Exercise Sheet 10

1 Regev's cryptosystem

In Regev's cryptosystem, we have an error term e that is initialized according to a distribution χ. In this homework, we investigate what happens, say due to a programmer error, e is not properly randomized.
(a)

Knowlets:	Regev, CompLWE
Time:	
Difficulty:	

We have a faulty implementation of Regev's cryptosystem where $e=(0, \ldots, 0)$ always. The adversary gets the public-key (A, b) and a ciphertext $\left(c_{1}, c_{2}\right)$. How can the adversary compute the plaintext? (Describe the computation steps performed by the adversary.)

Hint: If in doubt, first try to figure out how to solve the computational LWE problem (i.e., find s) when $e=0$ always.
(b)

Knowlets:	Regev, CompLWE
Time:	
Difficulty:	

Now we have a slightly better implementation. e now indeed contains some noise, but too little. In fact, it turns out that with probability close to 1 , only one component $e_{i} \neq 0$. (That is, for all $j \neq i, e_{j}=0$.) Show that this is too little noise by giving an attack. (Given public key and ciphertext find the plaintext. Describe the computation steps performed by the adversary.)
(c)

Knowlets:	Regev
Time:	
Difficulty:	

Now we have a different randomness failure. e is chosen properly, but $A=0$. How to attack? (Given public key and ciphertext find the plaintext. Describe the computation steps performed by the adversary.)
(d)

Knowlets:	Regev	ProblemiD: RegevManyMsg
Time:		
Difficulty:		

Consider the following variant of Regev's scheme:

- Encryption. To encrypt $\mu \in \mathbb{Z}_{q}$, pick $x \stackrel{\&}{\leftarrow}\{0,1\}^{m}$. Let $c_{1}:=A^{T} x$ and $c_{2}:=x \cdot b+\mu$ (all calculated in \mathbb{Z}_{q}).
That is, we have optimized the scheme by allowing messages in \mathbb{Z}_{q} (i.e., not limited to a single bit). This is much more efficient. What is the problem with this change?
(e)

Knowlets:	Regev
Time:	
Difficulty:	

And now something completely different: Given a ciphertext $\left(c_{1}, c_{2}\right)$ that is the encryption of some unknown $\mu \in\{0,1\}$, how to compute a ciphertext $\left(c_{1}^{\prime}, c_{2}^{\prime}\right)$ that decrypts to $1-\mu$ (with high probability)?

Note: You do not need to prove that your solution is correct, it is enough to specify the algorithm.

Note: What you are showing here is that Regev's cryptosystem is malleable.

