Exercise Sheet 11

Out: 2023-04-25

1 Bad Fujisaki-Okamoto variant

Knowlets:	FO
Time:	
Difficulty:	

Fujisaki-Okamoto (FO) uses two hash functions G and H. You want to implement FO and you notice: Your crypto library provides only a single hash function (e.g., SHA3 with a specific parameter set). So you don't have two different hash functions available. So, you instead implement the following slightly changed FO:

- Key generation: Use KeyGen.
- Encapsulation: $\operatorname{Encaps}(p k)$ runs: $m \stackrel{\&}{\leftarrow} \mathcal{M}$. (\mathcal{M} is the message space of Enc.) $c \leftarrow \operatorname{Enc}(p k, m ; H(m)) . k:=H(m)$. Return (c, k).
- Decapsulation: Decaps $(s k, c)$ runs: $m \leftarrow \operatorname{Dec}(s k, c)$. If $m=\perp$ or $c \neq$ $\operatorname{Enc}(p k, m ; H(m))$, return \perp. Otherwise set $k:=H(m)$ and return k.
Why is this a bad idea? More precisely, show that this is not IND-CCA secure.
Note: For example, you could show how, given c and k, you can check whether you indeed got k (and not c and k^{\prime} for some random k^{\prime}).

2 O2H Theorem

(a)

Knowlets:	O2H, QromIdea
Time:	
Difficulty:	

Show that if f is a one-way function and G is a random oracle, then $x \mapsto(f(x), G(x))$ is one-way, too.
Specifically, show the following: For a q-query adversary $A, \operatorname{Pr}\left[b=1: G_{1}\right]$ is negligible where:

- Game $G: G \stackrel{\&}{\leftarrow}\left(\{0,1\}^{n} \rightarrow\{0,1\}^{n}\right) . x \stackrel{\&}{\leftarrow}\{0,1\}^{n} \cdot x^{\prime} \leftarrow A^{G}(f(x), G(x))$. win iff $x^{\prime}=x$.

Hint: Use the O2H theorem. The sequence of games involved is the same as in the proof in the lecture. (The games themselves are, of course, somewhat different since we have a different starting point. But the ideas behind the games are not much different here.)
(b)

Knowlets:	O2H, QromIdea
Time:	
Difficulty:	

Show that the random oracle is a pseudorandom generator.
Specifically, show the following: For a q-query adversary $A, \mid \operatorname{Pr}\left[b=1: G_{1}\right]-\operatorname{Pr}[b=$ $\left.1: G_{2}\right] \mid \leq O\left(q \sqrt{2^{-n}}\right)$ where:

- Game $G_{1}: G \stackrel{\&}{\leftarrow}\left(\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}\right) . x \stackrel{\&}{\leftarrow}\{0,1\}^{n} . b \leftarrow A^{G}(G(x))$.
- Game $G_{2}: G \stackrel{\&}{\leftarrow}\left(\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}\right) . y \stackrel{\&}{\leftarrow}\{0,1\}^{2 n} . b \leftarrow A^{G}(y)$.

Hint: Use the O2H theorem. You can do a preparation for applying the O 2 H Theorem that is quite similar to what's happening in the lecture, but the resulting sequence of games is a little different because we are not trying to show that a winning probability is small, but that a difference in probabilities is small. So pay attention: In the guessing game, you will need to show that some probability is small, but for the other games you will only need to show that probabilities are similar.

