which can be broken only using 2Ω(n)

qubits of preshared entanglement, but not with any polynomial amount. This would
be the best possible outcome, since this would in particular mean a protocol that
is secure against any polynomial-time attacker (in polynomial-time, one can use at
most polynomially many qubits) without using any computational assumptions.

2. There might be a position-verification protocol which cannot be broken using αn
qubits of preshared entanglement where α is some constant.

3. There might be a position-verification protocol which cannot be broken by
polynomial-time malicious provers, given suitable computational assumptions.

Possibility 1 would be the ideal case, but this is currently a wide open research
problem, no indications in favor or against possibility 1 are known.

A protocol as in possibility 2 has been shown to be possible [TFKW13]. However, in
my opinion, it is doubtful whether the resulting attack model is realistic. At a first glance,
it seems that a limitation to αn qubits of preshared entanglement is, for sufficiently large
n, realistic because we can assume that the adversary has bounded quantum storage.
Yet, in this particular setting, the assumption seems strong. Figure 4 illustrates this: It
shows a setup how P ∗

1 and P ∗
2 can get n qubits of preshared entanglement at exactly

the right time (namely, when they get the messages from V ∗
1 and V ∗

2). Such a setup

51

allows to break the protocol from [TFKW13] (and all other currently known quantum
position-verification protocols in the bounded quantum storage model).

Finally, possibility 3 is probably the most likely one. Although currently, no provably
secure protocol is known, it is likely to exist (ongoing research), and that would be a
simple example of something impossible in the classical setting, but easy to achieve in
the quantum setting.

Further reading: [CGMO09] for the impossibility of classical position-verification.
[BCF+11] for the impossibility of information-theoretical quantum position-verification,
as well as for definitions of the security notion in the quantum case. [TFKW13] how to
get position-verification in the bounded quantum storage model.

References

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden sub-
spaces. In Howard J. Karloff and Toniann Pitassi, editors, STOC 2012,
pages 41–60. ACM, 2012.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public-
key distribution and coin tossing. In Proceedings of IEEE International
Conference on Computers, Systems and Signal Processing 1984, pages 175–
179. IEEE Computer Society, 1984.

[BCF+11] Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal,
Rafail Ostrovsky, and Christian Schaffner. Position-based quantum cryp-
tography: Impossibility and constructions, 2011. Full version on IACR
ePrint 2010/275.

[CGMO09] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky.
Position based cryptography, 2009. Full version on IACR ePrint 2009/364.

[DFR+07] Ivan Damgård, Serge Fehr, Renato Renner, Louis Salvail, and Chris-
tian Schaffner. A tight high-order entropic quantum uncertainty re-
lation with applications. In Alfred Menezes, editor, Crypto 2007,
volume 4622 of LNCS, pages 360–378. Springer, 2007. Preprint at
http://arxiv.org/abs/quant-ph/0612014.

[DFSS05] Ivan B. Damgård, Serge Fehr, Louis Salvail, and Christian Schaffner.
Cryptography in the bounded quantum-storage model. In Proceedings
of FOCS 2005, pages 449–458, 2005. A full version is available at
http://arxiv.org/abs/quant-ph/0508222.

[Gol01] Oded Goldreich. Foundations of Cryptography – Volume 1 (Basic Tools).
Cambridge University Press, August 2001. Previous version online available
at http://www.wisdom.weizmann.ac.il/~oded/frag.html.

52

http://arxiv.org/abs/quant-ph/0612014
http://arxiv.org/abs/quant-ph/0508222
http://www.wisdom.weizmann.ac.il/~oded/frag.html

[KRS09] R. Konig, R. Renner, and C. Schaffner. The operational mean-
ing of min- and max-entropy. Information Theory, IEEE Transac-
tions on, 55(9):4337 –4347, September 2009. Online available at
http://authors.library.caltech.edu/15654/.

[LC99] H. K. Lo and H. F. Chau. Unconditional Security of Quantum Key Dis-
tribution over Arbitrarily Long Distances. Science, 283(5410):2050, 1999.
Online available at http://arxiv.org/abs/quant-ph/9803006.

[May97] D. Mayers. Unconditionally Secure Quantum Bit Commitment is Impossi-
ble. Physical Review Letters, 78(17):3414–3417, 1997. Online available at
http://arxiv.org/abs/quant-ph/9605044.

[MVW12] Abel Molina, Thomas Vidick, and John Watrous. Optimal counterfeiting at-
tacks and generalizations for wiesner’s quantum money. arXiv:1202.4010v1
[quant-ph], February 2012.

[NC00] M. Nielsen and I. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, Cambridge, 2000.

[Pei16] Chris Peikert. A decade of lattice cryptography. Foundations
and Trends in Theoretical Computer Science, 10(4):283–424, 2016.
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6):34:1–34:40, September 2009.

[Ren05] Renato Renner. Security of Quantum Key Distribution.
PhD thesis, ETH Zurich, September 2005. Available at
http://arxiv.org/abs/quant-ph/0512258v2.

[SMWF+07] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefen-
bacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G.
Rarity, A. Zeilinger, and H. Weinfurter. Experimental Demonstra-
tion of Free-Space Decoy-State Quantum Key Distribution over 144
km. Physical Review Letters, 98(1):10504, 2007. Online available at
http://www.quantum.at/uploads/media/PRL_98__010504__2007_.pdf.

[SWV+09] D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden,
S. Gray, C. R. Towery, and S. Ten. High rate, long-distance quantum key
distribution over 250 km of ultra low loss fibres. New Journal of Physics,
11(7):075003, 2009.

[TFKW13] Marco Tomamichel, Serge Fehr, Jedrzej Kaniewski, and Stephanie Wehner.
One-sided device-independent qkd and position-based cryptography from
monogamy games. In Thomas Johansson and Phong Q. Nguyen, editors,
Eurocrypt 2013, volume 7881 of LNCS, pages 609–625. Springer, 2013. Full
version is arXiv:1210.4359.

53

http://authors.library.caltech.edu/15654/
http://arxiv.org/abs/quant-ph/9803006
http://arxiv.org/abs/quant-ph/9605044
https://web.eecs.umich.edu/~cpeikert/pubs/lattice-survey.pdf
http://arxiv.org/abs/quant-ph/0512258v2
http://www.quantum.at/uploads/media/PRL_98__010504__2007_.pdf

[Tom16] Marco Tomamichel. Quantum Information Processing with Finite Re-
sources, volume 5 of SpringerBriefs in Mathematical Physics. Springer
International Publishing, 2016.

[Unr21] Dominique Unruh. Lecture “Quantum Cryptography”, spring 2021. Web-
page is https://kodu.ut.ee/~unruh/courses/qc/2021/.

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput.,
39(1):25–58, 2009.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.
Manuscript written ca. 1970.

[Wik] Wikipedia contributors. Wikipedia, the free encyclopedia (english edition).
http://en.wikipedia.org.

20 Lattice-based cryptography

In this section, we introduce one example of so-called lattice-based cryptography that is
a candidate for classical cryptography secure against attacks using quantum computers.

20.1 Learning with errors

We first introduce a computational problem that forms the basis of the cryptosystem
described in the next section.

We warm up with a slightly simpler to explain problem:
Informally, the binary computational LWE problem is, given a publicly known binary

matric A, to find s given As+ e (where e is an error vector with “few” 1’s).

Definition 70 (Binary computational LWE problem) Fix parameters n,m > 0

(integers) and p ∈ [0, 1]. Let A
$← {0, 1}m×n (a uniformly random binary m× n-matrix)

and s
$← {0, 1}n (a uniformly random binary n-vector), and let e ∈ {0, 1}m be chosen by

independently letting each ei be 1 with probability p.
The task of the binary decisional LWE problem (with parameters n,m, p) is to compute

s given A, b := As+ e.

It is generally believed that this problem is hard for suitable parameters. (I.e., the
probability of guessing s is exponentially small for a polynomial-time adversary.)

Instead of asking an adversary to find s, we ask the simpler question: Is the vector
b indeed of the form As + e, or is it just a random vector? (This is simpler, at least for
relevant parameter choices, since if you can find s from As+ e, you can also tell whether
you got As+ e by just checking whether you do find s.)

Definition 71 (Binary decisional LWE problem) Fix parameters n,m > 0 (inte-

gers) and a p ∈ [0, 1]. Let A
$← {0, 1}m×n (a uniformly random binary m × n-matrix)

54

https://kodu.ut.ee/~unruh/courses/qc/2021/
http://en.wikipedia.org

and s
$← {0, 1}n (a uniformly random binary n-vector), and let e ∈ {0, 1}m be chosen by

independently letting each ei be 1 with probability p. Let r
$← {0, 1}m.

The task of the binary decisional LWE problem (with parameters n,m, p) is to distin-
guish the following two data:

• A, As+ e
• A, r

It is generally believed that this problem is hard for suitable parameters. (I.e., the
probability of guessing right is exponentially close to random guessing for a polynomial-
time adversary.)

The binary LWE problem considered the problem of guessing a bitstring given A and
As+ e.

However, there is no reason per se to consider only bitstrings. Instead, we can fix an
additional parameter q, and perform all operations modulo q. That is, A and s contain
elements of Zq. And e is a vector consisting of “small” numbers in Zq. (By “small” we
intuitively mean close to 0. So for example 1 would be small, but q − 1 ≡ −1 would
also be small, but q/2 would not be.) Since now the errors ei are not just 0 or 1, we
need to specify a distribution χ that tells us how ei is distributed. (We think of χ as a
distribution that gives 0 or small values in Zq with high probability.)

Definition 72 (Decisional LWE problem) Fix parameters n,m, q > 0 (integers)

and a distribution χ over Zq Let A
$← Z

m×n
q (a uniformly random m × n-matrix) and

s
$← Z

n
q (a uniformly random n-vector), and let e ← χm (i.e., e consists of m values

independently chosen from χ). Let r
$← Z

m.
The task of the decisional LWE problem (with parameters n,m, q, χ) is to distinguish

the following two data:
• A, As+ e
• A, r

It is generally believed that this problem is hard for suitable parameters, with some
distribution χ of small values.

20.2 Regev’s cryptosystem

We now describe how to build a public key encryption scheme based on LWE. It is not
the most efficient (it encrypts each bit separately) but it contains important ideas used
in many modern lattice-based encryption schemes.

In the following we interpret the elements of Zq as integers {−⌈q/2⌉ + 1, . . . , ⌊q/2⌋}
(instead of, as usual, as integers {0, . . . , q − 1}). This is relevant whenever we say some-
thing like “ |x| ≤ n as integers” for some x ∈ Zq.

And ·, applied to two vectors, is the inner product.

Definition 73 (Regev’s cryptosystem) Regev’s cryptosystem is a public key encryp-
tion scheme with message space {0, 1}.

55

• Parameters. The parameters n,m, q, χ from Definition 72. We assume that χ is

chosen in a way such that |x · e| ≥ q/2 some small probability perror when x
$←

{0, 1}m and e
$← χm.

• Key generation. Generate A, b, s as in Definition 72. The secret key is s. The
public key is (A, b).

• Encryption. To encrypt µ ∈ {0, 1}, pick x
$← {0, 1}m. Let c1 := ATx and

c2 := x · b+ µ⌊q/2⌋ (all calculated in Zq).
• Decryption. To decrypt (c1, c2), we compute t := c2−c1 ·s. If |t| < q/4 (where t is

interpreted as an integer, see above), return message 0, otherwise return message 1.

Lemma 36 (Correctness) Decrypting the encryption of a message µ returns µ with
probability at least 1− Perror .

Lemma 37 (IND-CPA security (informal)) If the decisional LWE problem is hard
(for the parameters used in Definition 73) and if m− n log q is large enough (superloga-
rithmic), then an encryption of 0 and an encryption of 1 are indistinguishable.

Further reading: [Pei16] gives an extensive overview of the basics of lattice-based
cryptography. (Section 4.2 and 5.2 cover the material given here.) Regev’s cryptosystem
was originally proposed in [Reg09] together with an formal investigation of the hardness
of LWE.

56

Index

bank, 43
basis

computational, 8
BB84, 21
beam splitter, 6
Bell states, 21
Bell test, 23
binary computational LWE, 54
binary decisional LWE, 54
bomb tester, 7
bounded quantum storage, 32

cash, 43
chain rule

min-entropy, 27, 33
CNOT, 9
code

error correcting, 26
commit phase, 29
commitment, 29

correctness of, 30
in bounded quantum storage model, 32

complete measurement, 9
completely positive, 17
completeness

of a proof system, 39
composite measurement, 11
composite state, 11
composite system, 11
composite unitary, 11
computational basis, 8
computational LWE

binary, 54
conditional min-entropy

smooth, 32
conditional smooth min-entropy, 32
conjugate transpose, 3
controlled NOT, 9
controlled-U gate, 10
convexity

of trace distance, 19

correctness
of commitment, 30

cqq-state, 25

decisional LWE, 55
binary, 54

density matrix, 14
density operator, 14
Deutsch’s algorithm, 12
DFT, see discrete Fourier transform
Dirac notation, 3
discrete Fourier transform, 42
discrete logarithm problem, 43
distance

statistical, 17
trace, 18

divisor
non-trivial, 42

dlog, see discrete logarithm

Elitzur-Vaidman bomb tester, 7
environment, 16
error

soundness-, 39
error correcting code, 26
extractor

strong, 28
strong quantum, 28

factoring problem, 42
fault tolerant computation, 12
Fourier transform

discrete, 42

generator matrix, 26
global phase, 5, 9

Hadamard gate, 5
hash function

universal, 28
hiding

revocably, 35

57

time vault, 34
Hilbert space, 2

inner product, 2

key distribution, 20
Kitaev theorem

Solovay-, 11
Kraus operator, 16
Kronecker product, 4

lattice-based cryptography, 54
Lo-Chau, 21
LWE

binary computational, 54
binary decisional, 54
decisional, 55

matrix
density, 14

measurement
complete, 9
projective, 8

min-entropy
conditional smooth, 32

mixed state, 14
money

quantum, 43

non-trivial divisor, 42
norm, 2
normalised, 2
not-gate, 5

one-way
revocably, 35

open phase, 29
operator

density, 14
Kraus, 16

order finding problem, 42
orthogonal, 2
orthogonal projection, 4
orthonormal, 2

parity check matrix, 26

partial trace, 16
position verification, 47
positive, 3

completely, 17
projection, 4
projective measurement, 8
projective measurement, 5
proof, 39
proof system, 39
pure state, 14
purification, 16

QKD, 20
security of, 21

quantum extractor
strong, 28

quantum key distribution
security of, 21

quantum key distribution, 20
quantum money, 43
quantum operation, 16
quantum randomness extractor

strong, 28
quantum state, 8
quantum state probability distribution, 13
quantum storage

bounded, 32
quantum zero-knowledge

statistical, 40
qubit, 4

randomness extractor
strong, 28

revocably hiding, 35
revocably one-way, 35

security of QKD, 21
smooth min-entropy

conditional, 32
Solovay-Kitaev theorem, 11
soundness

of a proof system, 39
soundness-error, 39
state

58

composite, 11
mixed, 14
quantum, 8

statistical distance, 17
statistical quantum zero-knowledge, 40
statistical zero-knowledge, 39

quantum, 40
storage

bounded quantum, 32
strong extractor, 28
strong quantum extractor, 28
strong quantum randomness extractor, 28
strong randomness extractor, 28
superoperator, 16
SWAP, 10
syndrome, 26
system

composite, 11

tensor product, 4
time vault, 34

hiding, 34
Toffoli gate, 10
trace, 3
trace distance

convexity of, 19
trace out, 16
trace distance, 18

UHF, see universal hash function
unitary transformation, 4, 8
universal hash function, 28
unveil phase, see open phase

Vaidman, 7

X-gate, 5

zero-knowledge
statistical, 39
statistical quantum, 40

ZK, see zero-knowledge

59

Symbol index

TV (m) Classical time vault containing m 34

x
$← Y x is uniformly randomly chosen from set Y 28

ρinit State of A,B,E after initial step in our QKD protocol
Sraw
Ideal Ideal states after raw key measurement 25
ρtest State of A,B,E after Bell test in our QKD protocol
P=
B Measurement whether X,Y are equal in basis B 36
PBell
t Measurement whether at most t error in Bell pairs 37
LR Language for the relation R 39
〈A(a), B(b)〉 B’s output after interacting with A 39
RGI Relation for graph isomorphism 39
Scorr
Ideal Ideal states after error correction

ord a Order of group element a 42
DN Discrete Fourier transform of size N 42
∝ Proportional to 43
dlog y Discrete logarithm of y 43
H∞(K|E) Conditional min-entropy of K given E
H∞(K|E)ρ Conditional quantum min-entropy of K given E 25
S Phase shift matrix/gate 6
Sθ Phase shift matrix/gate; angle θ 6
CNOT Controlled NOT gate 9
SWAP SWAP gate 10
X Bit flip matrix/gate 5
Y Pauli-Y matrix/gate
Z Pauli-Z matrix/gate
Rθ Rotation matrix/gate; rotation angle θ 6
ρpriv State of A,B,E after privacy amplification in our QKD protocol
St-Error

Ideal Ideal states after Bell test 24
ρraw State of A,B,E after raw key measurement in our QKD protocol
ρcorr State of A,B,E after error correction in our QKD protocol
C(U) Controlled-U gate 10
S(H) Density operators over H 14
t-Error Set of Bell states with ≤ t errors 24
spanM Vector space spanned by vectors in M
R Real numbers
C Complex numbers
N Natural numbers, excluding 0
Z Integers
|xy| Number of non-00 bitpairs in xy
|x| Absolute value of x (or Hamming weight)
imP Image of the linear transformation P

60

H Usually denotes a Hilbert space
H∞(K) Min-entropy of K

|ãb〉 Shorthand notation for tensor product of Bell states 22
GIP Proof system for graph isomorphism 40
|βab〉 Bell state (ab determines which one) 21
⌈x⌉ x rounded up to the next integer
∂2f
∂x2 Function f twice differentiated in variable x
∂f
∂x Function f differentiated in variable x
Fq Finite field of size q 46
QTV A quantum time vault 35
Rev Revocation algorithm for time vault 35
x∗ Complex conjugate of x ∈ C 2
〈Φ,Ψ〉 Inner product of Φ and Ψ 2
M † Conjugate transpose of matrix M 3
‖x‖ Norm (length) of a vector x 2
〈Ψ| Dirac notation; the dual of |Ψ〉 3
|Ψ〉 Dirac notation; represents a vector with name Ψ 3
trM Trace of a matrix M 3
〈Φ|Ψ〉 Inner product of |Φ〉 and |Ψ〉 (same as 〈Φ,Ψ〉) 3
H Hadamard matrix/gate 5
⊗ Tensor product 4
E Usually denotes a quantum operation 16
trB Partial trace (“tracing out B”) 16
SIdeal Set of all ideal states (after execution of QKD protocol) 21
ρIdealABE Ideal state after execution of QKD protocol 21
ρReal
ABE State after execution of QKD protocol (case: no abort) 21

TD(ρ, σ) Trace distance between ρ and σ 18
SD(X,Y) Statistical distance between X and Y 17
Hε

∞(X) Smooth min-entropy 32
⌊x⌋ x rounded down to the next integer
F Usually denotes a quantum operation 16
x← A x is output from algorithm A 34

Spriv
Ideal Ideal states after privacy amplification

61

	Linear Algebra
	One Qubit
	Elitzur-Vaidman Bomb Testing
	Larger quantum systems
	Multi-qubit gates
	Composite Systems
	Sets of Elementary Gates
	The Deutsch-Jozsa Algorithm
	Density Operators
	Partial Trace and Purification
	Quantum Operations
	Trace distance
	Quantum key distribution
	Bell test
	Measuring the raw key
	Error-correction
	Privacy amplification

	Quantum Commitments
	Bounded quantum storage model

	Revocable quantum time vaults
	Zero-knowledge proofs
	Factoring
	Quantum money
	Wiesner's protocol
	Aaronson-Christiano quantum money.

	Position-verification
	Lattice-based cryptography
	Learning with errors
	Regev's cryptosystem

	Symbol index

