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Quantum Cryptography
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About the exam. The exam will be a written exam. The exam is open book,
that is, you are allowed to use lecture notes and other materials from the lecture.
You are not allowed to use external sources (i.e., you must not look up things on
the Internet or communicate with others). After some items in the exam guide
below, it says “[given: . . . ]”. You can ignore this (because we have an open book
exam). After the exam has been corrected, you will have the opportunity to
look at the correction and, if present, point out mistakes in the correction. A
re-exam will be scheduled only if needed.

Things to learn. You should be able to. . .

• . . . reproduce and work with the following definitions from linear algebra: Appendix A
trace, Hermitian, positive, unitary, orthogonal projection, tensor product.

• . . . evaluate simple quantum circuits. I.e., given an initial state and a Section 2
quantum circuit, compute the final state of the quantum circuit and/or
the probabilities of certain measurement outcomes. [Given: Definitions of
the individual gates] In particular, you should be able to analyze simple
quantum experiments such as the Deutsch-Jozsa algorithm or the bomb
tester.

• . . . give a mathematical description of a quantum state given a textual
description. (E.g., given “photon 1 is vertically polarized and photon 2 is
diagonally polarized”, write down the vector representing the state.)

• . . . give a mathematical description of a measurement given a textual de-
scription. (E.g., given “we measure whether the third photon is horizontally
polarized”, describe the projectors constituting that measurement.)

• . . . convert a measurement described by projectors into one described by
subspaces and vice versa.

• . . . convert a state in ket-notation (e.g., 1√
2
|0⟩ + 1√

2
|1⟩) into a state in

vector notation (e.g.,

(
1√
2
1√
2

)
).

• . . . give the definitions of the following gates: CNOT, SWAP, controlled-U . Section 5
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• . . . compute the state of a composite system given the states of individual Section 4
subsystems.

• . . . apply unitary transformations on a subsystem of a composite system.

• . . . apply measurements on a subsystem of a composite system.

• . . . write down a quantum state probability distribution given a textual Section 7
description. (E.g., convert “with probability 1

2 , the qubit is 1√
2
|0⟩+ 1√

2
|1⟩,

and with probability 1
2 , the qubit is |0⟩” into a quantum state probability

distribution.)

• . . . derive the quantum state probability distribution that results from
a particular experiment. (I.e., give a list of steps, tell what the state
probability distribution is afterwards.)

• . . . apply elementary operations to state probability distributions (such as
unitary transformations, measurements, and extending the state space).

• . . . explain “physical indistinguishability”.

• . . . transform an state probability distribution into a density operator.

• . . . apply elementary operations to density operators (such as unitary
transformations, measurements, and extending the state space).

• . . . decide whether two given state probability distributions are physically
indistinguishable.

• . . . convert a density operator in ket-notation (e.g., 3
4 |0⟩⟨0|+

1
4 |1⟩⟨1|) into

a state in vector notation (e.g.,
(

3
4 0
0 1

4

)
).

• . . . compute a partial trace of a given density operator. Section 9

• . . . explain the meaning of partial trace.

• . . . compute a purification of a density operator. [Given: a decomposition
of the density operator into Eigenvectors, e.g., ρ = 1

4 |Φ⟩⟨Φ|+
3
4 |Ψ⟩⟨Ψ|.]

• . . . apply Lemmas 6, 7, and 8 to compute/bound trace distances. [Given: Section 11
Lemma 8]

• . . . compute the trace distance of two density operators.

• . . . compute a statistical distance given the explicit distributions.

• . . . explain the meaning of the trace distance.

• . . . create simple security definitions involving the trace distance.

• . . . explain the individual steps of the QKD security proof on a high level. Section 12
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• . . . explain the individual parts of the security definition of QKD. [Given:
the definition]

• . . . given a protocol that does not satisfy the definition, explain why not
(by giving an attack). [Given: the security definition]

• . . . given a variant of the security definition in which some part is miss-
ing/changed, explain why it is a bad definition (e.g., if it is unfulfillable,
say why; if it does not give enough security, give an example protocol that
satisfies the definition and an attack that illustrates that the definition is
not what we want). [Given: the original security definition]

• . . . explain the meaning of min-entropy (classical/quantum). [Given: the
definition of min-entropy]

• . . . explain the concept of a strong randomness extractor (classi-
cal/quantum). [Given: the definition of strong randomness extractors]

• . . . apply Definition 40, Lemma 18, or Lemma 22 in computations of
bounds on min-entropies or guessing probabilities. [Given: the defini-
tions/lemmas/theorems]

• . . . explain the definition of quantum zero-knowledge. [Given: the definition] Section 17

• . . . for individual parts of that definition, explain what they are for.

• . . . given a protocol that is quantum zero-knowledge, construct a simulator
that is quantum zero-knowledge. [Given: definition of quantum zero-
knowledge, Watrous’ rewinding lemma]

• . . . given the description of a protocol whose (classical) security proof
uses rewinding, decide whether that proof can be carried over to the
quantum case using Watrous’ rewinding lemma and explain why. [Watrous’
rewinding lemma, the protocol with its classical proof sketch]

• . . . define the factoring problem. Section 13

• . . . define the period finding problem.

• . . . explain how to solve factoring given a solution for period finding (effi-
ciently).

• . . . explain how to do period finding using a quantum computer (efficiently;
ignoring issues with approximate results due to the order not dividing N).

• . . . explain what it means that the DFT does a frequency analysis (i.e.,
express this fact as a formula).

Section 14
• . . . given a small LWE instance where the error e is 0, compute s.
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• . . . distinguish the different variants of the LWE problem. More specifically,
given a description of an algorithm, say which of the LWE problems it
breaks (and, if it is clear from the description, with which parameters).

• . . . given a small ciphertext in Regev’s cryptosystem where e = 0 (no error
term), compute the plaintext [given: the definition of Regev’s cryptosys-
tem].

• . . . explain why Regev’s cryptosystem is superior to RSA or ElGamal or
similar cryptosystems in a setting where post-quantum security is required.

• . . . explain why Regev’s cryptosystem is not IND-CCA secure. Section 15

• . . . explain the differences and similarities between a KEM and a public-key
encryption scheme.

• . . . explain what the Fujisaki-Okamoto transform achieves.

• . . . for each operation in the Fujisaki-Okamono transform, explain why it
is there (what does it achieve or protect against).

• . . . for slight modifications of the Fujisaki-Okamoto transform, explain why
it fails (e.g., what attack is possible, or what functional property is lost).

• . . . explain how the random-oracle heuristic works. Section 16

• . . . given a security definition, rewrite it using random oracles.

• . . . apply the O2H theorem (one-way to hiding) in simple cases.

• Good luck!
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