Quantum Cryptography (spring 2023)

Dominique Unruh

Exercise Sheet 11

Out: 2023-04-25

Due: 2023-05-03

1 Bad Fujisaki-Okamoto variant

Knowlets:	FO	ProblemID: FOBad
Time:		
Difficulty:		

Fujisaki-Okamoto (FO) uses two hash functions G and H. You want to implement FO and you notice: Your crypto library provides only a single hash function (e.g., SHA3 with a specific parameter set). So you don't have two different hash functions available. So, you instead implement the following slightly changed FO:

- *Key generation:* Use KeyGen.
- Encapsulation: Encaps(pk) runs: $m \stackrel{\$}{\leftarrow} \mathcal{M}$. (\mathcal{M} is the message space of Enc.) $c \leftarrow \text{Enc}(pk, m; H(m))$. k := H(m). Return (c, k).
- Decapsulation: Decaps(sk, c) runs: $m \leftarrow Dec(sk, c)$. If $m = \bot$ or $c \neq Enc(pk, m; H(m))$, return \bot . Otherwise set k := H(m) and return k.

Why is this a bad idea? More precisely, show that this is not IND-CCA secure.

Note: For example, you could show how, given c and k, you can check whether you indeed got k (and not c and k' for some random k').

2 O2H Theorem

	Knowlets:	O2H, QromIdea	ProblemID: O2HOW
(a)	Time:		
	Difficulty:		

Show that if f is a one-way function and G is a random oracle, then $x \mapsto (f(x), G(x))$ is one-way, too.

Specifically, show the following: For a q-query adversary A, $\Pr[b = 1 : G_1]$ is negligible where:

• Game $G: G \stackrel{\$}{\leftarrow} (\{0,1\}^n \to \{0,1\}^n)$. $x \stackrel{\$}{\leftarrow} \{0,1\}^n$. $x' \leftarrow A^G(f(x),G(x))$. win iff x' = x.

Hint: Use the O2H theorem. The sequence of games involved is the same as in the proof in the lecture. (The games themselves are, of course, somewhat different since we have a different starting point. But the ideas behind the games are not much different here.)

	Knowlets:	O2H, QromIdea	ProblemID: O2HPrg
(b)	Time:		
	Difficulty:		

Show that the random oracle is a pseudorandom generator.

Specifically, show the following: For a q-query adversary A, $|\Pr[b = 1:G_1] - \Pr[b = 1:G_1]|$ $1:G_2] \le O(q\sqrt{2^{-n}})$ where:

- Game $G_1: G \stackrel{\$}{\leftarrow} (\{0,1\}^n \to \{0,1\}^{2n}). \ x \stackrel{\$}{\leftarrow} \{0,1\}^n. \ b \leftarrow A^G(G(x)).$ Game $G_2: G \stackrel{\$}{\leftarrow} (\{0,1\}^n \to \{0,1\}^{2n}). \ y \stackrel{\$}{\leftarrow} \{0,1\}^{2n}. \ b \leftarrow A^G(y).$

Use the O2H theorem. You can do a preparation for applying the O2H Hint: Theorem that is quite similar to what's happening in the lecture, but the resulting sequence of games is a little different because we are not trying to show that a winning probability is small, but that a difference in probabilities is small. So pay attention: In the guessing game, you will need to show that some probability is small, but for the other games you will only need to show that probabilities are similar.