Exercise Sheet 09

1 Inverting cyclic functions

Consider a function $H:[N] \rightarrow[N]$ where $[N]:=\{0, \ldots, N-1\}$. Let $H^{i}(x)$ denote $H(H(H(\ldots H(x) \cdots)))$ (applied i times). For the sake of this problem, we call H cyclic if there exists a value p (the period) such that for all $x, H^{p}(x)=x$.
(a)

Knowlets:	DFT, Shor
Time:	
Difficulty:	

Let $U_{H}|x\rangle|i\rangle|0\rangle=|x\rangle|i\rangle\left|H^{i}(x)\right\rangle$. Give a quantum algorithm involving U_{H} for finding the period of H (assuming that H is cyclic).

Note: You may assume that the $\operatorname{DFT} D_{N}$ can be implemented as a polynomial-tim\& quantum circuit. (This is, in general, not true for all N. But in the general case, you would be able to use an approximately solution that is only slightly more complicated than the solution needed here.)

Note: "involving U_{H} " means that you can apply U_{H} in a single runtime step.
(b)

Knowlets:	ProblemiD: HashPeriodInvert
Time:	
Difficulty:	

(Bonus problem) Given $y=H(x)$ and given the period of p, show that you can find x in polynomial-time. (You may still use U_{H}.)
(c)

Knowlets:	ProblemID: HashPeriodWrong
Time:	
Difficulty:	

The following statement is wrong:
Given a cyclic H and a value $y \in$ range H, using the algorithm from Problem 1](a), we can find the period p of H, and then using the algorithm from Problem 1 [b], we can compute $H^{-1}(y) \bigsqcup^{2}$ Moreover, all involved algorithms run in polynomial-time. Hence using quantum computers, cyclic functions can be inverted in polynomial-time.

[^0]Why?

2 Discrete Fourier Transform

In this problem, note that the indexes in the definition of the DFT start with 0 . I.e., the top-left component of $D_{N}=N^{-1 / 2}\left(\left(e^{2 i \pi k l / N}\right)\right)_{k l}$ is $N^{-1 / 2} e^{2 i \pi 00 / N}=N^{1 / 2}$.
(a)

Knowlets:	DFT
Time:	
Difficulty:	

Show that the $N \times N$-DFT D_{N} is unitary.
Hint: Show first that for $\tilde{\omega} \in \mathbb{C}$ with $\tilde{\omega}^{N}=1$ and $\tilde{\omega} \neq 1$, we have $\sum_{k=0}^{N-1} \tilde{\omega}^{k}=0$. (What is $\tilde{\omega} \cdot\left(\sum_{k=0}^{N-1} \tilde{\omega}^{k}\right)$?)
(b)

Knowlets:	DFT	ProblemID: DFT2
Time:		
Difficulty:		

Give a circuit for D_{2} using only elementary gates (i.e., only gates given in the lecture notes in Sections 2.1 and 5).
(c)

Knowlets:	DFT	ProblemID: DFTFreq
Time:		
Difficulty:		

(Bonus) Let $N>0$ be an integer. Let $r \in\{1, \ldots, N\}$ with $r \mid N$. Let $x_{0} \in$ $\{0, \ldots, r-1\}$. Let $|\Psi\rangle:=t^{-1 / 2} \sum_{k=0}^{t-1}\left|x_{0}+k r\right\rangle$ where t is a normalization factor and $t:=N / r$.
(If $r=\operatorname{ord} a \mid N$ for some group element a, then $|\Psi\rangle$ is the post-measurement state we have in Shor's order-finding algorithm directly before applying the DFT D_{N}.)
Let D_{N} be the $N \times N$-DFT. Let $\left|\Psi^{\prime}\right\rangle:=D_{N}|\Psi\rangle$. Consider a measurement on $\left|\Psi^{\prime}\right\rangle$ in the computational basis and let γ denote the outcome. Show that $\operatorname{Pr}\left[\frac{N}{r}\right.$ divides $\left.\gamma\right]=1$. (In other words, if $N \nmid \gamma r$ then $\left|\left\langle\gamma \mid \Psi^{\prime}\right\rangle\right|^{2}=0$.)
(That is, at least in the case where ord $a \mid N$, the order finding algorithm returns a multiple of $N / \operatorname{ord} a$.)

Hint: Show first that for some $\tilde{\omega} \in \mathbb{C}$ and $t \in \mathbb{N}$ with $\tilde{\omega}^{t}=1$ and $\tilde{\omega} \neq 1$, we have $\sum_{k=0}^{t-1} \tilde{\omega}^{k}=0$.

Note: This was sketched in the lecture. You only get points if your proof goes beyond the sketch in the lecture in detail/rigor.

[^0]: ${ }^{1}$ By polynomial-time, I mean that the size of the circuit is bounded by $p(\log N)$ for some polynomial p.
 ${ }^{2}$ Notice that cyclicity implies bijectivity, so H^{-1} is well-defined.

