Quantum Cryptography (spring 2023) Exercise Sheet 06 Out: 2023-03-20 Due: 2023-03-27

1 Quantum key exchange, bad protocol

Alice and Bob perform the following quantum key distribution protocol:

• Alice chooses random bits $a_1, \ldots, a_n \in \{0, 1\}$ and $b_1, \ldots, b_n \in \{0, 1\}$. For $i = 1, \ldots, n$, Alice prepares $|\Psi_i\rangle := |\Psi_{a_ib_i}\rangle$ according to the following table:

$$\begin{split} |\Psi_{00}\rangle &:= |0\rangle \\ |\Psi_{10}\rangle &:= |1\rangle \\ |\Psi_{01}\rangle &:= |+\rangle \\ |\Psi_{11}\rangle &:= |-\rangle \end{split}$$

(In other words, b_i specifies the basis in which a_i is encoded.)

- Then Alice sends $|\Psi_1\rangle \otimes \cdots \otimes |\Psi_n\rangle$ to Bob (over an insecure quantum channel that is under the control of the adversary Eve).
- When Bob has received all the *n* qubits, they acknowledge receipt over an authenticated (but public, i.e., not secret) channel.
- After getting the acknowledgement from Bob, Alice sends all bits b_i to Bob, and for checking, Alice also sends a_i to Bob for $i = 1, \ldots, \frac{n}{2}$ (we assume n to be even).
- Then Bob measures each of the qubits they received in the basis given by the b_i . Let the outcomes be \tilde{a}_i .
- Bob checks whether $a_i = \tilde{a}_i$ for all $i = 1, \ldots, \frac{n}{2}$. If so, they send OK to Alice over the authenticated channel and outputs the key $\tilde{a}_{\frac{n}{2}+1} \ldots \tilde{a}_n$, otherwise they send ABORT and abort.
- When Alice receives OK, they output the key $a_{\frac{n}{2}+1} \dots a_n$. If they receives ABORT, they abort.

	Knowlets:	QKDIntro, QKDSecDef	ProblemID: BadQKDBreak
(a)	Time:		
	Difficulty:		

Break the protocol.

	Knowlets:	QKDIntro, QKDSecDef	ProblemID: BadQKDFix
(b)	Time:		
	Difficulty:		

Argue how the protocol security could be improved. (But do not try to prove it!)

2 Eve's advantage

Assume that in a (bad) QKD protocol, some adversary Eve succeeds in doing the following: The protocol aborts with probability $\frac{2}{3}$. In the cases where the protocol does not abort, the key that is chosen is always 0...0 (n bits, n > 2). For simplicity, assume that Eve's state is empty after the protocol execution (that is, Eve's quantum state consists of zero qubits, and density operators ρ_E describing Eve's state can be omitted from all formulas).

	Knowlets:	QKDSecDef ProblemID: EveAdvReal
(a)	Time:	
	Difficulty:	

Describe the state $\rho_{ABE}^{\mathrm{Real}}$. What is the value of

$$\mathrm{TD}(\rho_{ABE}^{\mathrm{Real}}, S_{\mathrm{Ideal}}) := \max_{\rho_{ABE}^{\mathrm{Ideal}} \in S_{\mathrm{Ideal}}} \mathrm{TD}(\rho_{ABE}^{\mathrm{Real}}, \rho_{ABE}^{\mathrm{Ideal}})$$

(for the particular Eve described above)?

(b)	Knowlets:	QKDSecDef	ProblemID: EveAdvInsec
	Time:		
	Difficulty:		

Show that the protocol is not ε -secure where $\varepsilon := \frac{1}{4}$.