Quantum Cryptography (spring 2023)

Dominique Unruh

Exercise Sheet 08

Out: 2023-04-03

Due: 2023-04-10

ProblemID: MatrixUHF

1 Universal hash functions

	Knowlets:	UHF
(a)	Time:	
	Difficulty:	

Let S be the set of all binary $\ell \times m$ -matrices. I.e., $S = \mathbb{F}_2^{\ell \times m}$. Let X be the set of all m-bit vectors. I.e., $X = \mathbb{F}_2^m$. Let $Y = \mathbb{F}_2^\ell$. Let $F : S \times X \to Y$ be defined as F(s, x) := sx.

Show that F is a universal hash function.

Note: You may use the fact that for any fixed $z \neq 0$, and uniformly distributed $s \in \mathbb{F}_2^{\ell \times m}$, sz is uniformly distributed on \mathbb{F}_2^{ℓ} . (Bonus points if you prove that fact, too.)

Hint: sx = sx' iff s(x - x') = 0.

Let $S := X := \mathbb{F}_{2^m}$ be a finite field (encoded in the standard way as an \mathbb{F}_2 vector space). Let $trunc_{\ell}(x)$ denote the first ℓ bits of x. Let $Y := \{0, 1\}^{\ell}$. Let $F : S \times X \to Y$ be defined as $F(s, x) := trunc_{\ell}(sx)$.

Show that F is a universal hash function.

Note: You may use that $trunc_{\ell}(a-b) = trunc_{\ell}(a) - trunc_{\ell}(b)$. (This is immediate from the encoding of \mathbb{F}_{2^m} .)