Quantum Cryptography (spring 2023)

Dominique Unruh

Exercise Sheet 10

Out: 2023-04-17

Due: 2023-04-24

1 Regev's cryptosystem

In Regev's cryptosystem, we have an error term e that is initialized according to a distribution χ . In this homework, we investigate what happens, say due to a programmer error, e is not properly randomized.

[Knowlets:	Regev, CompLWE	ProblemID: RegevNoError
(a)	Time:		
	Difficulty:		

We have a faulty implementation of Regev's cryptosystem where e = (0, ..., 0) always. The adversary gets the public-key (A, b) and a ciphertext (c_1, c_2) . How can the adversary compute the plaintext? (Describe the computation steps performed by the adversary.)

Hint: If in doubt, first try to figure out how to solve the computational LWE problem (i.e., find s) when e = 0 always.

	Knowlets:	Regev, CompLWE	ProblemID: RegevLittleError
(b)	Time:		
	Difficulty:		

Now we have a slightly better implementation. e now indeed contains some noise, but too little. In fact, it turns out that with probability close to 1, only one component $e_i \neq 0$. (That is, for all $j \neq i$, $e_j = 0$.) Show that this is too little noise by giving an attack. (Given public key and ciphertext find the plaintext. Describe the computation steps performed by the adversary.)

	Knowlets:	Regev	ProblemID: RegevA0
(c)	Time:		
	Difficulty:		

Now we have a different randomness failure. e is chosen properly, but A = 0. How to attack? (Given public key and ciphertext find the plaintext. Describe the computation steps performed by the adversary.)

nyMsg
_

Consider the following variant of Regev's scheme:

• Encryption. To encrypt $\mu \in \mathbb{Z}_q$, pick $x \stackrel{\$}{\leftarrow} \{0,1\}^m$. Let $c_1 := A^T x$ and $c_2 := x \cdot b + \mu$ (all calculated in \mathbb{Z}_q).

That is, we have optimized the scheme by allowing messages in \mathbb{Z}_q (i.e., not limited to a single bit). This is much more efficient. What is the problem with this change?

	Knowlets:	Regev	ProblemID: RegevMall
(e)	Time:		
	Difficulty:		

And now something completely different: Given a ciphertext (c_1, c_2) that is the encryption of some unknown $\mu \in \{0, 1\}$, how to compute a ciphertext (c'_1, c'_2) that decrypts to $1 - \mu$ (with high probability)?

Note: You do not need to prove that your solution is correct, it is enough to specify the algorithm.

Note: What you are showing here is that Regev's cryptosystem is malleable.