Quantum Cryptography (spring 2023)

Dominique Unruh

Exercise Sheet 05

Out: 2023-03-13

Due: 2023-03-20

1 Quantum Operations

Knowlets:	ParTr, QOper	ProblemID: PTraceQOp
Time:		
Difficulty:		
D !! .	1	·· · · · · · · · · · · · · · · · · · ·

Describe the partial trace as a quantum operation. More exactly, let $\mathcal{H}_A = \mathbb{C}^n$, $\mathcal{H}_B = \mathbb{C}^m$. Find operators $E_k : \mathcal{H}_A \otimes \mathcal{H}_B \to \mathcal{H}_A$ such that these define a quantum operation $\mathcal{E} = \{E_k\}_k$ with the property that $\mathcal{E}(\rho) = \operatorname{tr}_B \rho$ for all ρ . Show that \mathcal{E} is indeed a quantum operation (i.e., that the E_k are valid operators for defining a quantum operation).

Hint: For density operators ρ we have $\operatorname{tr} \rho = \sum_k \langle k | \rho | k \rangle$. Note that here $\langle k |$ is a linear operator from \mathcal{H}_B to \mathbb{C} . And $I \otimes \langle k |$ is a linear operator from $\mathcal{H}_A \otimes \mathcal{H}_B$ to $\mathcal{H}_A \otimes \mathbb{C} = \mathcal{H}_A$. Note that it is sufficient to check that $\mathcal{E}(\rho) = \operatorname{tr}_B \rho$ for $\rho = \sigma \otimes \tau$, the rest follows by linearity.

2 Trace distance

	Knowlets:	TD, TDProps, DensityPhysInd	ProblemID: TDPhysInd
(a)	Time:		
	Difficulty:		

Let E_1 and E_2 be quantum state probability distributions. Let ρ_1 and ρ_2 be the corresponding density operators. Assume that E_1 and E_2 are physically indistinguishable. What is $\text{TD}(\rho_1, \rho_2)$?

	Knowlets:	TD	ProblemID: TDDiag1
(b)	Time:		
	Difficulty:		

Let $E_1 := \{(|+\rangle, \frac{1}{2}), (|-\rangle, \frac{1}{2})\}$ and $E_2 := \{(|0\rangle, 1)\}$ be quantum state probability distributions. Let ρ_1 and ρ_2 be the corresponding density operators. What is $TD(\rho_1, \rho_2)$?

	Knowlets:	TD	ProblemID: TDSimilar
(c)	Time:		
	Difficulty:		

Let $\rho = p\tau + q\rho'$ and $\sigma = p\tau + q\sigma'$ where τ, ρ', σ' are density operators, and $p, q \ge 0$, p + q = 1. Show that $\text{TD}(\sigma, \rho) = q \cdot \text{TD}(\sigma', \rho')$.

Note: Do not use Lemma 9 in the lecture notes.

	Knowlets:	TD ProblemID: TDDiagPsi
(d)	Time:	
	Difficulty:	

Let $E_1 := \{(|+\rangle, \frac{1}{4}), (|-\rangle, \frac{1}{4}), (|\Psi\rangle, \frac{1}{2})\}$. Let $E_2 := \{(|0\rangle, \frac{1}{2}), (|\Psi\rangle, \frac{1}{2})\}$. Here $|\Psi\rangle := \frac{1}{\sqrt{3}}|0\rangle - \sqrt{\frac{2}{3}}|1\rangle$. Let ρ_1 and ρ_2 be the corresponding density operators. What is $\mathrm{TD}(\rho_1, \rho_2)$?

Hint: Consider (c).

[Knowlets:	QDistr, Density, TD	ProblemID: ToyCryptoWrong
(e)	Time:		
	Difficulty:		

Consider the following setup: Alice has a secret bit $b \in \{0, 1\}$. Then she chooses randomly $r \in \{0, 1\}$. If r = 0, she encodes b in the $|0\rangle, |1\rangle$ basis (i.e., she sends $|0\rangle$ for b = 0 and $|1\rangle$ for b = 1). If r = 1, she encodes b in the $|+\rangle, |-\rangle$ basis. Then she sends the resulting state $|\Psi_b\rangle$ to Eve. Show that the trace distance between the mixed states ρ_0 and ρ_1 corresponding to b = 0 and b = 1, respectively, is $\text{TD}(\rho_0, \rho_1) = \frac{1}{\sqrt{2}}$.

Hint: The eigenvalues of $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$ are $\frac{1}{\sqrt{2}}$ and $-\frac{1}{\sqrt{2}}$. Note that this is not the toy protocol from the lecture, in the toy protocol *b* selected the basis, not *r*.

	Knowlets:	TDMaxDef	ProblemID: ToyCryptoWGuess
(f)	Time:		
	Difficulty:		

(Bonus problem) In the experiment described in (e), assume that the bit *b* is chosen uniformly at random. Show that Eve cannot guess *b* with probability larger than $\frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 85\%$.

Hint: Try to express the probability that Eve guesses correctly in terms of $\Pr[G = x|b = y]$ for various $x, y \in \{0, 1\}$ (here G denotes Eve's guess) and then use (e).